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The Earley Algorithm1 can be explained from two different angles:

1. As a simulator of a naive parsing algorithm, that by simplifying its
states avoids the consequences of its naiveté.

2. As an application of dynamic programming.

Let’s start from the second angle. This odd term2 means “Storing results so
they don’t have to be recomputed many times.” It invests in some memory
space to save a lot of computation time.

One of the most obvious applications of dynamic programming is mem-
oization. Suppose you want to compute the i’th Fibonacci number, that is,
the i’th value in the sequence 1, 1, 2, 3, 5, 8, . . . , where the next number
is the sum of the previous two. Let’s skip past the obvious ways to do this
and look at a recursive solution:

def fib(i: Int): BigInt = {

if (i < 3) 1

else fib(i-1) + fib(i-2)

}

The only nonobvious detail is the return type BigInt, which we need
because the values of fib quickly become bigger than will fit in the space
allocated to an ordinary Int.3

Aside from the need to deal in BigInts, there is another problem with fib:
The same computation will be repeated many times. The call to fib(i-1)

will require computing fib(i-2), so all that work will be repeated. It may
sound like a factor of 2 is not important, but that factor of two will be
replicated approximately i times, so the net increase in time will be 2i.

1Named for its inventor, Jay Earley,
2The word “programming” occurs here in the same sense as in “linear programming”;

it means “resource allocation,” because these techniques were applied first to that sort of
problem. “Dynamic” will be explained later.

3Special procedures are needed to add and subtract BigInts, but Scala’s slick implicit-
conversion machinery hides the need for all that. The same program in Java could not
avoid expressions like BigInt.valueOf(i).plus(BigInt.valueOf(1)).
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One solution is to cache values of fib so that when they’re needed again
they can just be retrieved from the cache. That leads to the following
version4:

val memTab = new HashMap[Int,BigInt]()

def memFib(i: Int): BigInt = {

val res: BigInt = {

if (i < 3) 1

else memTab.get(i) match {

case Some(v) => v

case None => {

val v = memFib(i-1) + memFib(i-2)

memTab += (i -> v)

v

}

}

}

res

}

The ClassesV2 file Resources > Lecture Notes > Memoize.scala con-
tains an application that runs the two versions of fib.5 For numbers beyond
about 40, fib takes so long that Memoize will refuse to try the computation.
Meanwhile, memFib runs in about the same amount of time it takes to print
the results out.6

If this is such a terrific idea, how come it doesn’t solve all such problems?
Here’s a typical case where it comes close, but falls short. Suppose the
function to be memoized generates a Stream of answers, that is, a “lazy list”
of indefinite length whose elements are computed as they are examined.
One issue with such lists is that later elements may depend on the values of
earlier elements. We can appeal to the Fibonacci numbers again, but this
time we will think about a Stream of all the Fibonaccis:

4This is an interesting example of nonlocal side effects that do not disturb referential
transparency. There is no way to detect that memFib is any different from fib except the
shorter runtime.

5I believe the term memoize was coined by Donald Michie; it means to rewrite a
function so to consult a table of previously computed results.

6The Memoize application runs a third version, memoizedFib. This is the result of
an attempt to abstract the idea of memoization by using a general memoize function.
It’s surprisingly hard to write and use this abstraction. Check out the code to see how
memoizedFib is defined.

2



val fibStream: Stream[BigInt] =

1 #:: 1 #::

(for {

p <- fibStream zip fibStream.tail

} yield {

p match {

case (f1, f2) => (f1 + f2)

}

})

The idea is to give the first two values, then evaluate fibStream zip FibStream.tail.
If we line the streams up:

1 #:: 1 #:: ...

1 #:: 1 #:: ...

The third number is the sum of the first and second elements:

1 #:: 1 #:: 2 #:: ...

1 #:: 1 #:: 2 #:: ...

Now that that third number is available, the fourth number can be com-
puted, as soon as someone asks for it:

1 #:: 1 #:: 2 #:: #:: 3 #:: ...

1 #:: 1 #:: 2 #:: 3 #:: ...

Clearly, the memoization technique we used before won’t help here, not
in the sense that we could compute the entire stream and store it the next
time someone asks. But this is exactly the problem we have with the parsing
techniques used in section 9.3, and many others. Suppose we have a left-
recursive rule such as

VP -> VP NP

(We haven’t dealt with how to propagate the requirement that VP involves
a transitive verb, but imagine we have.) If there is no other way to generate
VPs, the rule is useless at best, a ticket to a stack overflow at worst. But if
there is a rule like

VP -> V

then we can generate, say, VP “Kiss,” then we can use the first rule to
generate the VP “Kiss a frog.” It’s a lot like the FibStream example.

We can still use the memoization idea, but we have to modify it. There
are two ways of thinking about the problem:
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1. Backward, on-demand memoization: We detect when a goal (find VPs
at a certain position) occurs as a subgoal of itself and cut off further
search. However, the goal stays alive. Every time an answer to the
original goal is generated, (in this case, verb phrases at a certain po-
sition) , we feed the answers generated at the supergoal back to the
suspended subgoal, which resumes and returns the answers as if it had
found them itself. So if the supergoal VP produces “kisses” by other
means, it’s returned as an answer to the subgoal, which then pro-
duces the answer “kisses a frog.” Sometimes it’s impossible to identify
exactly which goals are potential suppliers of useful answers to a sus-
pended subgoal. But if you keep track of a superset of the useful goals
and answers, at least you’ll be sure of generating every possible an-
swer at least once. This idea is called tabling in the logic-programming
literature.

2. Forward, anticipatory, memoization: Alternatively, if one can break
a computation into stages, such that results in stage k depend only
on results computed at stages i < k, and there are a finite number of
stages, one can compute the stages one by one. Often it’s impossible
to be precise about what inputs will be necessary to compute stage k
when working on earlier stages, but if a superset of the desired results
is stored, then the computation of later stages can rely on the necessary
data being available..7

Earley’s algorithm is an example of anticipatory memoization. Suppose
a sentence has N words. The algorithm computes a set of phrases ending at
position i, for i between 1 and N .8 We will assume throughout this note that
the grammar has no rules of the form P -> ε, where P is some nonterminal.
If it did, we would have to think about phrases ending at position 0 as well.
The set associated with position i may be described as “partial phrases of
a certain grammatical category that might be completable (if words to the
right of i fall the right way) as a constituent of the S we are looking for.”
The set ending with word i can be computed from earlier stages, and, if
there is a parse of the entire sentence, it will be found at stage N .

7This is the form in which dynamic programming was first invented, in the 1950s, by
Richard Bellman. The first applications involved optimizing a temporally staged process,
which is where the word “dynamic” came from. I think.

8The best way to describe subsequences of a sequence is almost always in terms of
positions in the sequence. A sequence of N objects has N + 1 positions, the first lying to
the left of all the elements, the last lying to the right of all the elements, and all the others
lying between two elements. A position is most naturally designated by the number of
elements to its left, from 0 to N .
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What’s computed at stage i is a set of parser states, which are ab-
stract versions of the states of a naive recursive-descent parser. Each is a
tuple 〈j, i, R, p, t〉 that encapsulates an attempt to use grammar rule R =
s0 -> s1 . . . snR to find a phrase of category s0. (The si are nonterminals
of a context-free grammar.) So far p contiguous phrases of types s1, s2,
. . . , sp, covering positions j through i have been found, so if an sp+1, . . . ,
snR can be found covering positions through i through k, then we will have
found an s0 covering positions j through k. (The t slot is a general-purpose
“result” slot. The result value for phrases is a function of the result values
of its subphrases. In what follows we’ll assume that t is a list of p syntactic
trees, unless p = nR, when t is a list containing a syntactic tree covered by
nonterminal s0, spanning positions j through i, and containing subphrases
covered by s1 through snR .)

The parser states resemble the states of a recursive-descent parser up to
a point, but certain information has been left out. Specifically, there is no
representation of the goals above the goal to find an s0. This means that all
parser states are judged equal if they agree on what’s on top of the stack.

A parser state 〈j, i, (s0 -> s1 . . . snR), p, t〉 is complete if p = nR. Usually
p is not written as a separate slot, but is indicated by a big “ • ” at position
p. So a state is complete if the • is at the end of the rule. A non-complete
state is called predictive, because it is “predicting” that the next thing in
the word list is an sp+1. For example, a state

〈0, 3,S ->NP • VP, t〉

records that, in the course of searching for an S beginning at position 0,
an NP was found covering positions 0 through 3; and, in a sense, predicts,
or perhaps hopes or wishes, that a VP will be found beginning at position
3 and ending at some as yet unknown position, k. If such a VP is indeed
found, then an S will have been found covering positions 0 to k.

There are two key rules for creating new parser states (where σ is a
sequence of terminals and nonterminals, possibly empty):

1. Downward prediction: Given a predictive state

〈j, i, s0 -> . . . • sp+1 . . . , t〉

and a rule in the grammar “sp+1 ->σ,” generate the state

〈i, i, sp+1 -> • σ, ∅〉.
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The new state is assumed to be predictive; i.e., σ is assumed to be
nonempty. It’s possible to eliminate this assumption, but only by
making the algorithm more complex, obscuring its essence.

2. Upward completion: Given a complete state

〈j, i, s0 -> . . . • , t〉

and a predictive state

〈l, j, s -> . . . • s0σ, t′〉

generate the state

〈l, i, s -> . . . s0 • σ, t′ + t〉

Whether the new state is complete or predictive depends on whether σ is
empty or not. Here the expression t′ + t is highly schematic. The idea is
simply that to the collection of trees t′ we add the new elements t. However,
if the new state is complete (σ is empty), the result is a (collection con-
taining) a single tree Tr(s, t + t′), where Tr is some kind of “tree-making”
operation using the collection t′ + t as subtrees and s as the root label. As
I said, highly schematic.

To get the algorithm started, the pump must be primed with a set of
states to which the prediction and completion rules can be applied. One
source of states is the words of the sentence. Word i (one-based counting)
occupies positions i−1 to i. So we can represent the word “can” in position
3 as the state:

〈2, 3, Noun -> "can" • , {"can"}〉

The word “can” is ambiguous; it can also be an auxiliary verb, so we should
also include this state:

〈2, 3, Aux -> "can" • , {"can"}〉

In the unusual event that a sentence is genuinely ambiguous between a
syntactic structure in which “can” is a verb or a noun (e.g., “I saw that
garbage can fly”), we should get both readings.

We also need a top-level predictive state to provide something for the
words to interact with. We need only one:

〈0, 0, -> • S, ∅〉
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The grammar does not really contain a rule with an empty left-hand side. If
we ever apply completion to this rule we’ve found an S starting at position
0. If it ends at position N then it’s a parse of the entire word sequence as
an S, which is what we’re looking for.

To turn these rules and initial states into an anticipatory dynamic-
programming algorithm we must think about the order in which things can
be computed. The downward-prediction rule takes states covering positions
(i, j) and creates more states covering ranges ending at position j. That
suggests that whenever we create a predictive state we immediately create
all the predictive states that follow from it.

The upward-completion rule requires two states, a prediction ending at
i and a completion from i to j, and creates more states ending at j. Some
of the created states may themselves be completions ending at position j,
but if so they too generate only states ending at j. That suggests that we
examine each word, represented as a completion state at the next position,
and generate all the states that follow from it, all of which are in state j.

Because in upward-completion two states interact, it might seem that it
is necessary to check for possible interactions in two different situations: the
one we just looked at it, when a completion is generated, and the opposite
case, where a prediction is generated. Fortunately, this second case will
never occur. Completions ending at position j interact only with predictions
ending at positions to the left, and generate only further completions ending
in position j. So if all parser states ending at i are produced before any
ending in position i+ 1, it is never the case that a prediction state Sp that
can interact with a completion state Sc is generated after Sc.

Traditionally the Earley algorithm is implemented with a one-dimensional
array of size N , where N is the number of words in the string to be parsed.
The positions in the array are filled in order. We would like to implement the
Earley algorithm with immutable data structures, but we would hate to give
up the random-access feature of arrays. That may seem like a small thing,
but dynamic programming algorithms quickly escalate in cost as dimensions
are added (as they will be), and it’s adding insult to injury to make us go
hunting down lists to find prediction states matching a completion state.

So we introduce lazily filled arrays, or “lazy arrays” for short, as a useful
abstraction that gets us the best of both worlds. There are three things you
can do with these objects:

1. Create one: Use LazyArray1.create[T](d) to create a one-dimensional
lazy array of maximum size d holding objects of type T . Its type is
LazyArray1[T]. Its size, initially, is 0. But see operation 3.
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2. Access an element: If a is a lazy array of size k and 0 ≤ i < k, a(i) is
its i’th element.

3. Add an element at the end: If a is a lazy array of size k, a.extend(t)
returns a lazy array of size k + 1, whose k’th element is t.

The lazy array is backed by a real array of size d, so access to an element is
truly random. Extending an array usually takes time O(1), assuming that
it’s extended only once (which is the use case we have in mind). Extend-
ing an array that’s been extended before requires copying its contents to a
new backing array. If execution time is factored out, it’s impossible to tell
whether the array has been extended and if so how many times.9 So the
one tiny mutable piece of the data structure is inaccessible.

For our purposes, the objects stored in the array are of type StateSet,
whose implementation is unimportant, provided it allows us to perform two
operation:

1. ss.addIfNew(s), which tries to adds s to stateSet ss if it’s not already
there. It returns either Some(ss′), where ss′ is the enlarged state set,
or None if s is already in the set. (In cases where it is known that s is
not in the set, the variant addNew just returns the enlarged state set.
It raises an exception if s is not new after all.)

2. ss.getPredictions(N), which returns all predictive states in the set
that are “predicting” nonterminal N .

The Earley algorithm can now be written as follows. Its inputs are a
grammar and a list of lexically analyzed strings, called words.10 The lexical
system uses F-structures (see lecture 29–30) to represent words, and in gen-
eral the parser uses lists of F-structures to represent its results. Every such
F-structure has a cat feature whose value is a terminal or nonterminal sym-
bol of the grammar. A complete parser state, of the form 〈j, i, s -> . . . • , r〉,
one representing the discovery of a word or phrase of type s, where s is a
terminal or nonterminal symbol of the grammar, has result r = a singleton
list whose only element is an F-structure whose cat field is s. For the lexical
system, the value of cat is a terminal. Here’s the pseudo-code:

9This is not to say that multiple threads could access and extend the lazy array safely;
in the current implementation, they cannot.

10A few pages back, we suggested that the lexical system could handle lexical ambiguity
by producing more than one word at a given position. To simplify the pseudo-code, we’ve
left this wrinkle out. See exercise 1, below.
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def earleyParse(grammar , words: List[FStructure]): List[FStructure] = {
val n = words.length

// The max length is 1 + the number of words because it’s
// indexed by position in the word list –
var stateSets = LazyArray1.create[StateSet](n + 1)

// – stateSets(i) is the set of all states ending at position i
stateSets = stateSets.extend(pursuePredict(〈0, 0, -> • S,()〉))
// Position after next word in word list –
var i = 1

while (i ≤ n) {
word-i = next word in words

var stateSetHere = new StateSet()

val wordParserState =

〈i−1, i

word-i.get(’cat) ->word-i.get(’lemma) • ,
List(word-i)〉

stateSetHere = stateSetHere.addNew(wordParserState)

stateSetHere =

pursueComplete(wordParserState, stateSets, stateSetHere)

stateSets = stateSets.extend(stateSetHere)

// --Now stateSets(i) is complete and accessible
// It contains all parser states ending at i i = i + 1

}
extract Ss from stateSets(n)

}

def pursueComplete(parser state,
stateSets: LazyArray1[StateSet],

startStateSet: StateSet): StateSet = {
parser state match {

case 〈start, end, lhs -> . . . , subtrees〉 => {
var nextStateSet = enlargedStateSet

val newTrees =

if (lhs is terminal of grammar) subtrees

else List({cat: lhs,
children:[subtrees]})

// Find states representing the search for the lhs
// at points ending at start --

val predictStates = stateSets(start).getPredictionsFor(lhs)
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for (〈pStart, , pRule, pPos, pTrees〉 <- predictStates) {
val newState = 〈pStart, end, pRule, pPos + 1, pTrees + newTree〉
nextStateSet =

pursueIfNew(newState, sset, nextStateSet,

if (newState is complete)
pursueComplete

else pursuePredict)

}
}

nextStateSet

}

def pursuePredict(parser state,
sset: LazyArray1[StateSet],

startStateSet: StateSet): StateSet = {
parser state match {

case 〈start, end, rule, pos, subtrees〉 => {
var nextStateSet = startStateSet

val nextCat = nonterminal at pos on rhs of rule

var nextStateSet = startStateSet

// Find rules that reduce that category --

for (grammar rule r with lhs == nextCat) {
nextStateSet =

pursueIfNew(〈end, end, r, List()〉, sset, nextStateSet,

pursuePredict)

}
nextStateSet

}
}

def pursueIfNew(parser state,
sset: LazyArray1[StateSet],

startStateSet: StateSet,

pursuer: (Parser State, LazyArray1[StateSet], StateSet)

=> StateSet): StateSet = {
startStateSet.place() match {
case Some(enlargedStateSet) =>

pursuer(parser state, sset, enlargedStateSet)

case None => startStateSet

}
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}

Exercise 1 In the program Earley, what changes are required if words,
instead of being a list of F-structures, is of type List[List[FStructure]]?
(The idea is that each element is a nonempty list of alternative interpreta-
tions of the lexical item at that position.)

Now to answer the question, Why does the Earley algorithm work, if it
does? This is actually two questions:

1. Does it find every parse licensed by a context-free grammar, assuming
it halts?

2. Does it halt?

The second question is easy to answer. There are only a finite number
of alternative parser states ending at position i. No state is pursued if it’s
already in the state set for position i. There are only a finite number of
positions. There’s not much else to say.

To answer the first question, it’s useful to picture an arbitrary parse tree
licensed by a CFG. The symbol associated with a node is a terminal symbol
sT if the node is a leaf, and a nonterminal sNT if it’s a nonleaf. Each leaf is
also associated with a word, of category sT . Each nonleaf is associated with
a a grammar rule sNT → s1, . . . , sk, and si must be the symbol associated
with its ith child. (The satisfaction of this constraint is what makes the
parse tree a legal parse tree.)

Mark each terminal node with a parser state 〈i−1, i, T ->w • , . . . 〉, where
w is the word at that node, just as the program does. Mark each nonterminal
node n (label: nonterminal sNT ) except the topmost with a parser state,
bottom-up, as follows: if its children are labeled

〈p0, p1, sNT -> s1 • s1 . . . sk, . . . 〉,
〈p1, p2, sNT -> s1s2 • s3 . . . sk, . . .〉,
. . . ,
〈pn−1, pn, sNT -> s1 . . . sk−1sk • , . . . 〉,

then label it

〈p0, pn, sNT ′ -> s′1 . . . sNT • s′k′ , . . . 〉
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where sNT ′ → s′1s
′
2 . . . s

′
k′ is the grammar rule associated with its parent,

and s′j = sNT for some j, 1 ≤ j ≤ k′.11 The topmost node, for the symbol
is S, is labeled similarly, except that the “grammar rule” is the artificial
〈0, n,→ S • , . . . 〉.12

It is now possible to prove

Theorem 1 For every parse tree of a word string licensed by a CFG, the
Earley algorithm finds every state labeling every node of the parse tree.

Evidently, finding a label for the top node implies that a successful parse
exists. The last field of the tuple, the one neglected in our description of the
labels on each node, is an F-structure that mirrors the parse tree discovered.

Exercise 2 Prove the theorem. Hint: Try induction on i, the position after
the ith word. Show that every state 〈j, i, rule, p, . . . 〉 in the tree will be found
on iteration i of the loop in earleyParse. in the parse tree.

Exercise 3 Correct our neglect of the result fields by showing that for every
successful parse, a state will be found whose result field is an F-structure
equivalent to the parse tree. That is, at the top the F-structure is of the form
{cat: S, children:[c1, ..., ck]}, where ci is the i’th child of the top node,
and the square brackets around [c1, ..., cm] stem from the abbreviation
convention introduced in lecture 29–30 for first-rest lists.

11If there is more than one such j, pick the νth one, if n is the ν’th child of its parent
with sj = sNT .

12We’ve left out the last element of every state, because these are the “result values”
that play a passive role in the algorithm; they’re put together into something interesting,
but it doesn’t affect whether a parse is successful or not. But see exercise 3.
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