Heuristic Search

CPSC 470/570 — Artificial Intelligence
Brian Scassellati

Goal Formulation

Key West

Well-defined function that
identifies both the goal
states and the conditions
under which to achieve
the goal

— Fly from Boston to San

Francisco
— Quality might depend on

» Least amount of money

 Fewest number of
transfers

e Shortest amount of time in
the air

e Shortest amount of time in
airports

Problem Formulation

* Well-defined problems

— Fully observable

— Deterministic

— Discrete set of possible actions (operations)
« State space: the set of all states that are

reachable from an initial state by any
sequence of actions

» Path: sequence of actions leading from
one state to another

Problem Formulation

« Goal: spend less $

« State space: flights and
their costs

« Path: sequence of flights

* Picking the right level of
abstraction
— Fly from Boston to Chicago
— Directions to the airport

— Move left leg 18 inches
forward

How to Search:
Generating Sequences and Data Structures

Boston
Chicago New York Key West
San Denver Nashville Nashville Austin
Francisco l l l l
Austin Austin Austin Phoenix
Phoenix Phoenix Phoenix San
l l l Francisco
San San San
Francisco Francisco Francisco

Branching Factor b=3

Measuring Performance

Completeness: is the strategy guaranteed
to find a solution when one exists?

Time Complexity: how long does it take to
find a solution?

Space Complexity: how much memory
does it require to perform the search?

Optimality: Does the strategy find the best-
guality solution when more than one
solution exists?

Types of Blind Search

Breadth-First Search
Depth-First Search

Depth Limited Search
Iterative Deepening Search
Bi-directional Search

Improving Blind Search:
Avoiding Repeated States

A

o

« Simple caching could be used to store the expected
values of sub-trees.

— Must maintain a table of all visited states and the result

« Change the rules for generating the tree
— Do not generate repeated states
— Do not generate paths with cycles

Heuristic Functions

These techniques are all still brute-force
Can we do anything more intelligent?

If we could identify an evaluation @ @ (2)
function, which described how valuable ® ©® ®
each state was in obtaining the goal,

then we could simply always choose to

expand the leaf node with the best value.

A heuristic function is an inexact

. . . 2@ © 3
estimate of the evaluation function.

® @ ©

Greedy Best-First Search

Chicago Nashville Key West
San Phoenix Austin Nashville Austin
Francisco l l l
v
Phoenix Phoenix Austin Phoenix

|

Phoenix

Rely on a heuristic
function to determine
which node to expand

Better name is “best-
guess-first” search

Airline example

— Find the shortest path from
Boston to Phoenix

Greedy Best-First-Search

Boston

* Minimize estimated cost to
reach a goal (in this case, the
distance to Phoenix)

San Francisco

658

Phoenix
Boston
Key West h=2299
|
v v v
Straight Chicago Nashville Key West
Line h=1447 h=1444 h=1927
Distance ;—‘—; l ;—‘—;
to Phoenix San Phoenix Austin Nashville Austin
Boston 2299 Francisco h=0 h=870 h=1444 h=870
h=658 2303
Chicago 1447 v l l l
Nashville 1444 Phoenix Phoenix Austin Phoenix
h=0 h=0 h=870 h=0
Key West 1927 3377 2567 l 3298
Austin 870 Phoenix
) h=0
San Francisco 658 3846

Total Distance Flown

Greedy Best-First-Search

Optimal?

— No, as the previous example demonstrated
Complete?

— No, just as depth first search

Worst-case time complexity?
— O(b™) where b=branch factor, m=max. depth

Worst-case space complexity?

— Same as time complexity... entire tree kept in
memory

Actual time/space complexity
— Depends on the quality of the heuristic function

San Francisco

658

Phoenix

. 856
Chicago

Key West

Distance
to Phoenix
Boston 2299
Chicago 1447
Nashville 1444
Key West 1927
Austin 870
San Francisco 658

A* Search

Boston

Combine Greedy search with Uniform
Cost Search

Minimize the total path cost (f) =

actual path so far (g) +
estimate of future path to goal (h)

Boston

f=0+2299

f=2299

'

Chicago
f=856+1447
f=2303
|
| '
San Phoenix
Francisco f=(856+1447)+0
f=(856+1863)+658 f=2303
f=3377 2303
3377

|
'

Nashville
f=945+1444

f=2389

|

Austin

Phoenix
2567

Total Distance Flown

'

Key West
f=1371+1927
f=3298

+—‘—+

Nashville Austin

v v
Austin Phoenix
v 3298

Phoenix
3846

How does A* Search Work?

Straight—line d
Bucharest

Arad 366
Bucharest 0
Craiova 160
Dobreta 242
Eforie 161
Fagaras 178
Giurgiu 77
Hirsova 151
lasi 226
Lugoj 244
Mehadia 241
Neamt 234
Oradea 380
Pitesti 98
Rimnicu Vil 193
Sibiu 253
Timisoar: 329
Urziceni 80
Vaslui 199
Zerind 374

* The heuristic function h must be admissible
— It must never over-estimate the cost to reach the goal
* Most obvious heuristics are monotonic

— If the total path cost is non-monotonic as you move
down the tree, you can substitute a monotonic
function based on the parent

« Allows the above contour interpretation

Proving the Optimality of A*

Start

N

Unexpanded node
onthepathtoG ™ n

Sub-optimal goal state (cost > f*)

. * /
Optimal goal state (cost) — - ® G,

« Assume that G, has been chosen for expansion over n
* Because his admissible

f*=1f(n)

« If nis not chosen for expansion over G,, we must have
f(n) = f(G,)

« Combining these, we get
= f(G,)

« However, this violates our assertion that G, is sub-optimal
 Therefore, A* never selects a sub-optimal goal for expansion

Completeness of A*

* A* expands nodes in order of increasing f

* When would a solution not be found?
— Node with an infinite branching factor

— A path with a finite path cost but an infinite
number of nodes

* A* Is complete when
— There is a finite branching factor
— Every operator costs at least some positive ¢

Complexity of A*

« Computation time is limited by the quality
of the heuristic function (but is still
exponential)

— Issue #1 : Choosing the right heuristic function
can have a large impact

* More serious problem is that all generated

nodes need to be kept in memory

— Issue #2 : Can we limit the memory
requirements?

Issue #1.
Choosing a Heuristic Functions

5 4 1 2 3
6 1 8 8 4
7 3 2 7 6 5

Start State Goal State

« Must be admissible (never over-estimate)

* Heuristics for the 8-Puzzle
— h1 = number of tiles in the wrong position

— h2 = sum of the distances of the tiles from their goal
positions (city block distance)

Effect of Heuristic Accuracy on

Performance in the 8-p

uzzle

Search Cost Effective Branching Factor

/ DS A*(hy) A*(hy) DS A*(hy) A*(hy)

2 10 6 6 2.45 1.79 1.79

4 112 13 12 2.87 1.48 1.45

6 680 20 18 2.73 1.34 1.30

8 6384 39 25 2.80 1.33 1.24
10 47127 93 39 2.79 1.38 1.22
12 364404 227 73 2.78 1.42 1.24
14 3473941 539 113 2.83 1.44 1.23
16 - 1301 211 - 1.45 1.25
18 - 3056 363 - 1.46 1.26
20 - 7276 676 - 1.47 1.27
22 - 18094 1219 - 148 1.28
24 - 39135 1641 - 148 1.26

« Compare iterative-deepening with A* using

h1 (# misplaced tiles) and h2 (city block distance)

« Effective branching factor b*
— Number of expanded nodes =1 + b* + (b*)2 + ...

+ (b*)depth

— b* remains relatively constant across many measurements

* Always better to use a heuristic with higher values, so long
as it does not over-estimate

Issue #2
Limiting Memory Utilization
* |[f we can maintain a bound on the
memory, we might be willing to wait for a
solution

* Two techniques for Memory Bounded

Search:
— Iterative deepening A* (IDA¥)
— Recursive Best-First-Search (RBFS)

Iterative Deepening A* Search
(IDA*)

Each iteration is a depth-first search with a
limit based on f rather than on depth

Complete and optimal (with same caveats
as A¥)

Requires space proportional to the longest
path that it explores

Can have competitive time complexity,
since the overhead of maintaining the
nodes in memory is greatly reduced

Problems with IDA*

* Salt Lake City

* Denver

In the TSP, different heuristic function value for each state
Each contour contains only one additional node

If A* expands N nodes, the IDA* will expand
1+2+3+4+...+N = O(N?) nodes

If N is too large for memory, N2 is too long to wait
Runs into problems because it recalculates every node

Recursive Best-First Search (RBFS)

* total path cost (f) = actual path so far (g) +
heuristic estimate of future path to goal (h)

 Red values best f-value in an alternate branch

Recursive Best-First Search (RBFS)

* RBFS will

— be complete given sufficient memory to store
the shallowest solution path

— be optimal if the heuristic function is
admissible (and you have enough memory to
store the solution)

 Both RBFS and IDA* use not enough
memory.

— Require at most linear space with the depth of
the tree

tinyurl.com/yale-robot-study

Play video games with a robot!

