
Undecidability and the Halting Problem

This material was presented in the second half of class on Thursday, January 28, 2016.
Throughout, points that were not covered in detail in class and that you are encouraged

to think through and justify are marked by “(WHY?).”
If a set S ⊆ {0, 1}∗ is recognized by a TM M , i.e., S = L(M), then we say that S is

decidable or computable. One fundamental fact about the TM model is that there are sets
that are not decidable. We first construct such a set, denoted UC, using a technique called
diagonalization and then use the undecidability of UC to prove the undecidability of the
halting problem.

Recall that every x ∈ {0, 1}∗ encodes a TM, which we denote by Mx. Moreover, every
TM is encoded by infinitely many binary strings. To see this, suppose that s encodes M and
then consider all strings of the form sδσ, where δ is a binary string the semantics of which
are “end of TM specification,” and σ is an arbitrary string in {0, 1}∗; there are infinitely
many strings of this form, and they all encode M . Of course, many strings will encode TMs
that are not well formed, and we follow the convention that an ill-formed TM recognizes the
empty set. Let xMy be a binary string that encodes M .

The set UC is defined as follows: If Mx(x) = 1, i.e., if Mx halts on input x and outputs
1, then x 6∈ UC. Otherwise, i.e., if Mx does not halt on input x or if it halts and outputs
something other than 1, then x ∈ UC.

Proposition 1 UC is undecidable.

Proof. Suppose that UC were the set accepted by M . By definition, M(xMy) = 1 if and
only if xMy 6∈ UC, which is clearly a contradiction.

Figure 1.7 of your textbook, a copy of which is attached at the end of these notes, shows
why this proof technique is called “diagonalization.” In this construction, UC is defined
by “negating the diagonal set” and, in particular, is defined in a manner that precludes its
being the set recognized by any TM. In the table of Figure 1.7, the rows are labeled by
binary strings that encode TMs; remember that every TM labels infinitely many rows in the
table. Every binary string except the empty string occurs once as a row label and once as
a column label. (Observe that there is a typo in that figure in the book: The second row
should be labeled “1,” not “0.” This has been corrected in the copy attached to these notes.)
The columns of the table are strings that may or may not be in the language accepted by a
particular TM. In the (i, j)th square of the table before anything gets crossed out, there is a
1 if Mi halts on input xj and outputs 1, there is a 0 if Mi halts on input xj and outputs 0,
and there is a ∗ if Mi does not halt on input xj or if it halts and outputs something other
than 0 or 1. (Here Mi is the TM encoded by the string labeling row i, and xj is the binary
string labeling column j.)

The “cross outs” illustrate the process of going down the major diagonal of this table
to define UC. A 1 is entered next to the crossed-out symbol in the (i, i)th square (i.e., xi is
put into UC) if and only if the crossed-out symbol was a 0 or a ∗ (i.e., if and only if Mi

either does not halt on input xi or halts and outputs something other than 1). UC cannot

1



be decidable, because it cannot be the set recognized by any TM: For every i, the TM of
row i gives the wrong answer to the question “is xi in UC?”

Those of you who have seen the proof that the reals are uncountable will have noticed
by now that it is essentially the same as the proof that UC is undecidable.

It could be argued that the undecidability of UC is not particularly interesting, because
membership in UC is not a naturally occurring computational problem. That argument does
not apply to the halting problem. Let HALT be the set of pairs (α, x), where α and x are in
{0, 1}∗, such that Mx halts on input α. Membership in HALT is clearly a natural problem
in the context of computer programming.

Proposition 2 HALT is undecidable.

Proof. We reduce UC to HALT. Note that this reduction need not be polynomial-time or
many-to-one. (WHY?)

Suppose that HALT is decidable. That means that there is a Turing Machine A that
halts and returns an output on every input (α, x), that A(α, x) = 1 if Mx halts on input α,
and that A(α, x) = 0 if Mx does not halt on input α. Here is a specification for a machine
that recognizes UC and uses A as a subroutine. We wish to decide whether x is in UC. If
A(x, x) = 0, then output 1. Otherwise, let z = Mx(x). If z = 1, then output 0; otherwise
(i.e., if Mx halts on input x and outputs something other than 1), output 1.

2




