
27 Feature Grammars and Unification
Drew McDermott drew.mcdermott@yale.edu

2015-11-20, 11-30, 2016-10-28 — Yale CS470/570

1 Rules in a Feature Grammar

Grammar rules look like this example (using Shieber’s PATR-II notation,
but coming from a different angle):

S → NP VP

S〈head-daughter〉 = VP

S〈head〉 = VP〈head〉
S〈head subject〉 = NP〈head〉
VP〈head agreement〉 = NP〈head agreement〉

After the familiar rule in line 1, we have some constraints. The details
here are motivated by linguistic theory, in which the term “head” is central,
as we’ll see. The rule says you can build an F-structure for S out of two
F-structures, one for an NP and one for a VP, provided that these path
equalities hold. The path equalities are constraints, imposed by unification,
in a way that will become clear shortly.

For a CFG we imagine “rewriting” S as “NP VP”. Here we imagine starting
with an F-structure with just one slot:

(1) {cat: S}

then moving to a new F-structure

(2) {cat: S, daughters: <{cat: NP, head: {cat: N}},
{cat: VP, head: {cat: V}}>}

One may well ask how all this structure emerged from “NP VP,” but any
linguist would insist that an xP is defined as the “maximal projection of an
x,” which in the terminology we’re relying on here means a phrase whose
head word is of category x. Because we started with a blank slate, working
top-down, any further information must emerge from constraints supplied
by the grammar and the lexicon. (“Daughters,” sometimes abbreviated
“dtrs,” is synonymous with the phrase’s constituents, the subphrases that it
comprises.)

The first constraint is

S〈head-daughter〉 = VP

1

In this context, imposing the constraint means moving to this data structure:

{cat: S,
daughters: <{cat: NP, head: {cat: N}},

=1= {cat: VP, head: {cat: V}}>,
head-daughter: =1}

So that the head-daughter feature is now synonymous with the second
daughter. The next constraint is that “The head of S must the same as
the substructure labeled “head” in the VP.” To reflect this constraint, we
move to this F-structure:

{cat: S,
daughters: <{cat: NP, head: {cat: N}},

=1= {cat: VP, head: =2= {cat: V}}>,
head-daughter: =1,

head: =2}

Are we allowed to add index numbers to an existing structure this way?
Actually, all we added was new features with new arcs to existing subgraphs.
Remember that the index numbers’ sole function is to provide a way to
describe DAGs in a convenient non-graphical notation. They are labels, not
real parts of the data structure.

The last two constraints

S〈head subject〉 = NP〈head〉
VP〈head agreement〉 = NP〈head agreement〉

result in this F-DAG:

{cat: S,
daughters: <{cat: NP, head: =3= {cat: N, agreement: =4}},

=1= {cat: VP, head: =2= {cat: V,
subject: =3,

agreement: =4= {?}}}>,
head-daughter: =1,

head: =2}

There are two things we need to do to get our unification algorithm (see
next note) to build this structure for us. The first is to understand the
right-hand side of the rule “S → NP VP” to set up F-Dag (2), and to store
the equalities

2

S = G〈〉
NP = G〈daughters, first〉
VP = G〈daughters, rest, first〉

Imposing each constraint requires creating a minimal graph that extends (2)
just enough to make the constraint true. For example, if we start with the
last constraint

VP〈head agreement〉 = NP〈head agreement〉

we can build this F-DAG:

{daughters: <{head: {agreement: =1= {?}}},
{head: {agreement: =1}}>}

When we unify this F-DAG with (2), which is left as an exercise for the
reader, we get a graph that reflects the structural assumption and this agree-
ment requirement, even before we stick in any information about what the
syntactic categories of the first and second daughter are. It doesn’t matter
what order a series of unifications is done in; you’ll get the same result (up
to orderings, perhaps, and index numbers, which are artifacts of the printing
process).

[[From here on the notes are inconsistent, although interesting; they
haven’t been updated from last year’s notation, which I made adjustments
to.]]

The subject of the head of S must be the head of the NP. So if we start
with the NP

{cat: NP, head: {agreement: {number: singular, person: third}}}

and the VP

{cat: VP, head: {form: finite,
subject: {agreement: {number: singular,

person: third}}}

then we wind up with

{cat: S, head: =1}
{cat: NP, head: =2}
{cat: VP, head: =1{form: finite,

subject: =2{agreement: {number: singular,
person: third}}}}

3

To make all this happen, all we had to do was tie together existing
pieces of DAG, which we got away with because they were actually equal.
For instance, S〈head〉 = VP〈head〉 and NP〈head〉 = S〈head subject〉 =
VP〈head subject〉. If two subDAGs are not identically equal, then we must
replace both of them with their most general unification (MGU).

Shieber explains unification pretty well. In a nutshell (or two nutshells):

• If F1 and F2 are two F-structures, F1 subsumes F2 (written F1 v F2)
if F2 “contains at least as much information” as F1, or F1 “is at least
as general” as F2.

1 More precisely: (a) the paths through F1 are a
subset of the paths through F2; and (b) at all the paths p they have
in common, F1 p v F2 p;2 and (c) for all pairs of paths p1 and p2, if
F1 p1 = F1 p2 then F2 p1 = F2 p2. Condition (c) is to make sure that
the graph structure of F2 preserves the graph structure of F1.

• The MGU of two F-structures F1 and F2, written F1 tF2, is the least
specific F-structure subsumed by F1 and F2. That is, if Fu = F1 tF2,
then (a) F1 v Fu and F2 v Fu; and (b) if F ′

u satisfies (a) as well, then
Fu v F ′

u.3

There is no guarantee that there is an F-structure meeting part (a) of
the definition of F1 tF2, but if there is, then there is always an F-structure
satisfying part (b).4

If we return to our grammar, a rule

1Shieber says “more information” and “more general,” and these are the cases we’re
interested in, but he’s careful to define v so it’s reflexive, and his notation indicates that:
He chose “v” instead of “<.”

2This recursive definition bottoms out because the substructures in question are
smaller; eventually we get to atomic values.

3In fewer words, t defines a semilattice, and F1 v F2 iff F1 t F2 = F2.
4Much of the terminology regarding unification originated in the literature on mechan-

ical theorem proving, but one’s intuition about how to transpose concepts from one to
the other can be wrong. (Those not familiar with this literature can skip this footnote.)
There is a temptation to identify indices with variable names in theorem proving, but
they’re not the same. In theorem proving, the output of the unification algorithm is a
substitution, i.e., a specification of the values of some of the variables. Substitutions are
viewed as functions on formulas, which replace some of their variables. When unifying
two F-structures, no attempt is made to separate the substitution from the act of applying
it, that is, actually replacing variables and other underspecified substructures with new
versions with slots filled in or replaced with better versions. So no substitution is ever
brought into being when F-structures are unified.

Although Shieber uses the term “variable” for the empty F-structure, that’s just a
common but special case: a node with no edges that when unified acquires all the edges
of the node it’s paired with. In theorem proving, variables have to have names to make
unification “interesting,” because a variable that occurs only once never fails to match

4

C0→ C1 . . . Cn

(Γ1 p1 = Γ2 p2)*

means that if F-structure Xi describes a list of words wi, with Xi〈cat〉 = Ci,
for 1 ≤ i ≤ n, then X0 describes w1 :::w2 ::: . . . :::wn (using the Scala
“append” operation “:::”), provided that the constraints, each of the form
Γ1 p1 = Γ2 p2, are satisfied, where Γ1,Γ2 are two (not necessarily distinct)
elements of {X0, . . . , Xn} and p1 and p2 are paths. (The “*” means that we
can have zero or more such constraints.) In what follows, I’ll continue to
use Xi to refer to the i’th F-structure mentioned in a rule; Xi 〈cat〉 = Ci.

5

Where in our rule does it say that the Ci describe phrases in contiguous
segments that together make a C0? Nowhere, so let’s fix that. Introduce a
feature span, whose value is an F-structure with two features begin and end

that describe points in a word string.6

A point in a word string is, as usual, denoted by the number of words to
its left, so that a string of N words has N + 1 “points”: 0 through N . An
analysis of the entire string will span points 0 to N .

Now we’ll take our rule to imply the constraints:7

Ci〈span end〉 = Ci+1〈span begin〉 (1 ≤ i ≤ n− 1)
C0〈span begin〉 = C1〈span begin〉
C0〈span end〉 = Cn〈span end〉

At this point we really must explain where the words are coming from.
There’s a module delivering a stream8 of F-structures describing each word.
A sentence beginning “She kept. . . ” would produce something like this:

{cat: pronoun, lemma: she, span: {begin: 0, end: 1},
agreement: {number: singular, person: 3rd, gender: fem},...}
{cat: verb, lemma: keep, tns: past, span: {begin: 1, end: 2}, ...}

anything. In the world of F-structures, multiple paths to the same graph node play the
role of multiple occurrences of the same variable name in theorem proving.

5If, say, two noun phrases (NPs) occur on the right-hand side of a rule, we would call
them NP1 and NP2. But this doesn’t affect the Xi numbering scheme, which just orders
from left to right.

6Or a string of phonemes or morphemes. Actually, even for text we should use the
neutral term lexeme, which allows for the possibility that in some preprocesing step a
word might get broken into pieces (or otherwise altered), so that (e.g.) “keeping” might
become “keep” + “-ing” and “kept” might become “keep” + “-ed,” (although in what
follows we prefer to let lexemes be words with features indicating what endings they had).

7Actually, we don’t need most of these, except to keep track of the beginning and end of
phrases we’ve found. The parsing algorithm (we hope!) will not try to put non-contiguous
phrases together.

8But not necessarily a Stream.

5

The lemma of a word is its “root,” the “unmarked” form from which other
formas might be derived by adding prefixes or suffixes indicating number,
case, tense, or whatever features are appropriate for the word category in
question. In the interest of brevity, I’ve omitted many of these features.

The parsing problem is to generate an F-structure with cat:S that spans
the entire sentence. Each F-structure above the word level is licensed by
some grammar rule, in that the span constraints and the explicit constraints
are satisfied.

The constraint notation raises some new questions. It duplicates the
functionality supplied by the coindexation notation, in that both tell us
which pieces have to be the same. Furthermore, while we explained what
unification meant for two F-structures, we didn’t explain what it meant for
a bunch of F-structures and constraints.

To provide all these explanations, we treat the constraint notation as
syntactic sugar for the coindexation notation we already have. Given our
typical rule:

C0→ C1 . . . Cn

Xi1 p11 = Xj1 p12
Xi2 p21 = Xj2 p22
. . .
Xim pm1 = Xjm pm2

we’ll construct a feature structure FR that contains the same information.
See figure 1.

There are two aspects of this figure that bear further explanation. First,
the components of the top-level F-structure, X0 through Xn, are interrupted
by F-structures for Xi1 and Xj1. These are not additional components; i1
might be 2 and j1 might be 3, so that the piece labeled Xi1 is the same as
the piece labeled X2 that appears just above it, and the piece labeled Xj1 is
the component next in the sequence. The caption of figure 1 explains the
triple subscripts on p that identify labels along paths p11 and p12. The only
way to mention a path in the coindexation notation is to provide it, so all
the frames along the way are filled in, even if only skeletally. When we reach
the end of each path we put the label =(n+ 1) to indicate that they must be
the same.9 One of these paths may end in an already known structure; if
not, then one is picked at random and made a variable.10 Only an example

9The use of numbers rather than identifiers to indicate coindexation gets tiresome at
this point.

10It’s not allowed for two of them to end in nontrivial structure; instead, unify the two
and replace them with the result. If they fail to unify, the rule makes no sense.

6

{X0: {cat:C0,

daughters: {first: =1,
rest: {first: =2,

rest: {...{first: =n,
rest: Nil}}}}},

X1: =1= {cat:C1},
X2: =2= {cat:C2},
. . .
Xi1: {: p111{...{p11l1: =n + 1}}},
. . .
Xj1: {p121: {...{p12m1: =n + 1}}},
. . .
Xn: =n= {cat:Cn}}

Figure 1: Schema for FR, the F-structure for the rule with coindexation
constraints, where p11 = 〈p111 p112 . . . p11l1〉 and p12 = 〈p121 p122 . . . p12m1〉,

will make this clear, but first let’s explain more fully the notation we use for
lists to avoid the clumsy first-rest notation.

With this abbreviation, figure 1 becomes figure 2.
Let’s get back our running example, before abstraction overflows our

skulls. The rule is S→ NP VP. and the constraints are (this time using the
Xi notation — X0, X1, X2 — referring to the S (under construction), the
NP, and the VP, respectively):

X0〈head〉 = X2〈head〉
X0〈head subject〉 = X1〈head〉
X1〈head agreement〉 = X2〈head agreement〉

to which we’ll add two more:

X0〈sem fcn〉 = X1〈sem〉
X0〈sem arg1〉 = X2〈sem〉

just to remind us that we’re ultimately interested in the semantics (internal
representation) or our sentence. The two extra constraints are the Montago-
vian sem(X0) = sem(X1)(sem(X2)), expressed in “F-structurese.” Figure 3
shows what FR looks like.

Looking at figure 3, the most likely reaction seems to be, What happened
to the arrow? The answer is that the arrow was always an illusion to some

7

{X0: {cat:C0,

daughters: <=1,

=2,

. . .
=n>

X1: =1= {cat:C1},
X2: =2= {cat:C2},
. . .
Xi1: {p111: {...{p11l1: =(n + 1)}}},
. . .
Xj1: {p121: {...{p12m1

: =(n + 1)}}},
. . .
Xn: =n= {cat:Cn}}

Figure 2: Schema for FR, with list notation (cf. figure 1)

{X0: {cat: S,
daughters: <=1,=2>,

span: {begin: =3= {?}, end: =4= {?}}
sem: {class: funapp,

numargs: 1,

fcn: =5,

arg1: =6},
head: =7{subject: =8}}}

X1: =1{cat: NP,
span: {begin: =3, end: =9},
sem: =5= {?},
head: =8{agreement: =10= {?}}

X2: =2{cat: VP,
span: {begin: =9= {?}, end: =4},
sem: =6= {?},
head: =7= {agreement: =10}}}

We have added variables to make sure each of the labels 3, 4, 5, 6, 9, and
10 is defined in one of the two spots where it occurs.

Figure 3: FR for S → NP VP

8

{X0: {daughters: <=1, =2>},
X1: =1{cat:C1,

span: {begin: i0, end: i1},
—everything else we know about the tree X1—},

X2: =1{cat:C2,

span: {begin: i1, end: i2},
—everything else we know about the tree X2—},

. . .
Xn: =n= {cat:C2,

span: {begin: in−1, end: in},
—everything else we know about the tree Xn—}},

Figure 4: Schema for FS , the “situational” F-structure

extent. It can be interpreted left-to-right, as if one is trying to generate
the entire language.11 But it can also be interpreted right-to-left, when the
task is to decide whether a word list is in the language. Or inside-out and
sideways. Grammar rules are better thought of as a system of constraints on
phrase structures, and the unification formalism is ideal for this. Shieber’s
paper discusses some of the systems that had been developed as of the 1980s,
and many more have been developed since. HPSG (“Head-driven phrase-
structure grammar”) is especially worthy of mention.

For FR to do any work, it must be unified with something. If we’re
parsing, at a minimum what has to happen is that n contiguous phrases
that have been found already must be packaged up into a structure FS (“S”
for “situation”) that resembles FR at the top level. See figure 4.

The values i0, . . . , in are known quantities at this point, defining the
boundaries of the phrases. FS describes in detail the structures already
found, but says nothing at all about the bigger structure to be built, except
that it consists of these pieces. Obviously, most parsers know more about the
bigger structure, because they wouldn’t be considering putting these pieces
together unless there was a rule justifying it. The point is that unification
doesn’t depend on the information being located in FS if it’s already in FR.

Figure 5 is the schema of figure 4 instantiated for a particular analyzed
word string, “Napoleon retreated.”12

Now we can apply unification to our parsing problem. We unify FR and

11Which is why the tradition started by Chomsky sixty years ago is known as “generative

9

{X0: {daughters: <{}=1, =2>{}},

X1:=1{cat: NP,

span: {begin: 0, end: 1},

head: {cat: properNoun,

lemma: "Napoleon",

agreement: {person: 3rd, number: singular}},

sem: {class: lambda,

var: p,

exp: {class: funapp,

fcn: p,

numargs: 1,

arg1: nb2}}},

X2:=2{cat: VP,

span: {begin: 1, end: 2},

head: {cat: verb,

lemma: "retreat"

tns: past},

sem: {class: lambda,

var: x

exp: {class: funapp,

fcn: retreat,

numargs: 1,

arg1: x}}}}

Figure 5: FS for a particular situation: “Napoleon” and “retreated”

10

FS . If they unify, FR t FS describes the S spanning positions i0 to i2. In
fact, for our example the unification succeeds, yielding the structure shown
in figure 6.

grammar.”
12The semantics (“sem”) of the children are λ-expressions. The first would be written

λ(p)(p nb2) in the λ-calculus. The atom nb2 is the internal name for Napoleon Bonaparte;
think of it as his “netid.”

11

{X0: {daughters: <{}=1, =2>{},

span: {begin: 0, end: 2},

head:=11,

sem: {class: funapp,

fcn:=3,

numargs=1,

arg1:=4}},

X1:=1{cat: NP,

span: {begin: 0, end: 1},

head:=12{cat: properNoun,

lemma: "Napoleon",

agreement:=14{person: 3rd, number: sing}},

sem:=3{class: lambda,

var: p,

exp: {class: funapp,

fcn: p,

numargs: 1,

arg1: nb2}}},

X2:=2{cat: VP,

span: {begin: 1, end: 2},

head:=11{cat: verb,

lemma: "retreat",

tns: past,

agreement:=14,

subject:=12},

sem:=4{class: lambda,

var: x

exp: {class: funapp,

fcn: retreat,

numargs: 1,

arg1: x}}}}

Figure 6: Result of unifying FR (figure 3) and FS (figure 5)

12

