
50 COMMUNICATIONS OF THE ACM | FEBRUARY 2020 | VOL. 63 | NO. 2

contributed articles

I
M

A
G

E
 B

Y
 M

A
R

C
E

L
 C

L
E

M
E

N
S

resource management using super-
vised learning techniques, such as
gradient-boosted trees and neural net-
works, or reinforcement learning. We
also discuss why ML is often preferable
to traditional non-ML techniques.

Public cloud providers are starting
to explore ML-based resource manage-
ment in production.9,14 For example,
Google uses neural networks to op-
timize fan speeds and other energy
knobs.14 In academia, researchers have
proposed using collaborative filtering—
a common technique in recommender
systems—in scheduling containers for
reduced with in-server performance
interference.12 Others proposed using
reinforcement learning to adjust the re-
sources allocated to co-located VMs.24
Later, we discuss other opportunities
for ML-based management.

Despite these prior efforts and op-
portunities, it is currently unclear
how best to integrate ML into cloud
resource management. In fact, prior
approaches differ in multiple dimen-
sions. For example, in some cases,
the ML technique produces insights/
predictions about the workload or in-
frastructure; in others, it produces ac-
tual resource management actions. In
some cases, the ML is deeply integrated
with the resource manager; in others, it
is completely separate. In all cases, the
ML addresses a single management
problem; a different problem requires

CLOUD PLATFORMS, SUCH as Microsoft Azure, Amazon
Web Services (AWS), and Google Cloud Platform,
are tremendously complex. For example, the Azure
Compute fabric governs all the physical and virtualized
resources running in Microsoft’s datacenters. Its
main resource management systems include virtual
machine (VM) and container (hereafter we refer
to VMs and containers simply as “containers”)
scheduling, server and container health monitoring
and repairs, power and energy management, and other
management functions.

Cloud platforms are also extremely expensive to
build and operate, so providers have a strong incentive
to optimize their use. A nascent approach is to
leverage machine learning (ML) in the platforms’

Toward
ML-Centric
Cloud
Platforms

DOI:10.1145/3364684

Exploring the opportunities to use ML,
the possible designs, and our experience
with Microsoft Azure.

BY RICARDO BIANCHINI, MARCUS FONTOURA, ELI CORTEZ,
ANAND BONDE, ALEXANDRE MUZIO, ANA-MARIA CONSTANTIN,
THOMAS MOSCIBRODA, GABRIEL MAGALHAES,
GIRISH BABLANI, AND MARK RUSSINOVICH

 key insights
˽˽ There are many potential uses of ML in

cloud computing platforms. The challenge
is in defining exactly how and where ML
should be infused in these platforms.

˽˽ Leveraging ML-derived predictions
has shown promise for many resource
managers in Azure Compute. Having a
general and independent ML framework/
system has been key to increasing
adoption quickly.

˽˽ Many research challenges remain
open, including how to make action-
prescribing ML general enough for wide
applicability in cloud platforms, how to
manage (potentially partial) feedback at
scale, and how to debug misbehaviors
(especially when the ML is tightly
integrated with resource managers).

http://dx.doi.org/10.1145/3364684

FEBRUARY 2020 | VOL. 63 | NO. 2 | COMMUNICATIONS OF THE ACM 51

52 COMMUNICATIONS OF THE ACM | FEBRUARY 2020 | VOL. 63 | NO. 2

contributed articles

ference enables the scheduler to select
placements that do not require migra-
tions.12 In the Resource Central section,
we mention our earlier results on the
benefit of predictive container schedul-
ing. In fact, non-predictive policies (for
example, based on feedback control)
are not even acceptable in some cases.
For instance, blindly live migrating
containers that will incur long blackout
times is certain to annoy customers.

ML has been shown to produce more
accurate predictions for cloud resource
management than more traditional
methods, such as regressions or time-
series analysis. For example, Cao6 and
Chen8 demonstrate that ML techniques
produce more accurate resource uti-
lization predictions than time-series
models. Our results quantitatively com-
pare some ML and non-ML methods.

Opportunities for ML
in Cloud Platforms
Cloud platforms involve a variety of
resource managers, such as the con-
tainer scheduler and the server health
management system. Here, we discuss
some of the ways in which managers
can benefit from ML.

Container scheduler. The scheduler
selects the server on which a contain-
er will run. It can use ML to identify
(and avoid) container placements that
would lead to performance interfer-
ence, or to adjust its configuration pa-
rameters (for example, how tightly to
pack containers on each server). It can
also use ML-derived predictions of the
containers’ resource utilizations to bal-
ance the disk access load, or to reduce
the likelihood of physical resource ex-
haustion in oversubscribed servers.
Predictions of server health are also
useful for it to stop assigning contain-
ers to servers that are likely to fail soon.
Finally, it can use predictions of con-
tainer lifetime when considering serv-
ers that will undergo planned main-
tenance or software updates. We have
used lifetime predictions to match
batch workloads to latency-sensitive
services with enough idle capacity for
the container.27

Server defragmenter/migration man-
ager. As containers arrive/complete,
each server may be left with available
resources that are insufficient for large
containers. As a result, the server de-
fragmentation system may decide to

another approach. We discuss these
dimensions, the possible integration
designs, and their architectural, func-
tional, and API implications.

As one point in this multi-dimen-
sional space, we built Resource Central
(RC)9—a general ML and prediction-
serving system for providing workload
and infrastructure insights to resource
managers in the Azure Compute fabric.
RC collects telemetry from containers
and servers, learns from their prior be-
haviors and, when requested, produces
predictions of their future behaviors.
We are currently using RC to accurately
predict many characteristics of the
Azure Compute workload. We present
an overview RC, its initial uses and re-
sults, and describe the lessons from
building it.

Though RC has been successful so
far, it has limitations. For example, it
does not implement certain forms of in-
teraction with resource managers. More
broadly, the integration of ML into real
cloud platforms in a general, maintain-
able, and at-scale manner is still in its
infancy. We close the article with some
open questions and challenges.

ML vs. Traditional Techniques
Resource management in cloud plat-
forms is often implemented by static
policies that have two shortcomings.
First, they are tuned offline based
on relatively few benchmark work-
loads. For example, threshold-based
policies typically involve hand-tuned
thresholds that must be used for wide-
ly different workloads. In contrast,
ML-informed dynamic policies can
naturally adapt to actual production
workloads.20,26 For the same example,
each server can learn different thresh-
olds for its own resource management.

Second, the static policies tend to
require reactive actions, and may incur
unnecessary overheads and customer
impact. As an example, consider a com-
mon policy for scheduling containers
onto servers, such as best fit. It may
cause some co-located containers to
interfere in their use of resources (for
example, shared cache space) and re-
quire (reactive) live migrations.23 Live
migration is expensive and may cause
a period of unavailability (aka “black-
out” time). In contrast, ML techniques
enable predictive management: having
accurate predictions of container inter-

Cloud platforms
are extremely
expensive to build
and operate, so
providers have a
strong incentive to
optimize their use.

FEBRUARY 2020 | VOL. 63 | NO. 2 | COMMUNICATIONS OF THE ACM 53

contributed articles

their codes with monitoring calls into
the platform (for example, using AWS’s
CloudWatch3 or Azure’s Monitor21).
When they do not, lower-level counters
(for example, resource utilization, CPU
performance counters) must be used
as an imperfect proxy for application
performance. Given that most work-
loads are not instrumented, we expect
that ML techniques will most often use
counters. Nevertheless, providers also
run first-party workloads, which can
potentially be instrumented.

Predictions vs. actions. Another di-
mension concerns the role of the ML
techniques. One approach is for them
to produce insights (for example, per-
formance, load, container lifetime pre-
dictions) that managers can leverage to
improve decisions as in Figure 1 (top).
This approach gives managers sole
control and understanding of the man-
agement policies. Another approach is
for the ML to produce actual manage-
ment actions (for example, migrate this
container, change this resource alloca-
tion) to be taken by managers. In this
case, the ML embodies a deeper under-
standing of the policies (or may itself
define the policies). Targeting the ML
at producing actions may lead to poli-
cies that more easily adapt to the actual

live-migrate active containers onto a
subset of the servers. A migration man-
ager can also live-migrate (for example,
low-priority) containers to alleviate any
unexpected server resource contention
or interference. It can use application-
level performance information (when
it is available) or ML techniques on
lower-level performance counters to
identify these behaviors. The manager
can use predictions of the containers’
expected lifetimes and blackout times
to live-migrate only those that will
likely remain active for a substantial
amount of time and not incur a notice-
able blackout time if migrated.

Power capping manager. This man-
ager ensures the capacity of the (over-
subscribed) power delivery system is
not exceeded, using CPU speed scal-
ing. To tackle a power emergency (the
power draw is about to exceed a circuit
breaker limit), this manager can use
predictions of the performance impact
of speed scaling on different workloads
to guide its apportioning of the avail-
able power budget. Similarly, it can use
predictions of workload interactivity as
a guide. Ideally, containers executing
interactive or highly sensitive work-
loads should receive all the power they
want, to the detriment of containers
running batch and background tasks.
In this context, the container scheduler
can use predictions of interactivity to
smartly schedule interactive and delay-
insensitive workloads across servers.

Server health manager. This manager
monitors hardware health and takes
faulty servers out of rotation for main-
tenance. When a server starts to misbe-
have, this manager can use predictions
of the lifetime of the containers run-
ning on the server. Using these predic-
tions, it can determine when mainte-
nance can be scheduled, and whether
containers need to be live-migrated to
prevent unavailability.

This is only a partial list of opportu-
nities for ML-based resource manage-
ment. The challenge is determining
the best system designs for exploiting
these opportunities.

Potential Designs
for ML-Centric Clouds
When deciding how to exploit ML
in cloud resource management, we
must consider: The ML techniques
and their inputs and outputs, and

the managers and their mechanisms
(management actions) and policies.
We must also consider many ques-
tions: Can we use application-level
performance data for learning? How
should the ML and the managers in-
teract? Should the ML produce behav-
ioral insights/predictions or actual
management actions? How tightly
integrated with the managers should
the ML be? How quickly does the ML
need to observe the effect of the man-
agement actions? Is it possible to
create general frameworks/APIs that
can apply to many types of resource
management? Next, we discuss our
thoughts along these dimensions.

Application performance vs. counters.
Managers must optimize resource us-
age without noticeably hurting end-to-
end application performance. Thus,
having direct data on application per-
formance enables precise manage-
ment with or without ML. Some appli-
cation metrics are easier to obtain than
others. For example, VM lifetimes are
“visible” to the platform, whereas re-
quest latencies within VMs implement-
ing a service often are not. When con-
tainers are opaque to the platform, the
way to obtain application performance
data is for developers to instrument

Figure 1. Two designs.

Prediction

replies

Prediction

requestsCounters/
App info

Actions

Counters/
App info

Actions

Managed system

ML outputs predictions

Integrated ML and RM (resource manager)

Managed system

ML RM

ML + RM

54 COMMUNICATIONS OF THE ACM | FEBRUARY 2020 | VOL. 63 | NO. 2

contributed articles

whereas actions are manager-specific.
Integration vs. separation. Related

to the dimension here is the question
of whether the ML should be fully in-
tegrated or completely separate from
managers. When the ML outputs ac-
tions, the fully integrated design is a
natural one, as in Figure 1 (bottom).
For insights, both integration and
separation are viable options. How-
ever, for generality and maintainabil-
ity, cleanly separating the ML and the
managers via well-defined APIs is ben-
eficial: multiple managers can use the
same ML implementation, which the
platform can maintain independently
of the managers.

Immediate vs. delayed feedback. A
final dimension is whether the ML is

able to observe the result of its previous
outputs or the manager actions within
a short time. Designs that produce ML
models offline will likely observe these
effects only at a coarse time granularity
(for example, daily). Such granularity is
a good match when the input feature
characteristics also change slowly. How-
ever, techniques such as reinforcement
learning and bandit learning often
benefit from actions being observable
much sooner. For such techniques, of-
fline model-learning may not be ideal.

Resource Central
RC is one point in this multidimen-
sional space. We built it as a general ML
and prediction-serving system into the
Azure Compute fabric. RC9 learns from
low-level counters from all containers
and servers, produces various behavior-
al models offline, and provides predic-
tions online to multiple managers via a
simple REST API.

RC leverages a wealth of historical
data to produce accurate predictions.
For example, from the perspective of
each Azure subscription, many con-
tainers exhibit peak CPU utilizations
in consistent ranges across executions;
containers that execute user-facing
workloads consistently do so across
executions; tenant deployment sizes
are unlikely to vary widely across ex-
ecutions, and so on.9 In all these cases,
prior behavior is a good predictor for
future behavior.

workload and infrastructure behaviors,
whereas leaving this responsibility to
managers may produce policies that
are unnecessarily general. Producing
actions may also be the only alterna-
tive when it is impractical to collect la-
beled training data (for example, when
fast management decisions must be
made at the servers themselves, based
on fine-grained performance data). On
the other hand, leveraging ML for in-
sights simplifies the managers, making
them easier to understand and debug.
In fact, relying on insights is less likely
to cause negative feedback loops that
could potentially degrade customer
experience. Insights may also inform
multiple managers (for example, con-
tainer scheduler and power manager),

Figure 2. RC architecture comprising offline and online components.

Cosmos

Orchestrator

Data Extraction
Cleanup

Aggregation

Workflow
Trigger

Alerting

Data Validation
Sanity Checks

Publish to
Azure Storage

Azure
Storage

Data/Model
Management

VM
Scheduler

Defragmenter

Power ManagerCache
Mgmt.

ML
Models

Watchdogs

On-Disk
Models

Feature Data
Generation

Training
Cross-Validation

Model Generation

Prediction-serving
system

Clients

Offline Online

Table 2. Behaviors and their buckets.

Behavior Bucket 1 Bucket 2 Bucket 3 Bucket 4

Avg CPU utilization 0–25% 25%–50% 50%–75% 75%–100%

Deployment size 1 >1 and ≤10 >10 and ≤100 >100

Lifetime ≤15 mins >15 and ≤60 mins >1 and ≤24 hs >24 hs

Blackout time ≤0.1 s >0.1 and ≤1 s >1 and ≤3 s >3 s

Table 1. Behavior, ML modeling approaches, model and full feature dataset sizes.

Behavior Approach #features Model size Feature data size

Avg CPU utilization Gradient Boosting Tree 247 414KB 416MB

Deployment size Gradient Boosting Tree 41 351KB 296MB

Lifetime Gradient Boosting Tree 247 438KB 416MB

Blackout time Gradient Boosting Tree 998 290KB 4.5MB

FEBRUARY 2020 | VOL. 63 | NO. 2 | COMMUNICATIONS OF THE ACM 55

contributed articles

rently retrains models once a day.
The online part of RC is a REST

(Representational State Transfer) ser-
vice within which the models execute
to produce predictions. RC’s clients
(for example, the container scheduler)
call the service passing as input the
model name and information about
the container(s) for which they want
predictions, for example, the subscrip-
tion identification. The model may
require historical feature data as ad-
ditional inputs, which RC fetches from
Azure Storage. As an example of fea-
ture data, the lifetime model requires
information on historical lifetimes
(for example, percentage of short-lived
and long-lived containers to date) for
the same subscription from the store.
Each prediction result is a predicted
value and a score. The score reflects
the model’s confidence in the predict-
ed value. The client may choose to ig-
nore a prediction when the score is too
low. It may also ignore (or not wait for)
a prediction if it thinks that RC is mis-
behaving (or unavailable).

RC relies heavily on caching, as cli-
ents may have stringent performance
requirements. It caches the prediction
results, model, and feature data from
the store in memory.

Current ML models. RC acts as a frame-
work for offline training of ML models
and serving predictions from them on-
line; RC is agnostic to the specific mod-
eling approach data analysts select. In
our current implementation, analysts
can select models from a large reposi-
tory that runs on Cosmos. The three left-
most columns of Table 1 list some of the
container behaviors we predict and the
modeling approach we currently use:
Gradient Boosting Trees (GBTs).18 We
are also experimenting with deep neural
networks and plan to start using them in
the next version of RC.

For classifying numeric behaviors,
we divide the space of possible values
into buckets (for example, 0%–24%,
25%–49%, and so on) and then predict a
bucket. (As we will discuss, this approach
has been more accurate for our datasets
than using regression and then buck-
etizing the result.) When the prediction
must be converted to a number, the cli-
ent can assume the highest, middle, or
lowest value for the predicted bucket.

Feature engineering. Each model
takes many features as input, which we

RC uses customer, container, and/
or server features to identify correla-
tions that managers can leverage in
their decision-making. The managers
query RC with a subset of the features,
expecting to receive predictions for the
others. For example, the scheduler may
query RC while providing the customer
name and type, deployment type and
time, and container role name. RC will
then predict how large the deployment
by this customer may become and how
high these containers’ resource utiliza-
tion may get over time.

Architecture. Design rationale. Our
design for RC follows several basic
principles related to the dimensions
we discussed previously and our abil-
ity to operate, maintain, and extend it
at scale:

1.	 Since application-level perfor-
mance data is rarely available, RC
should learn from low-level counters.

2.	 For generality, modularity, and
debuggability, RC should be oblivi-
ous to the management policies and,
instead, provide workload and in-
frastructure behavior predictions. It
should also provide an API that is gen-
eral enough for many managers to use.

3.	 For performance and availability,
RC should be an independent system
that is off the critical performance and
availability paths of the managers that
use it whenever possible.

4.	 Since workload characteristics
and server behaviors change slowly,
RC can learn offline and serve predic-
tions online. For availability, these two
components should be able to operate
independently of each other.

5.	 For maintainability, it should be
simple and rely on any existing well-
supported infrastructures.

6.	 For usability, it should require
minimal modifications to the resource
managers.

Design. Figure 2 illustrates how we
designed RC based on these principles.
The offline workflow consists of data
extraction, cleanup, aggregation, fea-
ture data generation, training, valida-
tion, and ML model generation. RC
does these tasks on Cosmos,7 a massive
data processing system that collects all
the container and server telemetry from
the fabric. RC orchestrates these phas-
es, sanity-checks the models and fea-
ture data, and publishes them to Azure
storage, a highly available store. RC cur-

There are many
potential uses
and designs for
ML in cloud
platforms.

56 COMMUNICATIONS OF THE ACM | FEBRUARY 2020 | VOL. 63 | NO. 2

contributed articles

works predict resource demand, re-
source utilization, or job/task length
for provisioning or scheduling pur-
poses.5,6,8,15,17,19,25 For example, Cao6
recently explored Random Forests to
predict CPU, memory, and disk utili-
zations, whereas Chen8 used Residual
Neural Networks for predicting VM
CPU utilization. We predict a broader
set of behaviors (including container
lifetimes, maximum deployment sizes,
and blackout times) for a broader set
of purposes (including health manage-
ment and power capping). Still, we do
not argue that the models we use are
necessarily the best. Instead, we show
them simply as examples of ML mod-
els that we have integrated into the RC
framework and work well in practice.

Prediction accuracy. A key require-
ment for RC is the ability to predict be-
haviors accurately. Obviously, this ac-
curacy depends on the behavior one is
trying to predict and on the modeling
approach they use. As such, the best we
can do is provide evidence from our ex-
perience with RC that many behaviors
can be predicted accurately.

For our analysis, we use one month
of data about all VMs in Azure. In this
dataset, less than 1% of the VMs are
from “new” subscriptions, that is, sub-
scriptions that appear for the first time
in the set. We trained RC’s models with
the first three weeks and tested them
on the fourth. We provide a similar da-
taset at https://github.com/Azure/Azur-
ePublicDataset.

We divide the space of predictions
for each behavior into the buckets listed
in Table 2. Given these buckets, Figure
3 summarizes the RC prediction results
for each VM-utilization bucket (left)

and the most important predictive attri-
butes (right). Figure 4 shows the overall
accuracy, prediction, and recall results
(three rightmost bars in each group,
respectively) for the VM behaviors in
the tables. We measure accuracy as the
percentage of predictions that were cor-
rect, assuming the predicted bucket is
that with the highest confidence score;
precision for a bucket as the percent-
age of true positives in the set of predic-
tions that named the bucket; and recall
for a bucket as the percentage of true
positives in the set of predictions that
should have named the bucket.

Figure 3 (left) shows recall between
70% and 95% across VM-utilization
buckets. When we average bucket
frequencies and recalls together, we
find that overall VM-utilization recall
is 89%. Figure 3 (right) shows that the
most important attributes in terms of
F1-score are the percentage of VMs of
the same subscription that fell in each
bucket to date. As we discussed in the
RC paper,9 subscriptions show low (<1)
coefficient of variation (CoV = standard
deviation divided by average) for the
behaviors we study. Thus, it is unsur-
prising that prior observations of the
behavior are good indicators. Still, our
results show that other attributes are
also important: service type (the name
of a top first-party subscription or “un-
known” for the others), VM type (for
example, A1, A2), number of cores, VM
class (IaaS vs PaaS), operating system,
and deployment time; their relative im-
portance depends on the metric. VM
role names have little predictive value,
for example, IaaS VMs often have arbi-
trary role names that do not repeat.

Figure 4 illustrates the high accu-

extract from the attributes available in
our dataset. We split the attributes into
three groups: categorical, boolean, and
numerical. We model categorical attri-
butes (for example, container type, guest
operating system) as categorical fea-
tures. We represent the features in a vec-
tor of pre-defined length. We concate-
nate the boolean attribute (for example,
first deployment, production workload)
values to the input feature vector. Simi-
larly, we normalize and concatenate the
numerical attribute (for example, num-
ber of cores, container memory size)
values to the vector. Finally, we place
the attributes that describe observed
container/subscription behavior (for ex-
ample, last observed container lifetime)
into the buckets of Table 2 and use them
as numerical features. We concatenate
these features to the vector as well.

Comparison to other systems and
techniques. As it focuses on produc-
ing predictions, RC fundamentally
differs from action-prescribing sys-
tems, for example, Agarwal et al.,2 and
Moritz et al.22 RC currently produces
its predictions using TLC, a Microsoft-
internal state-of-the-art framework
that implements many learning algo-
rithms. However, RC can also leverage
recently proposed frameworks, such
as TensorFlow,1 for producing its ML
models. RC’s online component is
comparable to recent prediction-serv-
ing systems,10,11,16 though with a dif-
ferent architecture and geared toward
cloud resource management. We are
not aware of any ML and prediction-
serving frameworks/systems like RC in
other real cloud platforms.

The literature on predicting work-
load behaviors is extensive. These

Figure 3. Average CPU utilization recall per bucket (left) and attribute importance (right).

1.0

0.8

0.6

0.4

0.2

0.0
0–25% 25–50%

Prediction Buckets

50–75% 75–100%
0

Subscription – Life to Date – % VMs Bucket 2
Subscription – Life to Date – % VMs Bucket 4
Subscription – Life to Date – % VMs Bucket 1
Subscription – Life to Date – % VMs Bucket 3

VM Type
Service Type

Number of Cores
VM Class

Operating System
Subscription – Last Deployment – % VMs Bucket 4
Subscription – Last Deployment – % VMs Bucket 1
Subscription – Last Deployment – % VMs Bucket 3
Subscription – Last Deployment – % VMs Bucket 2

VM Memory

50 100 150 200 250 300 350 400

R
ec

al
l

FEBRUARY 2020 | VOL. 63 | NO. 2 | COMMUNICATIONS OF THE ACM 57

contributed articles

ployments that are exceptionally large)
throw off the regression models and ul-
timately produce incorrect buckets.

Initial uses and results in resource
management. In its first production in-
stantiation, we have implemented RC’s
online component as a service in each
Azure Compute cluster. A single version
of its offline model-generation com-
ponent runs on Cosmos. The first two
major clients to use RC were the server
defragmenter, which queries RC for
lifetime and blackout time predictions
(and VM metadata); and the container
scheduler, which queries it for life-
time predictions (and metadata). As of
March 2019, RC’s clients are directing
roughly 1.5 billion queries to it daily.
The next major clients we will produc-
tize are the power capping manager,
which will use RC’s workload interac-
tivity predictions; and a new predictive
container rightsizing system, which
will use RC’s utilization predictions to
recommend new container sizes. Sev-
eral other uses of RC are being planned.

Our production results from the
server defragmenter show that, from
October 2018 to March 2019, RC en-
abled many tens of thousands of VM
migrations, enabling more than 200
clusters (that would otherwise have
been considered “full”) to continue
receiving new VMs. Our earlier simu-
lation study considered the use of RC-
produced VM utilization predictions for
safe core oversubscription.9 It showed
that an RC-informed oversubscribing VM

racy of our current GBT models, which
ranges between 74% (lifetime) and 87%
(blackout time). The GBT prediction
quality is even higher when we discard
predictions with low (< 60%) confidence:
precision ranges between 84% (lifetime)
and 90% (average CPU utilization and
blackout time) without substantially
hurting recall, which ranges between
72% (lifetime) and 99% (blackout time).
Again, for all behaviors, the most im-
portant attributes are the percentage of
VMs classified into each bucket to date.

We expect the prediction quality our
current models provide will be enough
for most clients. For example, a VM
scheduler that oversubscribes CPU
cores prevents resource exhaustion as
effectively with RC’s VM utilization pre-
dictions as with an oracle predictor.9

Accuracy by VM group. Interestingly,
accuracy can be higher for the first VM
deployments from new subscriptions
than for deployments from subscrip-
tions we have already seen in the data-
set. For example, for average CPU uti-
lization predictions, these accuracies
are 92% and 81%, respectively. We con-
jecture that this is because users tend
to experiment with their first VMs in
similar ways, so feature data account-
ing for prior subscriptions is predic-
tive of new ones.

We also compare the prediction ac-
curacy for third- and first-party VMs,
and for first-party production and
non-production VMs. The former com-
parison shows that accuracy tends to
be higher for third-party VMs. For ex-
ample, for lifetime, the accuracies for
third-party and first-party VMs are 83%
and 74% respectively, whereas for aver-
age CPU utilization they are 84% and
80% respectively. When comparing
production and non-production first-
party VMs, the results are more mixed.
For lifetime, accuracy is higher for pro-
duction VMs (82% vs. 64%), whereas
the opposite is true for average CPU
utilization (79% vs. 83%). The wide di-
versity of production workloads makes
utilization more difficult to predict,
but at the same time their lifetimes
are less diverse and easier to predict as
production VM tend to live long.

Comparison to other techniques. As
baselines for comparison, we experi-
ment with three techniques: most re-
cent bucket (MRB), most popular bucket
(MPB), and logistic regression (LR). MRB

and MPB are non-ML techniques. MRB
predicts the bucket that was most com-
mon for the VMs in the last deployment
of the same subscription (lifetime and
average CPU utilization), the same buck-
et as the last deployment of the same
subscription (max deployment size), or
the same bucket as the last VM migra-
tion of a similar size (blackout time).
MPB predicts the bucket that has been
most popular since the start of the sub-
scription. LR predicts a bucket based on
a non-linear probability curve computed
using the maximum likelihood method.
We train the LR models with the same
feature vectors we described earlier.
Figure 4 shows that MRB exhibits accu-
racies between 54% and 81%, whereas
MPB stays between 42% and 78%, and
LR in the 62%–80% range. Clearly, these
accuracies are substantially worse than
our GBT results. Compared to MRB
and MPB, GBT relies on many features
instead of a simple heuristic, giving it a
broader context that improves predic-
tions. Compared to LR, GBT performs
better for higher dimensional data. In
addition, GBT combines decision trees
with different parameters to produce
higher quality results.

Comparison to regression into buckets.
We also compare GBTs as classifiers
into buckets with GBTs used for numer-
ical regression and then bucketizing
the results. We find that the former ap-
proach is substantially more accurate.
The reason is that “noise” in the nu-
merical values (for example, few VM de-

Figure 4. Accuracy, precision, and recall for all behaviors.

Three leftmost bars of each behavior represent the accuracy for most recent bucket
(MRB), most popular bucket (MPB), and logistic regression (LR). Two rightmost bars
represent precision and recall with gradient boosting tree (GBT), when predictions
with <60% confidence are excluded.

Accuracy - MPB

Precision* - GBT

Accuracy - LR

Recall* - GBT

Lifetime

Accuracy - MRB

Accuracy - GBT

1.0

0.8

0.6

0.4

0.2

0.0

CPU Avg Deployment
Max #VMs

Blackout

58 COMMUNICATIONS OF THE ACM | FEBRUARY 2020 | VOL. 63 | NO. 2

contributed articles

a first one was implemented as a run-
time library to be linked with clients,
and another as an independent service
(as described). Interestingly, there is still
no consensus on which implementation
is ideal for Azure. Some teams like the
ability to get predictions without leaving
the client’s machine, which the library
approach enables via RC’s caches. Other
teams prefer the standard and higher-
level interface of a service, and do not
want to manage an additional library. Ul-
timately, we expect to build multiple on-
line component implementations that
will consume models and feature data
from the same back-end source.

Open Challenges
and Research Avenues
As should be clear by now, RC is by no
means the only possible approach to ML-
centric platforms. In fact, RC cannot cur-
rently accommodate certain types of ML
integration that can be potentially useful.
Moreover, there are potential additional
areas for ML integration that nobody has
explored yet. Clearly, there is a need for
more research on this topic. The follow-
ing paragraphs identify some research
challenges and avenues going forward.

Broadly using application-level per-
formance data. As mentioned, low-level
counters are an indirect measure of
application performance. For resource
management without performance
loss, extracting high-level information
from applications is key. Today’s extrac-
tion methods require effort from devel-
opers, who do not always have a strong
incentive to provide the data. The chal-
lenge the cloud provider faces is creat-
ing stronger incentives or extraction
methods that are automatic, privacy-
preserving, and non-intrusive.

Using action-prescribing ML while being
general. Increasingly popular ML tech-
niques such as reinforcement and ban-
dit learning prescribe actions. In the re-
source management context, this means
the ML must understand the acceptable
management mechanisms and poli-
cies (these techniques could define the
policies themselves, but this would make
manager debugging very difficult), and
be adjusted for every manager that can
benefit. Moreover, it must be safe/cheap
to explore the space of available actions.
The challenge is creating general designs
for these ML techniques, perhaps via
frameworks/APIs that take mechanism

scheduler can accommodate more VMs,
while producing 6× fewer cases of physi-
cal resource exhaustion than a baseline
oversubscribing scheduler that does not
consider utilization predictions.

Lessons learned. Thinking about ML-
centric cloud platforms and through our
experience with RC, we learned several
important lessons:

Separation of concerns. Keeping pre-
dictions and management policies sepa-
rate has worked well in RC. This separa-
tion is making policies easier to debug
and their results easier to reproduce, as
they are not obscured by complex ML
techniques. In Azure’s current managers,
policies tend to be rule-based and use RC
predictions as rule attributes (for exam-
ple, if expected lifetime is short, then
place container in one of these servers).
The rule-based organization has made it
easier to integrate predictions into exist-
ing managers.

Reach and extensibility. The ML frame-
work must act as a source of intelligence
for many resource managers, not all of
which will be known on day-one. Thus, it
is critical to be able to easily integrate new
data sources, predict/understand more
behaviors, include multiple models for
each behavior and implement versioning
per model, among others. RC’s modular
design has made these extensions easy.

Model updates. We designed RC to
produce models and feature data offline,
and then serve predictions and feature
data online until it produces (in the back-
ground) an updated version of them.
However, one resource manager we have
come across requires models to be up-
dated online, so that each prediction ac-
counts for the effect of the previous one.
As this scenario seems to be rare, we opt-
ed for RC’s more general design.

Performance. Many of the managers
do not require extremely fast predictions.
For example, the server defragmenter can
easily deal with slow predictions. How-
ever, other managers require substan-
tially higher performance. For example,
the entire time budget for the container
scheduler is less than 100 milliseconds.
In these scenarios, prediction result,
model, and feature data caching can be
critical in prediction-serving, especially
if models are large and complex. Caching
also helps maintain operation even when
the data store is unavailable.

Integration with clients. We explored
two versions of RC’s online component:

RC is by no means
the only possible
approach to ML-
centric platforms.
In fact, RC
cannot currently
accommodate
certain types of
ML integration that
can be potentially
useful.

FEBRUARY 2020 | VOL. 63 | NO. 2 | COMMUNICATIONS OF THE ACM 59

contributed articles

15.	 Gong, Z., Gu, X., and Wilkes, J. Press: Predictive elastic
resource scaling for cloud systems. In Proceedings of the
Intern. Conf. Network and Service Management (2010).

16.	 Google. TensorFlow serving; http://tensorflow.github.
io/serving/.

17.	 Islam, S., Keung, J., Lee, K., and Liu, A. Empirical
prediction models for adaptive resource provisioning
in the cloud. Future Generation Computer Systems
28, 1 (2012).

18.	 Ke, G. et al. LightGBM: A highly efficient gradient
boosting decision tree. Advances in Neural
Information Processing Systems 30 (2017).

19.	 Khan, A., Yan, X., Tao, S., and Anerousis, N. Workload
characterization and prediction in the cloud: A multiple
time series approach. In Proceedings of the Intern.
Conf. Network and Service Management (2012).

20.	 Mao, H., Alizadeh, M., Menache, I., and Kandula, S.
Resource management with deep reinforcement
learning. In Proceedings of the 15th ACM Workshop on
Hot Topics in Networks (2016).

21.	 Microsoft Azure. Azure Monitor; https://azure.
microsoft.com/en-us/services/monitor/.

22.	 Moritz, P. et al. Ray: A distributed framework for
emerging AI applications. In Proceedings of the
13th USENIX Symp. Operating Systems Design and
Implementation (2018).

23.	 Novakovic, D., Vasic, N., Novakovic, S., Kostic, D., and
Bianchini, R. DeepDive: Transparently identifying and
managing performance interference in virtualized
environments. In Proceedings of the USENIX Annual
Technical Conf. (2013).

24.	 Rao, J., Bu, X., Xu, C.-Z., Wang, L., and Yin, G. VCONF:
A reinforcement learning approach to virtual machine
auto-configuration. In Proceedings of the 6th Intern.
Conf. Autonomic Computing (2009).

25.	 Roy, N., Dubey, A., and Gokhale, A. Efficient
autoscaling in the cloud using predictive models for
workload forecasting. In Proceedings of the Intern.
Conf. on Cloud Computing (2011).

26.	 Yadwadkar, N.J. Machine learning for automatic
resource management in the datacenter and the cloud.
Ph.D. thesis, UC Berkeley, 2018.

27.	 Zhang, Y., Prekas, G., Fumarola, G. M., Fontoura, M.,
Goiri, I., and Bianchini, R. History-Based harvesting of
spare cycles and storage in large-scale datacenters.
In Proceedings of the Intern. Symp. Operating
Systems Design and Implementation (2016).

28.	 Zheng, W., Nguyen, T.D., and Bianchini, R. Automatic
configuration of Internet services. In Proceedings of
the 2nd European Conf. Computer systems (2007).

Ricardo Bianchini is a Distinguished Engineer at
Microsoft Research, Redmond, WA, USA.

Marcus Fontoura is a Technical Fellow at Microsoft
Research, Redmond, WA, USA.

Eli Cortez is a Principal Engineer at Microsoft Research,
Redmond, WA, USA.

Anand Bonde is a senior engineer at Microsoft Research,
Redmond, WA, USA.

Alexandre Muzio is a software engineer Microsoft Azure,
edmond, WA, USA.

Ana-Maria Constantin is a software engineer Microsoft
Azure, Redmond, WA, USA.

Thomas Moscibroda is a partner research scientist at
Microsoft Azure, Redmond, WA, USA.

Gabriel Magalhaes is a Ph.D. student at the University of
Washington, and was an intern at Mucrosoft Azure during
this work.

Girish Bablani is corporate vice president of Microsoft
Azure, Redmond, WA, USA.

Mark Russinovich is a Technical Fellow and CTP at
Microsoft Azure, Redmond, WA, USA.

© 2020 ACM 0001-0782/20/2

and policy descriptions as inputs, so that
they are easier to adopt.

Quick feedback at scale. When operat-
ing at scale, it is difficult to observe the
result of predictions or management ac-
tions within a short time. For example,
scheduling a large group of containers
may impact the resource utilization and
performance interference at many serv-
ers. Worse, other containers are constantly
starting and finishing on these same serv-
ers. In this context, obtaining feedback
from all the servers and isolating the im-
pact of each prediction/action is extremely
difficult. The problem is even harder when
the feedback will only be available at an
undetermined future time. For example,
a container lifetime prediction can only
be verified when the container finishes,
which may take a long time. Thus, when
quick feedback is needed, the challenges
become determining when it is available,
and accurately deriving it from the mas-
sive amount of collected data.

Debuggability. The cloud provider
must be prepared for scenarios where
an ML technique (and the managers
that use it) suddenly starts to misbe-
have, producing poor predictions or
actions. In these cases, regenerating
models with more recent data may not
be enough to fix the problem, because
model features may have changed se-
mantics or been eliminated altogether.
Debugging misbehaviors is difficult for
certain ML techniques, for example,
neural networks, especially when they
are tightly integrated with the manager.
More research is needed on making de-
bugging easier, if such techniques are
to be used broadly in public clouds.

Other aspects of cloud platforms. Fi-
nally, our focus has been using ML in re-
source management for high efficiency
and performance. However, ML can also
benefit network traffic, availability, reli-
ability, security, configuration manage-
ment.4,13,28 An open question is whether
the ideas, designs, and trade-offs we
discussed also apply to these other ar-
eas. In our future work, we will explore
how to extend RC for these types man-
agement in a real platform.

Conclusion
Public cloud providers invest billions
of dollars into their software and hard-
ware infrastructures. Maximizing the
use of these expensive resources, while
maintaining excellent performance and

availability, is critical for profitability
and competitiveness. Infusing ML into
cloud platforms has the potential to
achieve these goals. In fact, we envision
many opportunities and designs for
bringing ML into cloud resource man-
agement. Taking advantage of some
of these opportunities, we have been
transforming the Azure Compute fabric
to leverage predictions of container and
server behaviors. This transformation
has relied on Resource Central, our
general ML and prediction-serving
framework and system. Our initial ex-
perience shows that one can produce
simple yet accurate ML models for
many behaviors and enable resource
managers to make smarter decisions.
However, more research is needed on
this topic, so we have made traces of
the Azure Compute workload available
for researchers to use at https://github.
com/Azure/AzurePublicDataset.	

References
1.	 Abadi, M. et al. TensorFlow: A system for large-

scale machine learning. In Proceedings of the
12th USENIX Symp. Operating System Design and
Implementation (2016).

2.	 Agarwal, A. et al. Making contextual decisions with low
technical debt. arXiv preprint arXiv:1606.03966 (2016).

3.	 Amazon Web Services. Amazon CloudWatch; https://
aws.amazon.com/cloudwatch/.

4.	 Bodik, P., Griffith, R., Sutton, C., Fox, A., Jordan, M.,
and Patterson, D. Statistical machine learning makes
automatic control practical for Internet datacenters.
In Proceedings of HotCloud (2009).

5.	 Calheiros, R. N., Masoumi, E., Ranjan, R., and Buyya,
R. Workload prediction using ARIMA model and its
impact on cloud applications’ QoS. IEEE Trans. Cloud
Computing 3, 4 (2015).

6.	 Cao, R., Yu, Z., Marbach, T., Li, J., Wang, G., and Liu, X.
Load prediction for data centers based on database
service. In Proceedings of the 42nd Annual Computer
Software and Applications Conf. (2018).

7.	 Chaiken, R., Jenkins, B., Larson, P., Ramsey, B., Shakib, D.,
Weaver, S., and Zhou, J. SCOPE: Easy and efficient parallel
processing of massive data sets. In Proceedings of the
34th Intern. Conf. Very Large Data Bases (2008).

8.	 Chen, S., Shen, Y., and Zhu, Y. Modeling conceptual
characteristics of virtual machines for CPU utilization
prediction. In Proceedings of the Intern. Conf.
Conceptual Modeling (2018).

9.	 Cortez, E., Bonde, A., Muzio, A., Russinovich, M.,
Fontoura, M., and Bianchini, R. Resource central:
Understanding and predicting workloads for improved
resource management in large cloud platforms. In
Proceedings of the Intern. Symp Operating Systems
Principles (2017).

10.	 Crankshaw, D. et al. The missing piece in complex
analytics: Low latency, scalable model management
and serving with Velox. In Proceedings of the 7th Biennial
Conf. Innovative Data Systems Research (2015).

11.	 Crankshaw, D.,Wang, X., Zhou, G., Franklin, M. J.,
Gonzalez, J. E., and Stoica, I. Clipper: A low-latency
online prediction serving system. In Proceedings
of the 14th Symp. Networked Systems Design and
Implementation (2017).

12.	 Delimitrou, C. and Kozyrakis, C. Paragon: QoS-aware
scheduling for heterogeneous datacenters. In
Proceedings of the 18th Intern. Conf. Architectural
Support for Programming Languages and Operating
Systems (2013).

13.	 Fox, A., Kiciman, E., and Patterson, D. Combining
statistical monitoring and predictable recovery for
self-management. In Proceedings of the 1st Workshop
on Self-Managed Systems (2004).

14.	 Gao, J. Machine Learning Applications For Datacenter
Optimization, 2014.

Watch the authors discuss
this work in the exclusive
Communications video.
https://cacm.acm.org/videos/
ml-centric-cloud-platforms

