Probabilistic Reduction from PH to ⊕P

This material was presented in class on April 14, 2016. We wish to prove

Arora-Barak's Lemma 17.17: For any constants c and m in \mathcal{N} , there exists a probabilistic polynomial-time algorithm f such that, for any $\sum_{c} SAT$ instance ψ ,

$$\psi$$
 is true $\longrightarrow Pr[f(\psi) \in \oplus SAT] \ge 1 - 2^{-m}$
 ψ is false $\longrightarrow Pr[f(\psi) \in \oplus SAT] < 2^{-m}$

The \oplus SAT version of the Valiant-Vazirani lemma, which was presented in the previous lecture, gives us this result for c=1. We will prove by induction on c that the result holds not only for Σ_c SAT instances but also for Π_c SAT instances.

From the algorithm f that reduces SAT to \oplus SAT with correctness probability $1-2^{-m}$, we can easily construct an algorithm f' that reduces coSAT to \oplus SAT with the same correctness probability: Just let $f'(\psi) = f(\psi) + 1$, where addition of formulas and the formula "1" are as defined in Chapter 17 (and in class during the previous lecture). So the base case $(c = 1 \text{ for both } \Sigma \text{ and } \Pi)$ of what we're trying to prove is true. Our inductive hypothesis is that it is true for c - 1. In particular, it holds for instances ψ of Π_{c-1} SAT. We will use this to prove that it holds for instances ϕ of Σ_c SAT. Any such ϕ is of the form

$$\phi(x_1, x_2, \dots, x_c) = \exists x_1 \forall x_2 \cdots Q_c x_c \phi'(x_1, x_2, \dots, x_c),$$

where each of the x_i 's is a string of boolean variables, and Q_c is \exists if c is odd and \forall if c is even. Note that ϕ is of the form $\exists x_1 \psi(x_1)$, where $\psi(x_1)$ is an instance of Π_{c-1} SAT. By our inductive hypothesis, for any $m \in \mathcal{N}$, there is a probabilistic, polynomial-time algorithm f such that $\rho(z, x_1) = (f(\psi(x_1)))(z)$, $\beta(x_1) = \bigoplus_z \rho(z, x_1)$, and, with probability at least $1 - 2^{-(m+1)}$, $\beta(x_1) = \psi(x_1)$. In particular, with probability at least $1 - 2^{-(m+1)}$, $\exists x_1 \beta(x_1)$ if and only if $\exists x_1 \psi(x_1)$.

We now examine the proof of the (USAT version of the) Valiant-Vazirani lemma and note that it is *oblivious* in the sense that it does not use the structure of the formula ϕ when producing the formula $\tau(\cdot,\cdot)$. Obliviousness implies that, for any boolean function β on a string x_1 of n boolean variables, the input 1^n is sufficient for the Valiant-Vazirani reduction to produce a boolean formula $\tau(w,q)$, where |w| = n and |q| = poly(n), such that, with probably at least $\frac{1}{8n}$, τ has a unique satisfying assignment. Note that, if τ has a unique satisfying assignment, then it is in $\oplus P$. So, for any boolean function β , we have

$$\exists x_1 \beta(x_1) \longrightarrow Prob[(\bigoplus_{w,q} \tau(w,q)) \land (\beta(x_1) = 1)] \ge \frac{1}{8n}$$
$$\neg \exists x_1 \beta(x_1) \longrightarrow Prob[(\bigoplus_{w,q} (\tau(w,q)) \land (\beta(x_1) = 1)] = 0.$$

In our inductive proof, $\beta(x_1) = \bigoplus_z \rho(z, x_1)$, and ρ is a formula of size polynomial in the size of our original Σ_c SAT instance ϕ . Thus, we have

$$\exists x_1 \beta(x_1) \longrightarrow Prob[(\bigoplus_{w,q} \tau(w,q)) \land (\bigoplus_{z} \rho(z,x_1))] \ge \frac{1}{8n}$$

$$\neg \exists x_1 \beta(x_1) \longrightarrow Prob[(\bigoplus_{w,q} \tau(w,q)) \land (\bigoplus_{z} \rho(z,x_1))] = 0.$$

Applying the definition of multiplication of formulas from our previous lecture, we get

$$\exists x_1 \beta(x_1) \longrightarrow Prob[\bigoplus_{w,q,z} (\tau \cdot \rho)(w,q,z,x_1)] \ge \frac{1}{8n}$$
$$\neg \exists x_1 \beta(x_1) \longrightarrow Prob[\bigoplus_{w,q,z} (\tau \cdot \rho)(w,q,z,x_1)] = 0.$$

We can use the same procedure as we used to convert the USAT version of Valiant-Vazirani to the \oplus SAT version of Valiant-Vazirani in order to produce a formula α that, with probability $1 - 2^{-(m+1)}$, is in \oplus SAT if and only if $\exists x_1 \beta(x_1)$.

Finally, we compose these two reductions to transform our original instance ϕ of $\Sigma_c SAT$ to a $\oplus SAT$ instance α such that, with probability at least $1-2^{-m}$, $\phi \in \Sigma_c SAT$ if and only if $\alpha \in \oplus SAT$. The error probability is at most 2^{-m} , because an error occurs if and only if there is disagreement between $\phi = \exists x_1 \psi(x_1)$ and $\exists x_1 \beta(x_1)$ (which occurs with probability at most $2^{-(m+1)}$) or there is disagreement between $\exists x_1 \beta(x_1)$ and $\alpha \in \oplus SAT$ (which also occurs with probability at most $2^{-(m+1)}$). We use the same "add 1" trick as we used for SAT and coSAT to conclude that the result holds for $\Pi_c SAT$ if is hold for $\Sigma_c SAT$.