
Heuristic Search

CPSC 470/570 – Artificial Intelligence
Brian Scassellati

Goal Formulation
•  Well-defined function that

identifies both the goal
states and the conditions
under which to achieve
the goal
–  Fly from Boston to San

Francisco
–  Quality might depend on

•  Least amount of money
•  Fewest number of

transfers
•  Shortest amount of time in

the air
•  Shortest amount of time in

airports

200

300

200

255

320

75
200

200

210

1200

150

50

San Francisco

Phoenix

Denver

Austin

Chicago

Nashville

Key West

New York

Boston

Problem Formulation

•  Well-defined problems
– Fully observable
– Deterministic
– Discrete set of possible actions (operations)

•  State space: the set of all states that are
reachable from an initial state by any
sequence of actions

•  Path: sequence of actions leading from
one state to another

Problem Formulation
•  Goal: spend less $
•  State space: flights and

their costs
•  Path: sequence of flights
•  Picking the right level of

abstraction
–  Fly from Boston to Chicago
–  Directions to the airport
–  Move left leg 18 inches

forward

200

300

200

255

320

75
200

200

210

1200

150

50

San Francisco

Phoenix

Denver

Austin

Chicago

Nashville

Key West

New York

Boston

How to Search:
Generating Sequences and Data Structures

200

300

200

255

320

75
200

200

210

1200

150

50

San Francisco

Phoenix

Denver

Austin

Chicago

Nashville

Key West

New York

Boston

Boston

New York Chicago Key West

Austin Nashville

Phoenix

San
Francisco

San
Francisco

San
Francisco

Phoenix Phoenix

Austin

Phoenix

San
Francisco

Austin Austin

San
Francisco

Denver Nashville

Depth

0

1

2

3

4

5

Branching Factor b=3

Measuring Performance

•  Completeness: is the strategy guaranteed
to find a solution when one exists?

•  Time Complexity: how long does it take to
find a solution?

•  Space Complexity: how much memory
does it require to perform the search?

•  Optimality: Does the strategy find the best-
quality solution when more than one
solution exists?

Types of Blind Search

•  Breadth-First Search
•  Depth-First Search
•  Depth Limited Search
•  Iterative Deepening Search
•  Bi-directional Search

Improving Blind Search:
Avoiding Repeated States

•  Simple caching could be used to store the expected
values of sub-trees.
–  Must maintain a table of all visited states and the result

•  Change the rules for generating the tree
–  Do not generate repeated states
–  Do not generate paths with cycles

San
Francisco

Boston

New York Chicago Key West

Austin Nashville

Phoenix

San
Francisco

San
Francisco

Phoenix Phoenix

Austin

Phoenix

San
Francisco

Austin Austin

San
Francisco

Denver Nashville

Heuristic Functions

•  These techniques are all still brute-force
•  Can we do anything more intelligent?
•  If we could identify an evaluation

function, which described how valuable
each state was in obtaining the goal,
then we could simply always choose to
expand the leaf node with the best value.

•  A heuristic function is an inexact
estimate of the evaluation function.

3

4 4 2

3 1 5

0

6

9 2 3

5 1 5

0

Greedy Best-First Search

•  Rely on a heuristic
function to determine
which node to expand

•  Better name is “best-
guess-first” search

•  Airline example
–  Find the shortest path from

Boston to Phoenix

Boston

Chicago Key West

Austin Nashville

Phoenix

Phoenix

Phoenix Austin

Phoenix

Austin San
Francisco

Nashville

Phoenix

San Francisco

Phoenix

Austin

Chicago

Nashville

Key West

Boston
856

945

1371

853

1057

752
870

1447

1863

658

Greedy Best-First-Search

•  Minimize estimated cost to
reach a goal (in this case, the
distance to Phoenix)

San Francisco

Phoenix

Austin

Chicago

Nashville

Key West

Boston
856

945

1371

853

1057

752
870

1447

1863

658

Boston
h=2299

Chicago
h=1447

Key West
h=1927

Austin
h=870

Nashville
h=1444

Phoenix
h=0

Phoenix
h=0

Phoenix
h=0

Austin
h=870

Phoenix
h=0

Austin
h=870

San
Francisco

h=658

Nashville
h=1444

Phoenix
h=0

Straight
Line

Distance
to Phoenix

Boston 2299

Chicago 1447

Nashville 1444

Key West 1927

Austin 870

San Francisco 658
Total Distance Flown

3377

2303

2567

3846

3298

Greedy Best-First-Search
•  Optimal?

–  No, as the previous example demonstrated
•  Complete?

–  No, just as depth first search
•  Worst-case time complexity?

–  O(bm) where b=branch factor, m=max. depth
•  Worst-case space complexity?

–  Same as time complexity… entire tree kept in
memory

•  Actual time/space complexity
–  Depends on the quality of the heuristic function

A* Search
•  Combine Greedy search with Uniform

Cost Search
•  Minimize the total path cost (f) =

 actual path so far (g) +
 estimate of future path to goal (h)

San Francisco

Phoenix

Austin

Chicago

Nashville

Key West

Boston

856

945

1371

853

1057

752
870

1447

1863

658

Distance
to Phoenix

Boston 2299

Chicago 1447

Nashville 1444

Key West 1927

Austin 870

San Francisco 658

Total Distance Flown

3377
2303 2567

3846

3298

Boston
f=0+2299

f=2299

Chicago
f=856+1447

f=2303

Key West
f=1371+1927

f=3298

Phoenix
f=(856+1447)+0

f=2303

San
Francisco

f=(856+1863)+658
f=3377

Nashville
f=945+1444

f=2389

Austin Nashville

Phoenix Phoenix Austin

Phoenix

Austin

How does A* Search Work?

•  The heuristic function h must be admissible
–  It must never over-estimate the cost to reach the goal

•  Most obvious heuristics are monotonic
–  If the total path cost is non-monotonic as you move

down the tree, you can substitute a monotonic
function based on the parent

•  Allows the above contour interpretation

Proving the Optimality of A*

•  Assume that G2 has been chosen for expansion over n
•  Because h is admissible

 f* ≥ f(n)
•  If n is not chosen for expansion over G2, we must have

 f(n) ≥ f(G2)
•  Combining these, we get

 f* ≥ f(G2)
•  However, this violates our assertion that G2 is sub-optimal
•  Therefore, A* never selects a sub-optimal goal for expansion

Optimal goal state (cost f*)

Sub-optimal goal state (cost > f*)

Unexpanded node
on the path to G

Completeness of A*

•  A* expands nodes in order of increasing f
•  When would a solution not be found?

– Node with an infinite branching factor
– A path with a finite path cost but an infinite

number of nodes
•  A* is complete when

– There is a finite branching factor
– Every operator costs at least some positive ε

Complexity of A*

•  Computation time is limited by the quality
of the heuristic function (but is still
exponential)
–  Issue #1 : Choosing the right heuristic function

can have a large impact
•  More serious problem is that all generated

nodes need to be kept in memory
–  Issue #2 : Can we limit the memory

requirements?

Issue #1:
Choosing a Heuristic Functions

•  Must be admissible (never over-estimate)
•  Heuristics for the 8-Puzzle

–  h1 = number of tiles in the wrong position
–  h2 = sum of the distances of the tiles from their goal

positions (city block distance)

Effect of Heuristic Accuracy on
Performance in the 8-puzzle

•  Compare iterative-deepening with A* using
 h1 (# misplaced tiles) and h2 (city block distance)

•  Effective branching factor b*
–  Number of expanded nodes = 1 + b* + (b*)2 + … + (b*)depth

–  b* remains relatively constant across many measurements
•  Always better to use a heuristic with higher values, so long

as it does not over-estimate

Issue #2
Limiting Memory Utilization

•  If we can maintain a bound on the
memory, we might be willing to wait for a
solution

•  Two techniques for Memory Bounded
Search:
–  Iterative deepening A* (IDA*)
– Recursive Best-First-Search (RBFS)

Iterative Deepening A* Search
(IDA*)

•  Each iteration is a depth-first search with a
limit based on f rather than on depth

•  Complete and optimal (with same caveats
as A*)

•  Requires space proportional to the longest
path that it explores

•  Can have competitive time complexity,
since the overhead of maintaining the
nodes in memory is greatly reduced

Problems with IDA*

•  In the TSP, different heuristic function value for each state
•  Each contour contains only one additional node
•  If A* expands N nodes, the IDA* will expand

1+2+3+4+…+N = O(N2) nodes

•  If N is too large for memory, N2 is too long to wait
•  Runs into problems because it recalculates every node

Recursive Best-First Search (RBFS)

•  total path cost (f) = actual path so far (g) +
heuristic estimate of future path to goal (h)

•  Red values best f-value in an alternate branch

A 10

12 B

30 I

26 E

18 H

20 C

K 33

G 16

17 J

∞

20

16 18

29 D

F 14

18

A 10

12 B

30 I

26 E

18 H

20 C

K 33

G 16

17 J

29 D

F 14

Recursive Best-First Search (RBFS)

•  RBFS will
– be complete given sufficient memory to store

the shallowest solution path
– be optimal if the heuristic function is

admissible (and you have enough memory to
store the solution)

•  Both RBFS and IDA* use not enough
memory.
– Require at most linear space with the depth of

the tree

tinyurl.com/yale-robot-study

Play video games with a robot!

