
Three Results about Circuit Size

This material was presented in class on February 25, 2016. We began with a formulation
of P/poly in terms of Turing Machines that take advice. See Definition 6.16 and Theorem
6.18.

Although good lower bounds on the circuit complexity of specific boolean functions have
proven very elusive, the following basic result of Shannon from 1949 establishes that some
boolean functions require large circuits.

Theorem 1 For every n > 1, there exists a function f : {0, 1}n −→ {0, 1} that cannot be
computed by a circuit of size 2n

10n
.

Proof. Recall that a circuit is a directed acyclic graph with in-degree 2 and that its size
is the number of nodes in it. So every circuit of size S can be represented by a bitstring
of length at most 9S logS. For each of node i, 1 ≤ i ≤ S, we must specify at most two
predecessors, say vi1 and vi2, and also the type of i, i.e., one of input node, OR gate, AND
gate, and NOT gate. Each of vi1 and vi2 can be represented by logS bits, and the type
requires only two bits. (It seems as though (2 logS + 2)S bits would suffice for a circuit of
size S, but the upper bound of 9S logS given in the book is certainly valid.)

Thus, the total number of circuits of size S = 2n

10n
is at most

29S logS = 29· 2n

10n
·log 2n

10n = 22n( 9
10n

·log 2n

10n
).

Note that
9

10n
log

2n

10n
<

9

10n
log 2n =

9

10n
· n =

9

10
< 1.

Therefore, the number of circuits of size 2n

10n
is strictly less than the number of boolean

functions on {0, 1}n, which is 22n .

We can actually say something stronger. The fraction of boolean functions on {0, 1}n
that can be computed by circuits of size 2n

10n
is at most

22n( 9
10n

·log 2n

10n
)

22n
=

1

2(2n)(1−( 9
10n

·log 2n

10n
))
.

Now the fact that 9
10n
· log 2n

10n
< 9

10
implies that 1− ( 9

10n
· log 2n

10n
) > 1

10
. So

1

2(2n)(1−( 9
10n

·log 2n

10n
))
<

1

2(0.1)(2n)
,

which clearly goes to 0 as n grows. Therefore, almost all boolean functions on {0, 1}n require
circuits of size greater than 2n

10n
.

Circuits of size 2n

10n
are considered “large” because of the following basic fact.

Theorem 2 Any Boolean function on {0, 1}n can be computed by a circuit of size n(2n +1).
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Proof: Let f be a boolean function on {0, 1}n. Assume without loss of generality that f
assumes the value 1 on at most half of its input vectors. If this is not the case, then we
will build a circuit for ¬f and just add one NOT gate in order to compute f . We first put
into our circuit C for f exactly n input nodes x1, . . . , xn; taking advantage of the fact that
nodes in circuits may have unbounded fan-out (but fan-in at most two), we build at most
2n−1 subcircuits on these input nodes, one for each input vector on which f outputs 1.

The subcircuit Cj for εj = (εj1, . . . , ε
j
n) outputs 1 if and only if the input vector is equal

to εj. So it contains a NOT gate vji if and only if εji = 0. The output of Cj is the n-way
AND of either xi (if εji = 1) or vji (if εji = 0); this n-way AND can be computed with n− 1
AND gates of fan-in two. Thus, Cj contributes at most 2n− 1 to the size of C.

To complete the construction of C, we must take the 2n−1-way OR of the outputs of the
Cj’s and then perhaps add one more NOT gate as explained above. The 2n−1-way OR can
be computed using 2n−1 − 1 OR gates of fan-in two. The size of C is thus at most

n+ 2n−1 · (2n− 1) + 2n−1 − 1 + 1 = n(2n + 1). �

We then turned to Chapter 7, on randomized computation. We began by reviewing
Definitions 7.1, 7.2, and 7.6, as well as Theorem 7.10 – all were first presented in Lecture
1. We ended the class with a fundamental fact about the relationship between probabilistic,
polynomial-time Turing Machines and polynomial-sized circuits.

Adleman’s Theorem: BPP ⊆ P/poly

Proof. Let L be a set in BPP. Recall that the Chernoff bounds on the tails of the bino-
mial distribution ensure that there is a probabilistic polynomial-time machine M such that
M(x) = L(x) with probability at least 1 − 2−(n+1). Let m be the maximum number of
random bits that M uses on inputs of length n. So m = poly(n), and M ’s output on input
x is a function of x and a random string r ∈ {0, 1}m; this function of x and r is computable
in deterministic polynomial time.

Fix a length n, and consider all inputs x ∈ {0, 1}n. We say that r is bad for x if M outputs
the wrong answer on input x and random string r; otherwise, r is good for x. Because M ’s
error probability is at most 2−(n+1), the number of r’s that are bad for any given x is at
most (2m)/(2n+1). The total number of r’s that are bad for at least one x is thus at most
(2n) · ((2m)/(2(n+1))) = 2m−1. (This maximum would be achieved if the set of r’s that are
bad for x1 were disjoint from the set of r’s that are bad for x2, for all x1 6= x2.) This means
that there are 2m − 2m−1 > 0 strings r that are good for all x ∈ {0, 1}n.

Let rn be a random string that is good for all x ∈ {0, 1}n. The circuit Cn that accepts
elements of L∩{0, 1}n is “M on inputs of length n, with rn hardcoded in,” i.e., one that com-
putes precisely the function that M computes on inputs of length n when it uses the random
string rn. The proof of Theorem 6.6 (P ⊆ P/poly) shows that {Cn}n≥1 is a polynomial-sized
circuit family.

Note that BPP is actually properly contained in P/poly. As we saw in Chapter 6, P/poly
contains undecidable sets, including the set UHALT defined in Section 6.1.1. On the other
hand, everything in BPP is clearly decidable (in fact, clearly in PSPACE).
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