Toda's Theorem

This material was presented in class on April 19, 2016. We wish to prove
Toda's Theorem: $\mathrm{PH} \subseteq \mathrm{P}^{\# \operatorname{SAT}[1]}$. That is, for any language $L \in \mathrm{PH}$, there is a polynomial-time oracle Turing Machine that decides membership in L when given access to a \#SAT oracle; moreover, on any input x, the oracle machine makes just one \#SAT query.

We use the following lemmas from Chapter 17 of Arora-Barak.
Lemma 17.17: For any constant $c \in \mathcal{N}$, there exists a probabilistic polynomialtime algorithm f such that for any m and any \sum_{c} SAT instance ψ,

$$
\begin{aligned}
\psi \text { is true } & \longrightarrow \operatorname{Pr}[f(\psi) \in \oplus S A T] \geq 1-2^{-m} \\
\psi \text { is false } & \longrightarrow \operatorname{Pr}[f(\psi) \in \oplus S A T] \leq 2^{-m}
\end{aligned}
$$

Lemma 17.22: There is a deterministic polynomial-time transformation T that maps CNF formulas to CNF formulas such that $\beta=T\left(\alpha, 1^{l}\right)$ has following property:

$$
\begin{aligned}
& \alpha \in \oplus \operatorname{SAT} \longrightarrow \#(\beta)=-1\left(\bmod 2^{l+1}\right) \\
& \alpha \notin \oplus \mathrm{SAT} \longrightarrow \#(\beta)=0\left(\bmod 2^{l+1}\right)
\end{aligned}
$$

A proof of Lemma 17.17 was presented in class on April 14, 2016 and can be found on the course website. A proof of Lemma 17.22 is presented below. We now show how to use them to prove Toda's Theorem.

Note first that it suffices to reduce membership in Σ_{c} SAT to a single \#SAT query, for an arbitrary $c \geq 1$, because every L in the PH is in Σ_{c}^{P} for some c and hence many-to-one reducible to Σ_{c} SAT.

Consider the probabilistic polynomial-time algorithm f in the Lemma 17.17 with $m=2$. Instead of treating f as a probabilistic algorithm, we can treat it as a deterministic function of two arguments, namely the Σ_{c} SAT instance ψ and the random string r. Let $R=|r|$, and $l=R+1$, and consider the formula,

$$
\begin{equation*}
\sum_{r \in\{0,1\}^{R}} \# T\left(f(\psi, r), 1^{l}\right) \tag{*}
\end{equation*}
$$

If ψ is true, then at least $\frac{3}{4}$ of the terms being summed in $(*)$ are $-1 \bmod 2^{l+1}$, and the rest are $0 \bmod 2^{l+1}$. Thus, when ψ is true, $(*)$ falls into the interval $\left[-2^{R},-\left\lceil\frac{3}{4} \times 2^{R}\right\rceil\right] \bmod 2^{l+1}$.

If ψ is false, then at least $\frac{3}{4}$ of the terms being summed in $(*)$ are $0 \bmod 2^{l+1}$, and the rest are $-1 \bmod 2^{l+1}$. Thus, $(*)$ falls into the interval $\left[-\left\lceil\frac{1}{4} \times 2^{R}\right\rceil, 0\right] \bmod 2^{l+1}$ in this case.

Because $2^{l+1}>2^{R+1}$, the two intervals in these two cases are disjoint. Hence, if we can show how to compute $(*)$ in $\mathrm{P}^{\# \operatorname{SAT}[1]}$, we can decide which of the two intervals it falls into to get the truth value of ψ.

Note that $\beta=T\left(f(\psi, r), 1^{l}\right)$ is a SAT instance. Thus, we can apply the parsimonious Cook-Levin reduction to the nondeterministic, polynomial-time Turing Machine that takes (ψ, r) as input and accepts if and only there exists a witness y of length polynomial in the input size that satisfies β. Call the output of that reduction $\Gamma(\psi, r, y, z)$. (The string z represents the extra variables used in the Cook-Levin reduction to encode the sequence of snapshots.) Let $\Gamma_{\psi}(r, y, z)$ denote $\Gamma(\psi, r, y, z)$ for a fixed formula ψ, and let $C L$ denote the polynomial-time reduction function. Then,
$\# \Gamma_{\psi}(r, y, z)$
$=\mid\left\{(r, y, z) \mid(y, z)\right.$ satisfies $\left.C L\left(T\left(f(\psi, r), 1^{l}\right)\right)\right\} \mid$
$=\mid\left\{(r, y, z) \mid(y, z)\right.$ satisfies $\left.C L\left(T\left(f(\psi, r), 1^{|r|+1}\right)\right)\right\} \mid$
$=\sum_{r \in\{0,1\}^{R}}$ the number of (y, z) pairs that satisfy $T\left(f(\psi, r), 1^{|r|+1}\right)$
(because the reduction is parsimonious)
$=\sum_{r \in\{0,1\}^{R}} \# T\left(f(\psi, r), 1^{|r|+1}\right)$
$=(*)$
Thus, given ψ and r, we can first compute the value of β, apply the parsimonious Cook-Levin reduction to it to obtain $\Gamma_{\psi}(r, y, z)$, then get the value of $(*)$ by making one query to the \#SAT oracle.

Proof of Lemma 17.22: Recall that we have defined addition and multiplication operators on CNF formulas with the properties that $\#(\phi+\tau)=\#(\phi)+\#(\tau)$ and $\#(\phi \cdot \tau)=\#(\phi) \cdot \#(\tau)$. (See formulas 17.5 and 17.7.) Using these operators, we can construct from any CNF formula τ a related CNF formula $4 \tau^{3}+3 \tau^{4}$ that, for any $i \geq 0$, satisfies

$$
\begin{equation*}
\#(\tau) \equiv 0\left(\bmod 2^{2^{i}}\right) \longrightarrow \#\left(4 \tau^{3}+3 \tau^{4}\right) \equiv 0\left(\bmod 2^{2^{i+1}}\right) \tag{**}
\end{equation*}
$$

and

$$
\#(\tau) \equiv-1\left(\bmod 2^{2^{i}}\right) \longrightarrow \#\left(4 \tau^{3}+3 \tau^{4}\right) \equiv-1\left(\bmod 2^{2^{i+1}}\right) . \quad(* * *)
$$

To prove $\left({ }^{* *}\right)$, let $B=\#(\tau)=C \cdot 2^{2^{i}}$. Then
$\#\left(4 \tau^{3}+3 \tau^{4}\right)=4 B^{3}+3 B^{4}=B^{2}\left(4 B+3 B^{2}\right)=C^{2} \cdot 2^{2^{i+1}} \cdot\left(4 B+3 B^{2}\right) \equiv 0\left(\bmod 2^{2^{i+1}}\right)$.

To prove $\left({ }^{* * *}\right)$, let $B=\#(\tau)=C \cdot 2^{2^{i}}-1$. Then

$$
\begin{aligned}
\#\left(4 \tau^{3}+3 \tau^{4}\right) & =4 B^{3}+3 B^{4} \\
& =B^{2} \cdot B \cdot(4+3 B) \\
& =\left(C \cdot 2^{2^{i}}-1\right)^{2} \cdot\left(C \cdot 2^{2^{i}}-1\right) \cdot\left(3 C \cdot 2^{2^{i}}+1\right) \\
& =\left(C^{2} \cdot 2^{2^{i+1}}-2 C \cdot 2^{2^{i}}+1\right)\left(3 C^{2} \cdot 2^{2^{i+1}}-2 C \cdot 2^{2^{i}}-1\right) \\
& \equiv\left(-2 C \cdot 2^{2^{i}}+1\right)\left(-2 C \cdot 2^{2^{i}}-1\right) \equiv-1\left(\bmod 2^{2^{i+1}}\right)
\end{aligned}
$$

To get a polynomial-time transformation T with the desired property, let $\psi_{0}=$ $\alpha, \psi_{i+1}=4 \psi_{i}^{3}+3 \psi_{i}^{4}$, and $\beta=\psi_{[\log (l+1)\rceil}$.

