TQBF is PSPACE-complete

This is the proof that was presented in class on February 16, 2016.
A quantified boolean formula (QBF) is an expression of the form

$$
Q_{1} x_{1} Q_{2} x_{2} \cdots Q_{n} x_{n} \phi\left(x_{1}, x_{2}, \ldots, x_{n}\right),
$$

where each quantifier Q_{i} is either \exists or \forall, and ϕ is a quantifier-free boolean formula. Because a QBF contains no free variables, it must be true or false.

For example, $\forall x_{1} \exists x_{2} \forall x_{3}\left(\left(x_{1} \vee \bar{x}_{2}\right) \wedge\left(\bar{x}_{1} \vee x_{3}\right)\right)$ is a false QBF. To see this, note that, if x_{1} is true, then x_{3} must be true in order to satisfy the clause $\left(\left(\bar{x}_{1} \vee x_{3}\right)\right.$, but x_{3} is a universally quantified variable.

The set of all true quantified boolean formulae is denoted TQBF. Our goal here is to prove that TQBF is PSPACE-complete. So we must prove that it is in PSPACE and that every set in PSPACE is reducible to it. Here, the relevant notion of reduction is just \leq_{P}, i.e., many-to-one, polynomial-time reduction.

First, we give a recursive, polynomial-space algorithm that decides whether a QBF is true. Consider an input $\Psi=Q_{1} x_{1} Q_{2} x_{2} \cdots Q_{n} x_{n} \phi\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, where ϕ has m clauses. Note that the size of a clause is at most n; so we wish to show that the truth of Ψ can be decided in poly (n, m) space. Our recursive algorithm will proceed by instantiating and "peeling off" quantifiers one by one, starting with Q_{1}. For $0 \leq i \leq n$, let $S(\phi, i)$ be the space required to evaluate

$$
\Psi_{i}\left(\epsilon_{1}, \ldots, \epsilon_{n-i}\right)=Q_{n-i+1} x_{n-i+1} Q_{n-i+2} x_{n-i+2} \cdots Q_{n} x_{n} \phi\left(\epsilon_{1}, \ldots, \epsilon_{n-i}, x_{n-i+1}, x_{n-i+2}, \ldots, x_{n}\right),
$$

i.e., to evaluate the QBF that results by letting $x_{j}=\epsilon_{j} \in\{0,1\}$, for $1 \leq j \leq n-i$, and leaving the i variables x_{j}, for $n-i+1 \leq j \leq n$, quantified as in the original Ψ. The total space complexity of our algorithm is $S(\phi, n)$. In the base case of the recursion, when $i=0$, we have instantiated all of the variables, and the algorithm simply has to evaluate an n-variable, m-clause formula on a specific assignment. So $S(\phi, 0)=O(m n)$. To evaluate the truth of the i-variable formula Ψ_{i}, we instantiate x_{n-i+1} both ways; that is, we call the algorithm recursively on both $Q_{n-i+2} x_{n-i+2} \cdots Q_{n} x_{n} \phi\left(\epsilon_{1}, \ldots, \epsilon_{n-i}, 0, x_{n-i+2}, \ldots, x_{n}\right)$ and $Q_{n-i+2} x_{n-i+2} \cdots Q_{n} x_{n} \phi\left(\epsilon_{1}, \ldots, \epsilon_{n-i}, 1, x_{n-i+2}, \ldots, x_{n}\right)$. If $Q_{n-i+1}=\forall$, then we declare Ψ to be true if and only if both recursive calls return true; if $Q_{n-i+1}=\exists$, then we declare Ψ to be true if and only if at least one of the recursive calls returns true. As in the proof of Savitch's theorem, we reuse the space that we used for the $x_{n-i+1}=0$ call when we do the $x_{n-i+1}=1$ call. So $S(\phi, i)=S(\phi, i-1)+O(m n)$, where $S(\phi, i-1)$ is the space needed for the recursive call, and $O(m n)$ is the space needed to write down the partially instantiated instance (which is the input to the recursive call). When we unwind this recurrence relation, we get $S(\phi, n)=O\left(m n^{2}\right)$, which is indeed poly (n, m), as desired.

Next, we will show how to reduce the membership problem for an arbitrary PSPACE language to TQBF. Let L be a language in PSPACE and M a deterministic polynomialspace machine that recognizes L in space $s(n)$. Recall that $G_{M, x}$ denotes the configuration graph of M on input x. If $|x|=n$, then each node $C \in V\left(G_{M, x}\right)$ is encoded by a bitstring
of length $c \cdot s(n)$, for some constant c, and $x \in L$ if and only if there is a path in $G_{M, x}$ from the (unique) start configuration $C_{\text {start }}^{M, x}$ to the (unique) accept configuration $C_{\text {accept }}^{M, x}$. (Note that $c \cdot s(n)$ is polynomial in n.) We will define a family of QBFs Ψ_{i} such that $\Psi_{i}\left(C, C^{\prime}\right)$ is true if and only if there is a path in $G_{M, x}$ from C to C^{\prime} of length at most 2^{i}. Then the overall formula that is in TQBF if and only if $x \in L$ is $\Psi_{c \cdot s(n)}\left(C_{s t a r t}^{M, x}, C_{a c c e p t}^{M, x}\right)$, and we will have to argue that it can be constructed in polynomial time. (The maximum value of i that we would have to consider is $c \cdot s(n)$, because there are $2^{c \cdot s(n)}$ possible configurations, i.e., $2^{c \cdot s(n)}$ nodes in $G_{M, x}$.) The family Ψ_{i} will be defined recursively.

Let k be the (constant) number of writable tapes of M, Γ be the alphabet of M, S be the state set of M, and δ be the transition function of M. An element C of $V\left(G_{M, x}\right)$ describes the configuration of M at a particular time step, say t, in its computation on input x; that is, C contains all of the (non-blank) symbols that are on M 's tapes at time t, the positions of the k tape heads at time t, and the state that M is in at time t.

The formula $\Psi_{0}\left(C, C^{\prime}\right)$ should be true if and only if one application of the transition function δ to the configuration encoded by C produces the configuration encoded by C^{\prime}. We use the techniques developed in the proof of the Cook-Levin Theorem to show that there is such a formula and that, moreover, it can be produced in time poly $\left(|C|+\left|C^{\prime}\right|\right)=\operatorname{poly}(n)$. Let

$$
C=\left(q, P_{0}, P_{1}, \ldots, P_{k}, \gamma_{1,1}, \gamma_{1,2}, \ldots, \gamma_{1, s(n)}, \ldots, \gamma_{k, 1}, \gamma_{k, 2}, \ldots, \gamma_{k, s(n)}\right)
$$

Here, q is a state in S, P_{0} is the position of the input tape head, P_{w} is the position of the $w^{t h}$ writable-tape head, $1 \leq w \leq k$, and $\gamma_{w, j} \in \Gamma$ is the symbol in the $j^{\text {th }}$ cell of the $w^{t h}$ writable tape. Similarly, let

$$
C^{\prime}=\left(q^{\prime}, P_{0}^{\prime}, P_{1}^{\prime}, \ldots, P_{k}^{\prime}, \gamma_{1,1}^{\prime}, \gamma_{1,2}^{\prime}, \ldots, \gamma_{1, s(n)}^{\prime}, \ldots, \gamma_{k, 1}^{\prime}, \gamma_{k, 2}^{\prime}, \ldots, \gamma_{k, s(n)}^{\prime}\right)
$$

The formula $\Psi_{0}\left(C, C^{\prime}\right)$ will be the conjunction of a polynomial number of CNF subformulae, each of which is of length polynomial in n. For $1 \leq w \leq k$ and $j \neq P_{w}$, we include a subformula in $\Psi_{0}\left(C, C^{\prime}\right)$ that encodes the fact that $\gamma_{w, j}^{\prime}=\gamma_{w, j}$; this is because the contents of tape cells that are not pointed to by writable-tape heads do not change when the transition function γ is applied. These are constant-sized subformulas, because each symbol in Γ can be represented with a constant number of bits. (Recall Proposition 2 of Lecture 3.) The state q^{\prime} is a function, say G, of $q, x_{P_{0}}, \gamma_{1, P_{1}}, \ldots, \gamma_{k, P_{k}}$, where $x_{P_{0}}$ is the input symbol pointed to in configuration C. The semantics of G are "Apply M 's transition function δ to C and return the resulting state." There is a boolean function F that is equivalent to G in the sense that $q^{\prime}=G\left(q, x_{P_{0}}, \gamma_{1, P_{1}}, \ldots, \gamma_{k, P_{k}}\right)$ if and only if $F\left(q^{\prime}, q, x_{P_{0}}, \gamma_{1, P_{1}}, \ldots, \gamma_{k, P_{k}}\right)=1$. Because F is a boolean function on a constant number of bits (WHY?), it can be encoded in a constant-sized CNF formula (by Lemma 3 in Lecture 3); we include it as a subformula of $\Psi_{0}\left(C, C^{\prime}\right)$. Similarly, there are functions G (and corresponding boolean functions F) that give the values of $P_{0}^{\prime}, P_{1}^{\prime}, \ldots, P_{k}^{\prime}, \gamma_{1, P_{1}}^{\prime}, \ldots, \gamma_{k, P_{k}}^{\prime}$ the specifications of which follow directly from δ. Each such F is a boolean function of either a constant number of bits or $O(\log n)$ bits; the latter case is the one in which G computes an index P_{j}^{\prime}. Thus, each can be encoded in a polynomial-sized CNF formula (again by Lemma 3 in Lecture 3) and included as a subformula of $\Psi_{0}\left(C, C^{\prime}\right)$.

For $0<i \leq c \cdot s(n)$, we have (as in the proof of Savitch's Theorem),

$$
\begin{equation*}
\Psi_{i}\left(C, C^{\prime}\right) \longleftrightarrow \exists C^{\prime \prime}\left(\Psi_{i-1}\left(C, C^{\prime \prime}\right) \wedge \Psi_{i-1}\left(C^{\prime \prime}, C^{\prime}\right)\right) \tag{1}
\end{equation*}
$$

Unfortunately, the recursive definition in (1) produces a Ψ_{i} that is twice as long as Ψ_{i-1}, and this would not yield a polynomial-length formula $\Psi_{c \cdot s(n)}$. Instead, we use the following recursive definition, in which $\left|\Psi_{i}\right|$ is $\left|\Psi_{i-1}\right|+\operatorname{poly}(n)$:

$$
\begin{gathered}
\Psi_{i}\left(C, C^{\prime}\right) \longleftrightarrow \exists C^{\prime \prime} \forall D_{1} \forall D_{2} \\
\left(\left(\left(D_{1}=C \wedge D_{2}=C^{\prime \prime}\right) \vee\left(D_{1}=C^{\prime \prime} \wedge D_{2}=C^{\prime}\right)\right) \longrightarrow \Psi_{i-1}\left(D_{1}, D_{2}\right)\right) .
\end{gathered}
$$

To see why this definition is equivalent to (1), think through and put into words what the quantified formula that contains Ψ_{i-1} means: There is a $C^{\prime \prime}$ such that, if $D_{1}=C$ and $D_{2}=C^{\prime \prime}$, then $\Psi_{i-1}\left(D_{1}, D_{2}\right)$, and, if $D_{1}=C^{\prime \prime}$ and $D_{2}=C^{\prime}$, then $\Psi_{i-1}\left(D_{1}, D_{2}\right)$. (If the disjunction $p \vee q$ implies r, then p implies r, and q implies r.) So there is a "midpoint" $C^{\prime \prime}$ such that, if you need to start at C and get to $C^{\prime \prime}$, you can do so with a path of length at most 2^{i-1}, and, if you need to start at $C^{\prime \prime}$ and get to C^{\prime}, you can do so with a path of length at most 2^{i-1}.

