
TQBF is PSPACE-complete

This is the proof that was presented in class on February 16, 2016.
A quantified boolean formula (QBF) is an expression of the form

Q1x1Q2x2 · · ·Qnxn φ(x1, x2, . . . , xn),

where each quantifier Qi is either ∃ or ∀, and φ is a quantifier-free boolean formula. Because
a QBF contains no free variables, it must be true or false.

For example, ∀x1∃x2∀x3 ((x1∨x2)∧ (x1∨x3)) is a false QBF. To see this, note that, if x1
is true, then x3 must be true in order to satisfy the clause ((x1 ∨ x3), but x3 is a universally
quantified variable.

The set of all true quantified boolean formulae is denoted TQBF. Our goal here is to
prove that TQBF is PSPACE-complete. So we must prove that it is in PSPACE and that
every set in PSPACE is reducible to it. Here, the relevant notion of reduction is just ≤P ,
i.e., many-to-one, polynomial-time reduction.

First, we give a recursive, polynomial-space algorithm that decides whether a QBF is
true. Consider an input Ψ = Q1x1Q2x2 · · ·Qnxn φ(x1, x2, . . . , xn), where φ has m clauses.
Note that the size of a clause is at most n; so we wish to show that the truth of Ψ can
be decided in poly(n,m) space. Our recursive algorithm will proceed by instantiating and
“peeling off” quantifiers one by one, starting with Q1. For 0 ≤ i ≤ n, let S(φ, i) be the space
required to evaluate

Ψi(ε1, . . . , εn−i) = Qn−i+1xn−i+1Qn−i+2xn−i+2 · · ·Qnxnφ(ε1, . . . , εn−i, xn−i+1, xn−i+2, . . . , xn),

i.e., to evaluate the QBF that results by letting xj = εj ∈ {0, 1}, for 1 ≤ j ≤ n − i,
and leaving the i variables xj, for n − i + 1 ≤ j ≤ n, quantified as in the original Ψ.
The total space complexity of our algorithm is S(φ, n). In the base case of the recursion,
when i = 0, we have instantiated all of the variables, and the algorithm simply has to
evaluate an n-variable, m-clause formula on a specific assignment. So S(φ, 0) = O(mn). To
evaluate the truth of the i-variable formula Ψi, we instantiate xn−i+1 both ways; that is, we
call the algorithm recursively on both Qn−i+2xn−i+2 · · ·Qnxn φ(ε1, . . . , εn−i, 0, xn−i+2, . . . , xn)
and Qn−i+2xn−i+2 · · ·Qnxn φ(ε1, . . . , εn−i, 1, xn−i+2, . . . , xn). If Qn−i+1 = ∀, then we declare
Ψ to be true if and only if both recursive calls return true; if Qn−i+1 = ∃, then we declare
Ψ to be true if and only if at least one of the recursive calls returns true. As in the proof of
Savitch’s theorem, we reuse the space that we used for the xn−i+1 = 0 call when we do the
xn−i+1 = 1 call. So S(φ, i) = S(φ, i− 1) +O(mn), where S(φ, i− 1) is the space needed for
the recursive call, and O(mn) is the space needed to write down the partially instantiated
instance (which is the input to the recursive call). When we unwind this recurrence relation,
we get S(φ, n) = O(mn2), which is indeed poly(n,m), as desired.

Next, we will show how to reduce the membership problem for an arbitrary PSPACE
language to TQBF. Let L be a language in PSPACE and M a deterministic polynomial-
space machine that recognizes L in space s(n). Recall that GM,x denotes the configuration
graph of M on input x. If |x| = n, then each node C ∈ V (GM,x) is encoded by a bitstring

1

of length c · s(n), for some constant c, and x ∈ L if and only if there is a path in GM,x from

the (unique) start configuration CM,x
start to the (unique) accept configuration CM,x

accept. (Note
that c · s(n) is polynomial in n.) We will define a family of QBFs Ψi such that Ψi(C,C

′)
is true if and only if there is a path in GM,x from C to C ′ of length at most 2i. Then the

overall formula that is in TQBF if and only if x ∈ L is Ψc·s(n)(C
M,x
start, C

M,x
accept), and we will

have to argue that it can be constructed in polynomial time. (The maximum value of i that
we would have to consider is c · s(n), because there are 2c·s(n) possible configurations, i.e.,
2c·s(n) nodes in GM,x.) The family Ψi will be defined recursively.

Let k be the (constant) number of writable tapes of M , Γ be the alphabet of M , S be the
state set of M , and δ be the transition function of M . An element C of V (GM,x) describes
the configuration of M at a particular time step, say t, in its computation on input x; that
is, C contains all of the (non-blank) symbols that are on M ’s tapes at time t, the positions
of the k tape heads at time t, and the state that M is in at time t.

The formula Ψ0(C,C
′) should be true if and only if one application of the transition

function δ to the configuration encoded by C produces the configuration encoded by C ′. We
use the techniques developed in the proof of the Cook-Levin Theorem to show that there is
such a formula and that, moreover, it can be produced in time poly(|C| + |C ′|) = poly(n).
Let

C = (q, P0, P1, . . . , Pk, γ1,1, γ1,2, . . . , γ1,s(n), . . . , γk,1, γk,2, . . . , γk,s(n)).

Here, q is a state in S, P0 is the position of the input tape head, Pw is the position of the wth

writable-tape head, 1 ≤ w ≤ k, and γw,j ∈ Γ is the symbol in the jth cell of the wth writable
tape. Similarly, let

C ′ = (q′, P ′0, P
′
1, . . . , P

′
k, γ

′
1,1, γ

′
1,2, . . . , γ

′
1,s(n), . . . , γ

′
k,1, γ

′
k,2, . . . , γ

′
k,s(n)).

The formula Ψ0(C,C
′) will be the conjunction of a polynomial number of CNF subformulae,

each of which is of length polynomial in n. For 1 ≤ w ≤ k and j 6= Pw, we include a
subformula in Ψ0(C,C

′) that encodes the fact that γ′w,j = γw,j; this is because the contents
of tape cells that are not pointed to by writable-tape heads do not change when the transition
function γ is applied. These are constant-sized subformulas, because each symbol in Γ can
be represented with a constant number of bits. (Recall Proposition 2 of Lecture 3.) The
state q′ is a function, say G, of q, xP0 , γ1,P1 , . . ., γk,Pk

, where xP0 is the input symbol pointed
to in configuration C. The semantics of G are “Apply M ’s transition function δ to C and
return the resulting state.” There is a boolean function F that is equivalent to G in the sense
that q′ = G(q, xP0 , γ1,P1 , . . . , γk,Pk

) if and only if F (q′, q, xP0 , γ1,P1 , . . . , γk,Pk
) = 1. Because

F is a boolean function on a constant number of bits (WHY?), it can be encoded in a
constant-sized CNF formula (by Lemma 3 in Lecture 3); we include it as a subformula of
Ψ0(C,C

′). Similarly, there are functions G (and corresponding boolean functions F) that
give the values of P ′0, P

′
1, . . ., P

′
k, γ′1,P1

, . . ., γ′k,Pk
the specifications of which follow directly

from δ. Each such F is a boolean function of either a constant number of bits or O(log n)
bits; the latter case is the one in which G computes an index P ′j . Thus, each can be encoded
in a polynomial-sized CNF formula (again by Lemma 3 in Lecture 3) and included as a
subformula of Ψ0(C,C

′).
For 0 < i ≤ c · s(n), we have (as in the proof of Savitch’s Theorem),

Ψi(C,C
′) ←→ ∃C ′′(Ψi−1(C,C

′′) ∧Ψi−1(C
′′, C ′)). (1)

2

Unfortunately, the recursive definition in (1) produces a Ψi that is twice as long as Ψi−1,
and this would not yield a polynomial-length formula Ψc·s(n). Instead, we use the following
recursive definition, in which |Ψi| is |Ψi−1|+ poly(n):

Ψi(C,C
′) ←→ ∃C ′′ ∀D1 ∀D2

(((D1 = C ∧D2 = C ′′) ∨ (D1 = C ′′ ∧D2 = C ′)) −→ Ψi−1(D1, D2)).

To see why this definition is equivalent to (1), think through and put into words what the
quantified formula that contains Ψi−1 means: There is a C ′′ such that, if D1 = C and
D2 = C ′′, then Ψi−1(D1, D2), and, if D1 = C ′′ and D2 = C ′, then Ψi−1(D1, D2). (If the
disjunction p ∨ q implies r, then p implies r, and q implies r.) So there is a “midpoint” C ′′

such that, if you need to start at C and get to C ′′, you can do so with a path of length at
most 2i−1, and, if you need to start at C ′′ and get to C ′, you can do so with a path of length
at most 2i−1.

3

