
CPSC 468/568: Lecture 6 (January 29, 2015)

This material was presented in class on February 9 and 11, 2016. It uses definitions 4.1,
4.5, 4.16, and 4.19 and the notion of “configuration graph,” all of which are presented clearly
in the textbook and hence won’t be repeated here.

We first observed the fact that

DTIME(S(n)) ⊆ SPACE(S(n)) ⊆ NSPACE(S(n)) ⊆ DTIME(2O(S(n))),

which is Theorem 4.2 in your book.
The first two inequalities of Theorem 4.2 are trivial, and the third is easy to prove. Let

W be a nondeterministic TM that runs in space S(n); we seek a deterministic algorithm
that runs in time 2O(S(n)), on input x ∈ {0, 1}n, and decides whether x ∈ L(W).

As explained in class, each configuration of W can be encoded in c ·S(n) bits, where the
constant c depends on the alphabet size, number of states, and number of writable tapes in
W . (Recall that the contents of the input tape are not included in the configuration. So this
is true even if S(n) = o(n), as long as S(n) ≥ log n.) Thus, the configuration graph GW,x

has at most 2c·S(n) nodes. Moreover, the out-degree of any node in this (directed) graph is
two, because we can assume without loss of generality that W has exactly two transition
functions δ0 and δ1.

Therefore, in DTIME2O(S(n)), we can explicitly construct GW,x (using 2(O(S(n))) space as
well as time) and use a linear-time DFS or BFS algorithm to determine whether it contains
a path from its START configuration CW,x

START to its ACCEPT configuration CW,x
ACCEPT. The

input x is in L(W) if and only if the graph contains such a path.

Next, we covered a fundamental fact about the relationship of nondeterministic space-
bounded computation and deterministic space-bounded computation. Recall that S : N −→
N is space-constructible if there is a TM that, on input x, computes S(|x|) in space O(S(|x|)).

Savitch’s Theorem: If S is a space-constructible function, and S(n) ≥ log n, then
NSPACE(S(n)) ⊆ SPACE((S(n))2).

Proof. Let L be a language recognized in spaceO(S(n)) by nondeterministic Turing Machine
W , and let x ∈ {0, 1}n be an input that may or may not be in L. Consider the configuration
graph GW,x. We will define a deterministic machine that, on input x, decides whether there

is a path from CW,x
START to CW,x

ACCEPT, where these are the unique START and ACCEPT nodes
in V (GW,x). Recall that, if there is a path from CW,x

START to CW,x
ACCEPT, there is one of length

O(2c·S(n)), for some positive constant c, i.e., that |V (GW,x)| = O(2c·S(n)).
The deterministic algorithm that we provide actually solves the more general decision

problem REACH(u, v, i), which is 1 if there exists a path from u to v in GW,x of length at
most 2i and 0 if there is no such path. The algorithm is defined recursively.

For i = 0 (the base case of the recursion), the algorithm simply checks whether v is one
of the two configurations that can be reached from u in one step, i.e., in one application of

one of the transition functions δ0 and δ1 that define W . (Think about why that can be done
in space O(S(n)).)

For i > 0, we ask whether there is a configuration z such that REACH(u, z, i − 1) and
REACH(z, v, i− 1) are both 1. The two crucial points are:

◦ We can cycle through all (exponentially many) candidates for z and, having concluded
that a particular zj did not have the requisite property, reuse the space we just used
for zj to do the computation for zj+1.

◦ For a particular z, we can compute REACH(u, z, i − 1) and then reuse the space to
compute REACH(z, v, i− 1).

Let SM,i be the space required to compute REACH(u, v, i) on a configuration graph GW,x

with M nodes. To decide whether there is exists a path from u to v, we would use space at
most SM,logM . We have the recurrence relation

SM,i = SM,i−1 +O(logM),

because space SM,i−1 is needed for recursive calls, and space O(logM) is needed to write
down the “midpoint configuration” z. Solving this recurrence relation gives us SM,logM =
O((logM)2). For nondeterministic machine W , we have M = O(2c·S(n)), and thus SM,logM =
O((S(n))2).

Note that Savitch’s Theorem implies that PSPACE = NPSPACE.

We conclude with the proof that PATH in NL-complete under deterministic logspace
reductions.

Claim 1 PATH is in NL.

Proof. A PATH instance is a triple (G, s, t), where G is a directed graph, and {s, t} ⊆
V (G). The yes instances are those in which there is a path from s to t in G. Note that, if
V (G) = {1, 2, . . . , n}, the instance (G, s, t) is of length c · n2, for some positive constant c,
assuming that we encode G as an n× n matrix of bits in which the (i, j)th bit is a 1 if and
only if the arc (i, j) is in A(G). (Note “arc” instead of “edge” and A(G) instead of E(G), in
order to emphasize that G is a directed graph. PATH is a totally different, easier problem for
undirected graphs.) So we seek a nondeterministic algorithm that decides PATH in space
O(log(c · n2)) = O(log n). Here is one such algorithm:

PATH(G, s, t)
{
i← 0;
u← s;
WHILE(i ≤ n)
{

IF (u = t) THEN OUPUT(ACCEPT) AND HALT;
GUESS u′ ∈ V (G);

2

IF ((u, u′) ∈ A(G)) THEN u← u′;
i← i+ 1;
}
OUTPUT(REJECT) AND HALT;
}

Things to notice about this algorithm:

◦ If there is a path from s to t, then there must be one of length less than or equal to n,
because there are only n nodes in G.

◦ We cannot simply guess a path of length at most n in one fell swoop, because that
would require Ω(n log n) bits of workspace. Thus, we guess one node at a time and
verify that all of the requisite arcs are there.

◦ It is clear that the values of the variables i, u, and u′ require O(log n) workspace. Not
as apparent, but still not hard, is that the bit on the input tape that tells us whether
(u, u′) ∈ A(G) can be read in space O(log n) using a counter.

Claim 2 Every set in NL is logspace-reducible to PATH.

Proof. Let S be a set in NL and M be a nondeterministic logspace machine that recognizes
S. We must exhibit a logspace reduction f from S to PATH, i.e., an implicitly logspace-
computable f such that x ∈ S if and only if f(x) ∈ PATH.

The directed graph G in f(x) is the configuration graph GM,x; the nodes s and t in
f(x) are the START and ACCEPT configurations CM,x

START and CM,x
ACCEPT in V (GM,x). By

definition of “configuration graph,” we have that x ∈ S if and only if f(x) ∈ PATH; so it
remains to prove that f is logspace-computable.

There is a constant c that depends on M but not on x such that the number of bits
required to encode any configuration C ∈ V (GM,x) is c log n, where n = |x|. The number
|V (GM,x)| of configurations is 2c logn = nc, and GM,x can be written down explicitly (as
an adjacency matrix) using n2c bits. Therefore, the length |f(x)| of the target instance
(GM,x, CM,x

START, C
M,x
ACCEPT) is polynomial in |x| (specifically, n2c + 2c log n, where |x| = n), and

we can clearly determine in space logarithmic in |x| whether i ≤ f(|x|).
It remains to show that each bit in f(x) can be computed in space logarithmic in |x|.

The configurations CM,x
START and CM,x

ACCEPT can each be written down explicitly in space c log n,
where n = |x|; so it is clear how to determine whether each of the last 2c log n bits of f(x)
is a 1 in space O(log n). To determine the (C,D)th bit of the adjacency matrix in f(x), we
use the following logspace procedure: Write C on a work tape, C ′ = δ0(C) on a second work
tape, and C ′′ = δ1(C) on a third work tape, where δ0 and δ1 are the transition functions
of M ; then output 1 if and only if D = C ′ or D = C ′′. Say M has k writable tapes and
(logarithmic) space complexity s. Recall that

C = (q, P0, P1, . . . , Pk, γ1,1, γ1,2, . . . , γ1,s, . . . , γk,1, γk,2, . . . , γk,s),

3

where q is an element of the state set of M , P0 is the position of M ’s input tape head, Pw

is the position of the wth writable-tape head in M , 1 ≤ w ≤ k, and γw,j ∈ Γ is the symbol
in the jth cell of the wth writable tape. Similarly, let

C ′ = (q′, P ′0, P
′
1, . . . , P

′
k, γ

′
1,1, γ

′
1,2, . . . , γ

′
1,s, . . . , γ

′
k,1, γ

′
k,2, . . . , γ

′
k,s)

and
C ′′ = (q′′, P ′′0 , P

′′
1 , . . . , P

′′
k , γ

′′
1,1, γ

′′
1,2, . . . , γ

′′
1,s, . . . , γ

′′
k,1, γ

′′
k,2, . . . , γ

′′
k,s).

Computation of C ′ (resp. C ′′) can be done in space O(|C|+ |C ′|) = O(log n) (resp. O(|C|+
|C ′′|) = O(log n)), because each of its components can be looked up in a (constant-sized)
table that specifies the transition function δ0 (resp. δ1).

4

