
26a [Supplementary] Subsumption: Some Formalities
Drew McDermott drew.mcdermott@yale.edu

2015-11-20, 11-30, 2016-10-28 — Yale CS470/570

The purpose of this note is to clarify and simplify some of Shieber’s
concepts and notations with regard to unification grammars.

Feature structures (henceforth F-structures) may be thought of as DAGs,
but also as nodes in a DAG. Often the distinction is irrelevant; a node
determines a subDAG, by treating it as the root of the subgraph obtained
by collecting all the nodes reachable from it. But sometimes the distinction
is important, as in the definition of subsumption:

. . . [A] complex feature structure D subsumes a complex
feature structure D′ [D v D′] if and only if D(l) v D′(l) for all
l ∈ dom(D) and D′(p) = D′(q) for all paths p and q such that
D(p) = D(q). (p. 12)

The first clause, regarding all l ∈ dom(D), is a local property of D and
D′, considered as nodes, since it refers only to their children (although the
whole paragraph is part of a recursion that makes sense only when you
see the definition of subsumption for atomic F-structures). In the second
clause of this definition, regarding all paths through D and D′, makes sense
only if D and D′ are thought of as complete DAGs. Furthermore, there is
really no need to repeat it for the child nodes if they should turn out to be
complex, because if it holds for the root node of a DAG D, then it holds for
all subDAGs of D.

To describe a DAG, we need a way of referring to its nodes. Shieber fails
to make the distinction, which makes his diagrams difficult to make precise
sense of. For instance, leaf nodes sometimes seem just to be values. But
suppose two leaf nodes are supposed to be equal even though their values
are not known. There’s a notation for that:

...=n:{}

...=n

At two (or more) different spots the same node must occur, as indicated by
the coindexation numbers “=n”. One of these is marked as a variable: “{}”.
But once the variable is instantiated, to the value “plural,” let’s suppose,
is there a distinction between

...f: =nplural

...g: =n= plural

1



and

...f: plural

...g: plural

in Shieber’s notation? In the previous note, I argued that there was not.
So from now on I propose to use the letter D, with subscripts and and

primes, to refer to F-structures considered as nodes of a graph. The F-DAG
the nodes belong to (referred to with the letter G), is a tuple 〈N,R〉, where
N is a set of nodes and R ∈ N is the root node. Some nodes are leaves
and have values; if D is a leaf, its value is v(D). (It’s often more convenient
to have an adjective meaning “leafish,” and Shieber’s “atomic” will serve
this purpose.) The non-leaves are complex, and have child functions c(D) :
labels → N . But we’ll always follow Shieber and write D(l) rather than
c(D)(l). We’ll also use his notation for paths from a node. A path is a
sequence of labels 〈l1 l2 . . . , lk〉. I’ll use a plus-sign to indicate appending
two paths: 〈l1 . . . , lj〉 + 〈lj+1 . . . lk〉 = 〈l1 l2 . . . , lk〉. If p is a path and l is
a label, p + l = p + 〈l〉.

D(p) is the node reachable from D by following path p, if all the labels
work out; in that case we say D(p) exists, or that p is a well-defined path
from D. D(〈〉) always exists and = D. If D(p) exists and l ∈ dom(D(p)),
then D(p + l) exists and D(p + l) = D(p)(l).

Shieber’s definition of subsumption can be simplified. First, we want
subsumption to be a relation between two DAGs, G1 = 〈N1, R1〉, and
G2 = 〈N2, R2〉. Using the new notation, introduce the term subsumption
homomorphism from G1 to G2 to describe a function f : N1 → N2 with the
following properties:

1. f(R1) = R2

2. If D1 ∈ N1 is a leaf, then D2 = f(D1) is a leaf and v(D2) = v(D1).

3. If D1 ∈ N1 is complex, then D2 = f(D1) is complex, dom(D1) ⊆
dom(D2) and f(D1(l)) = f(D1)(l) = D2(l).

The last bit can be graphed as follows:

2



D1 D2

D1(l) D2(l)

-

?













�

-

f

ll

f

Then G1 vτ G2 if and only if there is a subsumption homomorphism from
G1 to G2. (Bouma 1992 uses the term “homomorphism” to define subsump-
tion.)

We’d like to prove that this defines the same relation as Shieber’s defini-
tion. We’ll write this relation G1 vσ G2, and rewrite its definition in terms
of DAGs:

1. G1 path-subsumes G2: For all paths p and q such that R1(p) and R1(q)
exist and R1(p) = R1(q), R2(p) and R2(q) exist and R2(p) = R2(q).

2. G1 recursively subsumes G2: R1 vσD R2

where the relation vσD on F-structures is defined as before:

3. If D1 and D2 are atomic, D1 vσD D2 iff v(D1) = v(D2)

4. If D1 and D2 are complex, D1 vσD D2 iff dom(D1) ⊆ dom(D2) and for
all l ∈ dom(D1), D1(l) vσD D2(l).

5. If one of D1 and D2 is atomic and the other is complex, then D1 6vσD D2

As before, this part of the definition is completely “local,” in the sense
that it can be thought of as a simple recursion. It is defined for any two
nodes D1 ∈ N1 and D2 ∈ N2. The paths from the roots to D1 and D2 are
irrelevant.

In what follows, we’ll just say “path to D” when we mean “path from
R to D,” assuming that the identity of the root R of the F-DAG containing
D is understood.

Theorem 1 For all F-DAGs G1 and G2, G1 vσ G2 if and only if G1 vτ G2.

3



If you think the theorem is obviously true, you can skip the rest of these
notes. On the other hand, phrasing it so it is provable is suprisingly tricky,
so perhaps it’s not so obvious after all.

Proof: (Only if) Assume G1 vσ G2. We’ll construct a subsumption
homomorphism from G1 = 〈N1, R1〉 to G2 = 〈N2, R2〉 by defining a series of
functions (sets of ordered pairs) f0, f1, . . . , such that for some k, fk is the
homomorphism.

Take f0 = {〈R1, R2〉}. Then define, for all i ≥ 0,

fi+1 = fi ∪ {〈D1, D2〉 : ∃ a pair 〈D′1, D′2〉 ∈ fi, both D′1 and D′2 complex,
and an l ∈ dom(D′1) such that
D1 = D′1(l), D2 = D′2(l)}

We prove by simultaneous induction the following lemma:

Lemma 2 (a) For all i ≥ 0, fi is a function, and (b) if fi(D1) = D2 and
there is a path p of length i to D1, then p is a path to D2.

Proof of lemma 2: It’s obvious for f0. So assume it’s true for all j ≤ i,
with an eye toward proving it’s true for fi+1. Consider two ordered pairs
〈D1, D21〉 ∈ fi+1 and 〈D1, D22〉 ∈ fi+1, at least one of which was not ∈ fi.
There must be two pairs 〈Da

1 , D
a
2〉 ∈ fi and 〈Db

1, D
b
2〉 ∈ fi (not necessarily

distinct), and labels la1 , lb1 (not necessarily distinct) such that D1 = Da
1(la1)

and D1 = Db
1(l

b
1). Because fi is a function, by induction hypothesis),

Da
2 = fi(D

a
1)

Db
2 = fi(D

b
1)

So D21 = Da
2(la1), D22 = Db

2(l
b
1). For fi+1 to be a function, it must be the

case that D21 = D22.
By construction, there is a path pa1 to Da

1 of length i or less, and similarly
a path pb1 to Db

1. By induction hypothesis, pa1 and pb1 are also paths to Da
2

and Db
2, respectively. Da

2 = R2(p
a
1), Db

2 = R2(p
b
1). So there are two (not

necessarily distinct paths) pa1 + la1 and pb1 + lb1 from D1. R1(p
a
1 + la1) =

R1(p
b
1 + lb1). See figure 1. By the definition of vσ, clause 1 (remember

that?), R2(p
a
1 + la1) = R2(p

b
1 + lb1). But R2(p

a
1 + la1) = Da

2(la1) = D21 =
R2(p

b
1 + lb1) = Db

2(l
b
1) = D22. So fi+1 is a function.

The other half of the simultaneous induction is easier. Every path of
length i + 1 to nodes in N2 is examined because we’ve got every path of
length i or less in fi. Whenever the ordered pair 〈D1, D2〉 is in fi+1 \ fi, it’s
always by adding the same label l to the paths to the parents of D1 and D2

in fi. QED(lemma 2)

4



Under construction
(Or look at the previous diagram and cross your eyes.)

Figure 1: Complicated diagram

Using this lemma, we can focus on f∗, defined as fk where k is the
lowest subscript for which fk = fk+1. (There must be such a k, because
F-DAGs are finite.) It remains to prove that f∗ is a subsumption homo-
morphism. In every pair 〈D1, D2〉 ∈ f∗ either both D1 and D2 are atomic,
or both are complex. (This follows easily from part (b) of Lemma 2.) In
the complex case, by construction all the children of D1 and D2 satisfy the
homomorphism property, f∗(D1(l)) = D2(l). The atomic case arises only
for nodes at the ends of terminal paths. Here is where we use the fact that
G1 recursively subsumes G2, i.e., that R1 vσD R2. Lemma 2 shows that the
sequence of recursive tests that define whether R1 vσD R2 tracks the paths
kept in synch by f∗. The truth of R1 vσD R2 ultimately depends on the
truth of D1 vσD f∗(D1), where D1 is a leaf. If f∗(D1) = D2, and D1 is a
leaf, D1 vσD D2 can be true true only if D2 is a leaf, and v(D1) = v(D2).

Hence f∗ is the subsumption homomorphism we seek. QED(“Only If”)
Now for the other half of Theorem 1, the part traditionally called “(If).”

Assume G1 vτ G2, so that there is a subsumption homomorphism f from G1

to G2. We need to show that G1 path-subsumes and recursively subsumes
G2.

The proof that G1 path-subsumes G2 depends on another lemma:

Lemma 3 For every path p, if R1(p) exists then R2(p) exists and f(R1(p)) =
R2(p).

Proof of lemma: By induction on the path length. It’s obvious for paths
of length 0. Assume it’s true for a path of length i, and let p = p′ + l be
a path of length i + 1 such that R1(p) exists. Then l ∈ dom(f(R1(p

′))),
and f(R1(p)) = f(R1(p

′))(l), which = R2(p
′)(l), if l ∈ dom(R2(p

′)). But
of course the fact that f is a subsumption homomorphism means that
dom(R1(p

′)) ⊆ dom(R2(p
′)), so we’re done. QED(lemma 3)

This lemma may be said to be the whole point of subsumption homo-
morphisms. To prove path-subsumption, we need to show that if there are
two paths pa and pb such that R1(p

a) = R1(p
b) then R2(p

a) = R2(p
b) But

this follows immediately from the lemma:

R2(p
a) = f(R1(p

a))

5



= f(R1(p
b))

= R2(p
b)

We still have to prove that G1 recursively subsumes G2, i.e., that R1 vσD
R2.

We do it by induction on the height of G1. The height of G1 is the height
of R1. The height of a node is defined as follows:

1. If D is a leaf, its height is 0.

2. If D is complex, its height is 1 + the maximum height of any of its
children.

If R1 has height 0, it’s a leaf. So f(R1) = R2 is a leaf and v(R1) = v(R2).
So R1 vσD R2.

Now assume (induction-hypothesis alert) that for every F-DAG G′1 =
〈N ′1, R′1〉 of height ≤ i that comes equipped with a subsumption homomor-
phism f ′ to another F-DAG, G′2 = 〈N ′2, R′2〉, it is the case that R′1 vσD R′2.
Our goal is to show that for an F-DAG G1 = 〈N1, R1〉 of height i + 1,
again, accompanied by a subsumption homomorphism f to G2 = 〈N2, R2〉,
R1 vσD R2. Since R1 is complex, the existence of f means that dom(R1) ⊆
dom(R2).

But there is a slight hitch. Given the way we define F-DAGs, G1 does
not have components that are themselves F-DAGs. But we can pretend that
it does by defining N(D) as all the nodes reachable from D (including D
itself), so that 〈N(D), D〉 is the F-DAG rooted at D; call this G(D). We
can also define f � D as {〈D1, f(D1)〉 : D1 ∈ N(D)}. So if Ci

1 is a child of
R1, C

i
1 = R1(l

i), G(Ci
1) is an F-DAG of height ≤ i, f � Ci

1 is a subsumption
homomorphism from G(Ci

1) to G(f(Ci
1)) = G(R2(l

i)), and the antecedent of
the induction hypothesis is satisfied. Hence for all li ∈ dom(R1), R1(l

i) vσD
R2(l

). By clause 4 of the definition of vσD, R1 vσD R2. QED(“If”)
QED(Theorem 1)

6


