
Introduction to Scala: Objects, Classes, and Traits
Drew McDermott drew.mcdermott@yale.edu

Lecture notes for 2016-09-03

1 The Basics

Syntax vaguely Java-like.1

A typical variable declaration in Scala looks like this:

val cruiseControl: Int = speedLimit + 2

Key things to note:

• Every declaration (except for method and function parameters) begins
with a reserved word of the language, such as val.

• Types are always capitalized. There is no distinction between “prim-
itive” types and “object” types. Every value is an object, including
numbers.

• Mnemonic variable names use camelCase. I don’t like it, but the use
of underscore to separate components of a name is frowned upon.

• Everything declared is declared to have a type. For a variable, that
means the types of all the values it can have. However, in most cases
the type can be omitted and the compiler can figure it out:

val cruiseControl = speedLimit + 2

When I teach Intro Programming, I harp on the fact that a variable is
the name of a “box” that holds its successive values. So when you write the
assignment expression

x = x+1

that’s interpreted to mean “Take the value out box x, add 1 to it, and put
the result back into box x.” In Scala, for x to be the name of a box, you
have to declare it using reserved word var:

1This file starts off terse and then becomes increasingly verbose. I hope the information
herein is a useful complement to that in Functional Programming in Scala. I’ve crammed
as much possible excessive verbiage into footnotes as possible. So on first reading you may
want to skip the footnotes. Except this one.

1

var x: Int = 0

while (x < n) {
println("Now x = " x)

x = x+1

}

Expressions executed purely for effect, such as the println expression
and the assignment expression, can be separated by semicolons. Declara-
tions, too. So we could have written the code above thus:

var x: Int = 0;

while (x < n) {
println("Now x = " + x);

x = x+1

}

You could put one after the assignment expression if you want. But, if you
lay your code out so that immediate subexpressions of an expression E all
start on a new line, indented further to the right than the column where E
begins, then the semicolons can be omitted. The examples in this lecture
all obey the “house style,” which specifies that subexpressions are indented
by two characters.2

I’m using the word “expression” here deliberately, to emphasize that in
Scala there is no syntactic category of “statements.” A statement is just
an expression whose value is ignored (and hence must be evaluated for the
effects it has, such as changing a variable value, mutating a data structure,
doing some I/O, or throwing an exception).

Every expression must have some value; if nothing else, it can be a value
of type Unit. There’s only one value of this type, written () (and also
pronounced unit).

Every val or var — anything declared — has a scope, the part of the
program where its declaration is in force. This is the innermost brace pair
the declaration is inside of (except for method and function parameters,
which we’ll get to).

Here’s an example, a complete Scala program:

object Hello extends App {

val n = 1

2It is important to present code using a fixed-width font. Most text-file editors will do
this by default.

2

var x\coln{}Int = 0

while (x < n) {

println("Hello, world.")

x = x + 1

}

}

Save this file with the name Hello.scala3

To run a Scala program, you have to compile it first. The compiler
targets the Java Virtual Machine (JVM), so you normally pay the overhead
of emulating the JVM to interpret that code.4 The compiler is called scalac,
which matters to you if you call it from the command line. So to compile
Hello.scala you execute

cs470$ scalac Hello.scala

The files produced by the compiler have the extension “.class,” because
each one implements a class. (See next section.) Compiling Hello.scala pro-
duces three class files: Hello.class, Hello$.class, and Hello$delayedInit$body.class.
It’s the first we care about. The others are a mystery. To run the program,
execute

cs470$ scala Hello

This will run the program (actually, the main method) associated with
Hello.class. Using the App class as we did when added “extends App” hid
the main method, but it’s in there somewhere.

Scala produces even more classes with dollar signs in their names than
Java does. It’s not a good idea to use scalac “naked,” because you will lose
track of your source files in all that clutter.

I’ve provided two simple scripts for calling scalac and scala while tuck-
ing all the class files in a subdirectory called bin. (You have to create the
subdirectory.) In my scenario above, I’m imagining you’re in a shell (com-
mand interpreter) which prints the name of the current directory (cs470)
followed by a dollar sign as a prompt. (That’s a common arrangement in
Unix systems, including OSX. Similar things can be made to happen in

3Unlike Java, Scala does not require that a file have the same name as the class it
defines. You can put anything you want in a file, including multiple class definitions.

4Sophisticated “just in time” compilers incrementally compile to machine language
pieces of JVM code that are executed many times. I doubt we will notice any resulting
speedups in this course.

3

Windows as well.) The two scripts can be found on the Canvas system,
under Files > Code > Scripts. In Unix they’re called scc and sca. The
Windows versions are scc.bat and sca.bat. They take the place of scalac

and scala respectively.
To use these scripts, upload scc and sca (OSX and Unix) or scc.bat

and sca.bat (Windows). The most convenient place to put them is in the
directory containing your CPSC470/570 files. I’ll assume this is called cs470

for brevity; be sure to create the cs470/bin directory if you haven’t already.
For Unix or Windows to find a file to execute, it uses the PATH environ-

ment variable. You should make sure that the cs470 directory is “in” (the
value of) that variable.5

The last issue to worry about (I hope it’s the last) is that the oper-
ating system will refuse to execute any file that you don’t have “execute
permission” for. On Unix systems (e.g., OSX), you issue the commands

chmod u+x scc

chmod u+x sca

to any shell. On a Windows system, the equivalent is

icacls scc /grant U:(X)

icacls sca /grant U:(X)

where U is your userid, the name you’re logged in as. Assuming you logged
in as wilma, you would write

icacls scc /grant wilma:(X)

icacls sca /grant wilma:(X)

I haven’t tried this; if you have trouble with it, let me know. An alter-
native is to replace (X) with F (without the parentheses), which grants wilma

full access, which should include the right to read, execute, edit, and delete

5On both systems, let’s assume this directory, cs470 is under the 16f direc-
tory of a top-level directory of yours, classes. If your name is Wilma van Or-
man Quine, then your directory might be /Users/wilma/. Typically you add
":/Users/wilma/classes/16f/cs470" to the end of the PATH variable on an OSX
or other Unix system; or add something like ";\Users\wilma\classes\16f\cs470"
to PATH on a Windows system, except \Users\wilma is not likely to work. (It
won’t work in every Unix system either.) In a Unix shell, ˜ is shorthand for your
top-level directory (which might be /Users/whoever-you-are or might not); in
Windows, the equivalent is %userprofile%. So Wilma would do better to add
";%userprofile%\classes\16f\cs470" to the end of PATH. (If she’s on OSX or some
other Unix system, she could add ":~/classes/16f/cs470".)

4

the file. Normally, if wilma downloaded the file, she has all of those rights
already, except eXecute, which for some reason the OS demands that you
declare explicitly.6

2 Classes and Traits

So far we have only discussed singleton objects. They are important, but
not as important as classes, traits, and case classes. We discuss classes and
traits here, case classes in a later lecture.

2.1 Classes

A class definition starts with the keyword class. It defines a bunch of
objects that look and act similar. By that I mean that every object of the
class presents the same interface to pieces of code that want to use it. A
class definition is a template for an object in the class. It is also the code
for the constructor of the class. It mostly consists of declarations (of vals,
defs, and the occasional var7). Each such declaration establishes a member
of the resulting object, public unless explicitly declared to be private.

It may seem odd that the code for a new object’s constructor is also a
template for that object, but consider the following example:

class Oddball(x: Int, y: Int) {
val d: Int = x-y

val s: Int = x+y

}

You construct a new object of class Oddball by executing

new Oddball(50, 40)

Inside the constructor, x is bound to 50 and y to 40. Two vals are declared,
d = 10 and s = 60.

Any such val becomes a member of the resulting object. One might write

6If I had to guess, I would guess that this was originally a primitive security measure,
making it slightly harder for a malicious intruder to insert a destructive file and then
execute it. Just a tiny bit harder, anyway.

7A public var member of an object is a point that allows any code with a reference
to the object to alter that member in an arbitrary way (as long as its type is preserved).
Even a private var that is set by some method and read by another allows the object
to be changed. Our emphasis this term will be on immutable objects, so expect very
few vars with scope over the object. Declarations of vars inside methods are sometimes
unavoidable and do not allow the object to be altered.

5

odd = new Oddball(50, 40)

println("odd.s = " + odd.s + " and odd.d = " + odd.d)

which, if executed, prints

odd.s = 90 and odd.d = 10

(assuming that odd is a var of type compatible with Int).
Hence it is not unnatural, in fact amazingly cool, that what look like

local variables of the constructor are in fact the public members of each
object of the class. (You can declare them private to hide them.)

You can define more complex members, the methods of the class, by
using the keyword def. Suppose we add to the definition of Oddball this
declaration:

def prod: BigInt = {
d*s

}

Now odd.prod is the product of d and s. Because the product of two Ints
can be too big to fit in the 32 bits an Int gets, we use the built-in class
BigInt, which defines integers of arbitrary size. Actually, the class lives
in the scala.math package, so we should write scala.math.BigInt. That
soon becomes awkward. It’s generally better to use import to declare that
symbols from a package should be included in the current namespace.

Before showing how to do that, let me talk about how the body of the
prod method works. You may have noticed that we did not write “return
d*s”; Scala does have a return expression, but we won’t need it. The value
of any method (or function) is the value of the last expression evaluated when
it’s executed. In the case of prod this is d*s.

Most methods are defined by code blocks (a series of declarations and
some expressions surrounded by braces). But if a method has no declarations
and just one (simple) expression, the braces are unnecessary.8

So our revised class definition is

class Oddball(x: Int, y: Int) {
import scala.math.Bigint

val d: Int = x-y

val s: Int = x+y

def prod: BigInt = d*s

}

8Most methods have parameters, of course. But that’s a totally independent issue.

6

The import declaration makes the symbol BigInt as defined in package
scala.math available inside the definition of Oddball. Unlike many other
languages, Scala allows import declarations to be used inside class defini-
tions (and any other scope-defining context, including an object definition).

If a method has no parameters, it can be called with (e.g., odd.prod())
and without (e.g., odd.prod) parentheses. However, it is considered good
practice to include the parens if and only if the method has side effects.
Because our focus is on functional programming, almost all our methods
and functions will have no side effects, so the parens will be omitted when
there are no arguments.

One good thing about this convention is that the reader of odd.prod can’t
tell if prod is a val or a def. Indeed, we could (and, in practice, generally
would) have defined it as a val:

class Oddball(x: Int, y: Int) {
import scala.math.Bigint

val d: Int = x-y

val s: Int = x+y

val prod: BigInt = d*s

}

In other cases, the computation of prod might be so expensive that one
would like to delay it until the value is needed.9

Going back to the def version, could we have defined prod as the product
of x and y? Yes; the constructor parameters’ values are available as long
as they are needed. However, they are not members of the object being
defined.10

Except for method parameters, that’s about it. However, method pa-
rameters take two seconds to explain. They have almost the same syntax
as constructor parameters: A series (possibly empty) of comma-separated
repetitions of the pattern “v:T [= d]”, where v is an identifier, T is a type,
and d is an optional default value. If a default value is supplied, then when
the method is called the argument at that position may be omitted.

An argument may be omitted only if it has a default value and all the
arguments after it are provided using named-argument notation or are them-
selves omitted. Foo,11 I’ve exceeded my two seconds, so skip this paragraph
on first reading. When a method or constructor is called, you don’t have to

9Why evaluate it repeatedly? We’ll talk about how to avoid that in a later lecture.
10Unless you put val in front of the parameter name, as in “val x: Int,. . . .”
11Nerdish abbreviation for fooey?

7

use positional notation at all. You can write new Oddball(y = -1, x= z/2)

if you want, so that argument -1 is the value of y, and the value of z/2 is the
value of x. You can mix positional notation with explicit-parameter-name
notation, if you’re careful.

To call a method defined with parameters, you write

obj .meth(—params—)

The expression obj occupies a special position, but it’s really like a zero’th
parameter of meth. Inside the method body, you access the i’th argument
by writing vi, the name of the i’th parameter.12 You access the zero’th ar-
gument using the reserved identifier this. However, it is seldom necessary
(or encouraged) to write this.x, where x is a member of obj (i.e., defined in
the class definition). That’s because we’re in the middle of obj ’s class defi-
nition, inside a def from that definition, and a class definition is a template
for an object in the class. (I’ll keep saying this until it becomes irritating.)
All the vals and defs you see in the scopes the current def is nested in are
already “in scope.” So rather than write this.x, just write x. That’s the
natural thing to do usually (nobody’s tempted in the definition of method
prod to write this.d * this.s) but in a complex class definition one can
forget.

On Canvas, the definition of Oddball has been placed in Files > Code
> Examples.13 Download that file and you’ll see the definition of an object
OddballTest after the definition of class Oddball. Go ahead and compile
Oddball.scala (using scc) and inspect the bin directory. It should contain
the two class files Oddball.class and OddballTest.class (and God knows
what other crap, depending on when you take a peek at it).

The script sca (and scala itself) are not interested in source files; you
can delete them or archive them if you want. These scripts are interested
only in .class files. So to run the (not very comprehensive) test for the
class Oddball, execute

cs470 $ sca OddballTest

The output should be

12I’m hewing to the formal nomenclature, where a parameter is an identifier in a
method’s parameter list, and an argument is (the value of) the expression a parame-
ter gets bound to on a particular call of the method. Informally, the term argument is
used for both.

13Actually, there’s a layer at the top, “Artificial Intelligence.” I’m going to overlook
this, since there’s nowhere else you can get to from “Files” but “Artificial Intelligence,”
which gets its name from the name of the course.

8

odd.s = 90 and odd.d = 10

odd.prod = 900

cs470 $

Scala has relaxed a lot of Java’s restrictions on what source files may
contain. (Which makes one wonder why those restrictions were imposed in
the first place.) You can define as many entities in a file as seem to belong
together. You can go overboard with this freedom. For example, no matter
how complex your application, you can define it within one source file, but
it will be clearer for someone trying to read it or integrate with other things
if you (a) give it its own package; and (b) split it into multiple files, and
put them in their own subdirectory.14 Scala gives you the freedom to put
the source file wherever you want, independent of which subdirectory the
resulting .class files go into.

2.2 Traits

A trait in Scala is a superordinate class-like object from which classes inherit
various useful things. A class inherits from another class or trait if it is
defined using the reserved word extends, as in

class N0(....) extends N1 [with N2 with N3 ...] {

If N1 is a class, then N0 shares all of N1’s members (except the most private).
If N1 is a class, and its constructor takes arguments, you can’t just write
“extends N1 ...”; you have to write

class N0(....) extends N1(–params–) [with N2 with N3 ...] {

14In this course, we won’t worry about this kind of software engineering issue too much.
We’ll give detailed instructions on how to organize your code and hand it in. However,
here’s the deal on packages. Every file can optionally begin with a declaration

package p1.p2.· · ·.pn

which places all the names defined in the file in the namespace given by the sequence of
ps. When compiling, scc will place every .class file it creates in the subdirectory (using
Unix notation):

bin/p1/p2/.../pn

To execute a program (a class P with a main method or an object P defined by object
... extends App), run

sca p1.p2.· · ·.pn.P

9

If there are other entities from which N0 inherits stuff, they are added
using the reserved word with as shown. At most one of the Ni (i ≥ 1) is
the name of a class; all the others are names of traits. You can think of a
trait as being a bowl of “toppings” that get sprinkled on the ice cream cone
specified by the class definition(s).15

Scala allows a class to inherit several things from a trait. Before saying
what they are, let’s go through the basics. A trait definition is exactly like
a class definition except that the keyword trait is used in place of class.
There are two other differences:

1. Traits do not have constructor parameters.16 So you don’t have to
worry about providing them in the header of a class definition.

2. You can’t directly instantiate a trait: “new traitname” is a nonstarter.

Okay, we’ve gone through the basics. Traits can serve as class interface
descriptions, but they can do much else. Here are some of the other things
a class can inherit from a trait:

• Behaviors that any class extending the trait must implement, in the
form of abstract member definitions, which describe a member’s type
without giving it a value

• Constants

• Internal classes. If a trait contains a class definition, then it’s as if
that definition occured within any object or class extending the trait.

• Types, as defined by type. (These are just useful abbreviations, and
can be used other places, too, of course.)

Traits work with case classes, for which see next installment of notes.

15They are often called mixins. The term comes from an ice-cream parlor in Cambridge,
Massachusetts, where hackers from the MIT AI Lab hung out, the same hackers who were
creating some innovative OOP concepts at the time, as part of the Flavors system, the
first object-oriented add-on to Lisp. At “Steve’s Ice Cream,” instead of sprinkling the
toppings on top, they would pound the ice cream flat, sprinkle the goodies on, then fold
the ice cream over and pound it flat again. After all requested goodies were “mixed in”
this way, the ice cream would be put back into a roughly spherical shape and placed in a
cone or dish. Those were the days.

16Except type parameters, which are discussed in Lecture 5.

10

