5 Introduction to Scala: Type Parameters, Match

Expressions, and Case Classes
Drew McDermott drew.mcdermott@yale.edu
Lecture notes for 2016-09-14

Revised 2016-09-16

3 Type Parameters

Before getting to case classes, let me say a few words about type parameters.
Scala uses square brackets everywhere to refer to types, in some predictable
ways, in some rather hairy ways, which hopefully we can avoid.

If you want an array in Scala, you must specify the types of its elements,

e.g., :
val nums: Array[Int] = new Array[Int](10)

This code declares nums to be an array of 10 integers, initially zero. Scala
can infer the type, so unless there is some reason to be explicit about it, you
can just write

val nums = new Array[Int] (10)

The default array implementation is mutable,! so you can alter an element
with an assignment statement:

nums (9) = nums(8) + 3

Parentheses are used around the index, which varies from 0 to the the length
of the array —1, as in most programming languages.

The use of types after the symbol Array is not a special case. Many
constructors, methods, and functions use this syntax:

ClTy, ..., Te11(Ao, ..., An_1)

where C' is the constructor, method, or function, the 7; are type parame-
ters or type arguments, and the A; are ordinary parameter declarations or
argument expressions. Examples:

new Foo[Int](3)
superFunction[A] (3, "whee")
def goodMeth[A] (a: Array[A]l):A = ...

You may find it hard to picture how immutable arrays work, but they exist. Every
data structure can be thought of as immutable, as we will see.



The first example is a call to a constructor that takes one type argument
and one regular argument. The second is a call to a function that takes one
type argument and two regular ones. (The type variable must be declared by
someone else; it’s just being used in the call to superFunction.) The third
is a definition of a method with one type parameter, A, and one regular
parameter, an array whose elements are that type. The method returns an
object of type A.

The second example is a bit misleading in that normally when a function
is called the type parameters are omitted, because the compiler (in partic-
ular, its type-inference module) can infer them. When they’re omitted,
they’re omitted completely, square brackets and all. So we’d usually write
superFunction(3, "whee"), unless there was some reason the type-inference
machinery needed help.?

Why do we use boring and opaque names such as “A” for types? Because
it’s the convention when the type is somewhat arbitrary, which it usually is.
You usually want your method or constructor to be able to operate on or
build an object with as few constraints as possible on the types of its pieces.
Ideally, that would be any type at all, and not much can be said about just
any old type.

Type parameters are usually drawn from the beginning of the alphabet,
unless whimsy causes one to switch to T, U, V the same day one puts on that
polka-dot tie one hasn’t dared to wear to the office before.

3.1 Naming Conventions: Upper or Lower Case?

Sorry for the ambiguity in the word “case”; can’t be helped. This subsection
is about a less profound issue, which is whether to start an identifier with a
lowercase letter or an uppercase one?

3 (These are not enforced by the compiler
(usually), but by irate readers of your code if you violate them.)

Names that start with an uppercase letter:

Here are the conventions.

e Type names (including class and trait names)

e Type variables (which usually consist of that one letter)

2When it needs help, the compile-time error you get is often hard to decipher. Like
any compiler, the Scala compiler takes getting used to. It’s hard to work back from where
a bug eventually manifests itself to the best way to describe it, and you just have to
learn case by case what the most misleading messages really mean. Ask someone more
experienced for help, even the instructor if necessary.

3Source: http://docs.scala-lang.org/style/naming-conventions.html



e Object names
e Constant names (a val declared in an object or trait)
All other names start with a lowercase letter, notably the names of:
e Methods
® vars
e vals declared in a class or method body

o Packages

4 Match Expressions and Case Classes

Now we come to a key construct in any language that’s used to write func-
tional programs on recursive data structures: pattern matching. In Scala,
the syntax looks like this:

eg match {
case p1 => €1
case Py => €3

case Pp => €p,

}

This is called a match expression. The pieces of its right-hand side are called
case clauses.*

Its value is computed by evaluating ey and matching it against pi; if it
matches, the value of ey is the value of the match expression. Otherwise,

“In many programming languages the word case gets moved up, so the syntax is more
like

caseeg of {...}

where the clauses have some syntax or other. Think, “Choose the case eg of the following”;
but in many languages what follows is a list of elements labeled by numbers or a slight
generalization, so if eg = 5, we’re literally picking case 5, the 5th case, the clauses being
labeled 1, 2, 3, ..., or something like that. If we label the cases with characters, the
wizened programmers can still think of them as disguised numbers, but as the labels get
more complicated it becomes impossible to view them as ordinal numbers of any sort.
Scala’s notation begins to work better. It oddly resembles the C switch statement,
except that in C each case must end with a break or endless weird bugs (usually) ensue.



the value of eg is matched against py, and so forth. If none of the p; match,
a match-error exception is thrown.

So all that remains is to explain what it means for a value to match an
expression. The simplest case is where the p; are all constants; for example,
if eg is one of several characters and each case clause covers one or more
of them, one can sometimes compile this into a dense dispatch table with a
piecewise-linear hash function, usually making for a fast lookup (though I
seriously doubt that the compiler bothers®).

The match construct can be used to do much more powerful expression
analysis than numerical data, even though no efficiency is gained over using
if-then-else and decomposing expressions using tests and member func-
tion. The gain that most programmers are looking for is in brevity, clarity,
and debuggability of source code, and pattern matching wins on all these
dimensions.

Case classes are the main mechanism programmers use for adding new
patterns usable in case clauses. The syntax is simple. It’s exactly the same
as for ordinary classes, except the symbol case appears before the symbol
class. Case-class definitions tend to be placed together in a file when they
all extend the same trait (or class, but this is rare): Often, the trait is placed
just before the case-class definitions:

trait T[Y] { ... }
case class C1[Y1]1(Py) extends T'[T11 { ... }
case class Cy[T2](P;) extends T'[T'2]1{ ... }

case class Cy[TN](Py) extends T'[I'ny] { ... }

The P; are parameter lists for the constructor, and the Y; are type-parameter
lists. These may and usually do differ drastically from case to case. The
I'; are type expressions; if trait T" has type parameters, then the arguments
must be supplied. Sometimes these are just some arrangement of the class’s
type variables Y;, but they don’t have to be; if A is one of the Y;, then T
might have a List[A] in there somewhere:

...extends Y;[..., List[A],...]

If a class has no parameters, then you have to decide whether to make
it a case object; or go ahead and have a class with no parameters (usually

5If the programmer really wants this, they’re probably a fool; in the rare case where the
programmer is not a fool, and this rush to efficiecy is worth the trouble, the programmer
can probably code it themselves. Plus, we're targeting the JVM, which can only be
optimized so far.



a bad idea).5 The braces are often empty, especially for the case classes and
case objects, but stay tuned.

The schema above is rather forbidding, so a familiarizing example will
make it clear what we’re talking about. Chapter 3 of FPS describes how to
define lists. Here’s another example: binary trees with a number stored at
all the nodes, a Double at each interior node and an Int at each leaf node:

trait DIBinaryTree { }
case class DILeaf(key: Double, value: Int) extends DIBinaryTree { }
case class DINode(left:DIBinaryTree,

num: Double,

right: DIBinaryTree) extends DIBinaryTree {

}

Here we have no type parameters. It is much more common to have some.
To generalize the previous example, suppose we didn’t want to limit the leaf
data to Ints:

trait DBinaryTree[A] { }
case class DLeaf [A] (key: Double, value: A) extends DBinaryTree[A] { }
case class DIntNode[A] (left: DBinaryTree[A],

num: Double,

right: DBinaryTree[A]) extends DBinaryTree[A] {

Our previous data type DIBinaryTree, is a special case of this one:
DBinaryTree[Int]. If we like the name, we can define it:

type DIBinaryTree = DBinaryTree[Int]

The case classes themselves often retain empty bodies indefinitely, but
the trait often acquires method definitions. Consider the following example,
a method nearestLeaf, defined in the trait DBinaryTree:

SIf it has only type parameters, converting it to an object requires imagination. For
example, it would make sense to have Nil be a class, with one empty list per type.
Nil[Int] would be a different object from Nil [Boolean]. Instead, Scala’s designers
made the choice that there is only one Nil, a list of Nothings. Nothing is a subtype of
every type Z, because every object of type Nothing is also of type Z; because there are
no objects of type Nothing. Ha-ha. Hence Nil is an object of List [Z], because List is
covariant: List[Z1] is a subtype of List [Z5] if Z; is a subtype of Z>. The price you
pay for not having to routinely give the type of Nil is having to do it occasionally, when
you've forgotten all this. Hint: If Nothing shows up in an error message, try replacing
Nil with List [Z] (), where Z is the type Scala couldn’t guess should replace Nothing.



trait DBinaryTree[A] {
def nearestLeaf(p:Double): A = {
this match {
case DLeaf(v) => v
case DIntNode(l, n, r) => {
if (p < n) 1l.nearestLeaf (p)
else r.nearestLeaf (p)

}
}
}
}

I don’t know if this does anything useful. Picture the tree being used
to sort things. What I want to draw your attention to is that this function
is not defined in the usual OOP way. That way involves putting the code
for the DLeaf objects in the DLeaf class definition, and the code for the
DIntNodes in the IntNode definition. In the resulting version, the structure
visible above, of a recursive function whose base case is reaching a DLeaf, is
lost. I call the result a virtual function,” although as far as I know, there is
no standard term for these things.

So, for example, consider the toString function, a workhorse of just
about any language (not always with that name, of course). Its code is scat-
tered around the classes of a software system, as it should be. Nonetheless,
it is often necessary when running toString on a complex data structure
to include the strings produced for its pieces, which are often of the same
type as the data structure we started with. Hence toString, considered as

a virtual function, is certainly recursive.?

"The term comes from C++. In that sense, all Java and Scala methods are virtual;
look it up. You can define a virtual function in my sense in C++ using virtual methods,
but you can do other stuff with C4++ virtual methods, too.

80ne might jump to the conclusion that a function with a distributed description
can’t be recursive unless it has at least one recursive piece, i.e., a method definition (in a
particular class definition) that calls itself, i.e., contains a call to itself in its body. But
a function can be recursive without having this property. It suffices for method A to call
method B, which calls method A. Of course, it is undecidable whether there is a set of
arguments for which a method actually ever does call itself.



