8 Shortest-strings Problem: Partial-Solution Dump
Drew McDermott drew.mcdermott@yale.edu
Lecture notes for 2016-09-19, revised 20016-09-25

Here is the state of play in solving the little puzzle about finding the
shortest strings in a list of lists of strings, i.e., the list of strings that are the
shortest in one of the component lists of the input, y1.!

I didn’t in class, but it seems cleaner now to treat y as the parameter to
a function:

/** Find the strings that are the shortest in some list in ‘y°¢
*/
def shortestListsRecur(y:List[List[Stringl]):List[String] = {
def findShortest(shortestSoFar: List[String]l, // Nonempty
1:List[String]): List[String] = 1 match {
case Nil => shortestSoFar
case s :: ss => {
val lengthToBeat = shortestSoFar.head.length
if (s.length < lengthToBeat)
else if (s.length == lengthToBeat)
// The champ wins again
else findShortest(shortestSoFar, ss)

}
}
// Body of shortestLists starts here
y flatMap {
case Nil => Nil
case x :: xs => findShortest(List(x), xs)
}

I’ve also switched the order of the two parameters of findShortest, for
reasons that will become clear.
Ezercise: Finish shortestListsRecur.

Many recursions through a list (call it L) exhibit one of these two pat-
terns (see figure 1):

1. Left recursion: A “value so far” is passed as an argument as successive
elements of the list L are examined and used in a computation of the
element to be passed to the next stage.

1The resulting list may well have duplicate elements, if the same string is shortest in
more than one list.

2. Right recursion: The value returned from applying the function to the
tail of the list is combined with the head of the list in a computation
of the value to be returned from this stage.

In each case, the function must be given an initial value to start the com-
putation with. For left recursion, this is the first value of the “result so far”
passed as an argument to the function. For right recursion, it’s also the first
“result so far,” but now injected into the chain of computations as the value
returned when the function encounters the Nil at the end of every list.?

Many functions can be defined using either left or right recursion. Here
is a right-recursive version of findShortest and how it would be called:

def shortestListsRRecur(y:List[List[String]]):List[String] = {
Same function as before, with right recursion
def findShortest(l:List[String]):List[String] = 1 match {
case Nil => Nil

case s :: ss => findShortest(ss) match {
case Nil => List(s)
case h :: hs => {

val lengthToBeat = h.length

if (s.length < lengthToBeat)

else if (s.length == lengthToBeat)
else h :: hs

}
}
}

The pieces left out here are essentially the same as those left out of the
left-recursive version. Rather than having to repeat this code, let’s package
them up as a subroutine bound in some appropriate place:

def chooseNewChamps(champsSoFar: List[String], newCand: String) =
val candLen = newCand.length
val shortestlLen = champsSoFar.head.length
if (candLen < shortestLen)

2 Again, these patterns work for other collections, with a couple of obvious caveats.
Each depends on getting through the whole collection, so neither will work for an infinite
stream. (See file StreamDemo.scala, lecture 9.) Each depends on being able to break
a nonempty collection into a “head” and a “tail.” If the collection is unordered, we can
select some arbitrary element as the head and the rest of the collection as the tail, but
some functions will return different values depending on which element is selected at each
stage.

Direction of recursion: —

List elements:
llb -b] -L

Results so far — < Final result

(a) Left Recursion

Direction of recursion: —

List elements: E} .
Final result — Mﬂ o 4 (-] ﬂ [-] < Results so far

(b) Right recursion

Figure 1: Left and Right Recursion: The list elements are the same, left-to-
right, and direction of recursion is the same. The function f is the compu-
tation done at each stage to combine the next list element with the result
so far to yield the result so far at the next stage. (The computation f is
the same at each stage, but of course f in pattern (a) is not neacessarily the
same as f in pattern (b).) In part (a), the computation must be “primed”
with an initial value for the result so far. In part (b), it must be primed
with a result so far for the base case (when the list = Nil).

else if (candLen == shortestLen)
else
champsSoFar

}

Now shortestListsRRecur can be defined more economically as

def shortestListsRRecur(y:List[List[String]]):List[String] = {
Same function as before, with right recursion
def findShortest(l:List[String]):List[String] = 1 match {
case Nil => Nil
case s :: ss => findShortest(ss) match {
case Nil => List(s)

case shortestFromRight => chooseNewChamps (shortestFromRight, s)

}
}
//
y flatMap findShortest
}

Instead of passing an extra value “down,” we're passing a value “up,”
i.e., returning it. But we’re taking a different approach. Instead of catching
the special case of an empty list at the top, before calling findShortest,
we use Nil as the initial result-so-far. If the entire list is empty, this will
be the final value. Otherwise, foldRight will see Nil only when looking at
the next-to-last tail of the list, when ss = Nil. In that case, the head s is
the first “champ” to beat. As successive elements are examined from right
to left, the current front-runner must beat all of them, or be deposed and
replaced.

The only problem with this idea binding it to the val shortestFromRight,
named to highlight the symmetry with the parameter shortestSoFar in the
left-recursive version, which we could have called shortestFromLeft). The
only weird part is that the base case is a list of length one rather than Nil;
the reason for this oddness is that findShortest has to be “primed” with a
first guess as to the shortest string so far. In the left-recursive version the
first guess will be List(y.head). Here it’s a list of the last element of y (the
only argument findShortest ever actually gets). Either way, findShortest
will not work with an empty list, so we’ll have to treat it specially.
Ezercise: Finish this version of shortestLists.

Any repeated pattern of behavior should be abstractable. That is, we
should be able to write a function that captures the repeated skeleton of

the behavior, with parameters that fill in the parts that vary from one
occurrence of the behavior pattern to another. The results in this case
are called foldLeft and foldRight. Each has three parameters: [, the list?
being traversed, z, an initial value, and f, a function of two arguments. This
last parameter takes the “result so far” r and the next element x of [and
produces the “result after seeing x.” For mnemonic purposes, for foldLeft
f takes the r and = in that order, while foldRight takes them in the order
(x, r). The initial value z and the result so far r need not be the same type
as the elements of [, and for findShortest they aren’t. The elements of the
list are of type String and the intermediate (and final) results are of type
List[String].
Here is the way we could define findShortest using foldLeft:*

def findShortest(l:List[String]l) =
1.tail.foldLeft(1l.head) ((shortestSoFar: List[String], s: String)
val lengthToBeat = shortestSoFar.head.length
if (s.length < lengthToBeat)
else if (s.length == lengthToBeat)
// The champ wins again
else shortestSoFar

19,

The parameter ! in the schema above is “passed” as the 0’th argument by
putting it to the left of the dot before foldLeft. The function foldLeft has
two “true” parameters, z and f, but they are in separate parameter lists.?
The parameter z is the sole occupant of list 1, and f is the sole occupant of
list 2. Instead of writing 1.tail.foldLeft(z, f), you have to remember to
write 1.tail.foldLeft(z) (£). Actually, Scala so often “curries” its built-in
functions when a functional parameter is involved that one comes to expect
it.

This may not look like much of an improvement, and perhaps it isn’t.
But now findShortest isn’t recursive, so we may not need it at all. It’s
called only once. One has to use one’s judgment here as always whether to

3 Actually, any collection. The output collection is of the same type as the input, when
possible. See Lecture Note 7 for the details.

4Even though we also defined a version of findShortest using right recursion, it was
“deviant,” in the sense that it terminated when it got down to a list of length one. The
standard version of foldRight abstracts the pattern of behavior in which the recursion’s
base case is the empty list. This deviance is enough to make foldRight inapplicable
without some trickery. See the [[exercise below.]]

5For reasons best left unexplained at this point, but if you insist, reread section 3.3.2
of FPS.

define a subroutine or skip it. It depends on issues like whether the function
passed as the last argument is big and messy or compact and clear. In the
current case, it’s big enough and messy enough that having a name for the
function, and commenting it judiciously, makes sense. And if it were up to
me, I would move the test for the special case of an empty list inside the
function definition, since it’s messy already:

def findShortest(l:List[Stringl):List[String] = {
if (1 == Nil) List()
else 1.tail.foldLeft(l.head) ((...) =>
.

}

In case foldLeft and foldRight are not obscure enough for you, you can
abbreviate them using /: and :\, respectively:

(x /: 1)(f) = l.foldLeft(x) (f)
(I \x)(f) = I[.foldRight(x) (f)

The astute reader will notice that the arguments occur in a different order in
these two constructions. The mnemonic is the COLlection and COLon are
on the same side. Scala has very simple rules for determining the precedence
and associativity (right- or left-) of an operator:

1. The precedence of an operator depends on its first character. Any
operator beginning with ’*’ has the same precedence as “x” (“times”).
The full ordering is

letters < | < ~ < <> < = < < +- < %/, % < others

where others means all other special characters.%

2. Operators ending in colon are right-associative. Further, when the dots

are left out, i.e., when you write “a #%%: b”, it means “b.#%%:(a)”;

whereas it would be a call to a member of a if there’s no colon, so “a

#4% b’ is parsed as “a.#%%(b)”.

3. Assignment operators have different rules. These are ‘=’ plus any mul-

ticharacter operator ending in ‘=’, unless it either starts with an

(o

SFrom the Scala Language Specification, v. 2.9, Martin Odersky, 2014, sec. 6.12.3.

(e.g., ‘=#%&=") or can be interpreted as a comparison (e.g., ‘>="). As-
signment operators have lower precedence than all other operators. If
is an operator, then e ###=c5 is short for e;=e;###es except that
presumably the compiler only evaluates the subexpressions of e; once.
and suppose ++ is defined by

def ++(): Int { j =1i; i = j+1; j }

(where i is bound in the scope of ++). If a is an array, then a(++())
*= b(i) is compiled as though it were

{ val j99 = ++(); a(j99) = a(j99) * b(i)}

so that i is incremented just once.

Ezercise: Although foldRight can’t be applied directly, a little trickery will
make it applicable. One approach is to divide the list into the last element
and a new list of all the elements before the last one. This is ugly; we have
to traverse the list twice and build a list we don’t really need. Perhaps we
overlooked a result so far we could return for Nil that would allow us to
write an f function for the right recursion.

[[One might make the following suggestion: Why not use the first el-
ement of the list as the first result-so-far (call it Z) even when “folding
right”? [[show code |] Because if we know the following facts about f and
Z (let A be the type of the elements of the list being processed, and R be
the type of the initial, intermediate, and final results):

e f is associative, and so is f’, where f'(x,y) = f(y,x), x is an arbitrary
object of type A, and y is an arbitrary object of type R.

o If f'(2,2) = f(Z,z) = x.

then we really don’t care how what order the calls to f occur, or how many
times we fold Z into the mix, since it’s like an identity element. ||

