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resource management using super-
vised learning techniques, such as 
gradient-boosted trees and neural net-
works, or reinforcement learning. We 
also discuss why ML is often preferable 
to traditional non-ML techniques.

Public cloud providers are starting 
to explore ML-based resource manage-
ment in production.9,14 For example, 
Google uses neural networks to op-
timize fan speeds and other energy 
knobs.14 In academia, researchers have 
proposed using collaborative filtering—
a common technique in recommender 
systems—in scheduling containers for 
reduced with in-server performance 
interference.12 Others proposed using 
reinforcement learning to adjust the re-
sources allocated to co-located VMs.24 
Later, we discuss other opportunities 
for ML-based management.

Despite these prior efforts and op-
portunities, it is currently unclear 
how best to integrate ML into cloud 
resource management. In fact, prior 
approaches differ in multiple dimen-
sions. For example, in some cases, 
the ML technique produces insights/
predictions about the workload or in-
frastructure; in others, it produces ac-
tual resource management actions. In 
some cases, the ML is deeply integrated 
with the resource manager; in others, it 
is completely separate. In all cases, the 
ML addresses a single management 
problem; a different problem requires 

CLOUD PLATFORMS, SUCH as Microsoft Azure, Amazon 
Web Services (AWS), and Google Cloud Platform, 
are tremendously complex. For example, the Azure 
Compute fabric governs all the physical and virtualized 
resources running in Microsoft’s datacenters. Its 
main resource management systems include virtual 
machine (VM) and container (hereafter we refer 
to VMs and containers simply as “containers”) 
scheduling, server and container health monitoring 
and repairs, power and energy management, and other 
management functions.

Cloud platforms are also extremely expensive to 
build and operate, so providers have a strong incentive 
to optimize their use. A nascent approach is to 
leverage machine learning (ML) in the platforms’ 
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 key insights
˽˽ There are many potential uses of ML in 

cloud computing platforms. The challenge 
is in defining exactly how and where ML 
should be infused in these platforms.

˽˽ Leveraging ML-derived predictions 
has shown promise for many resource 
managers in Azure Compute. Having a 
general and independent ML framework/
system has been key to increasing 
adoption quickly.

˽˽ Many research challenges remain 
open, including how to make action-
prescribing ML general enough for wide 
applicability in cloud platforms, how to 
manage (potentially partial) feedback at 
scale, and how to debug misbehaviors 
(especially when the ML is tightly 
integrated with resource managers).
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ference enables the scheduler to select 
placements that do not require migra-
tions.12 In the Resource Central section, 
we mention our earlier results on the 
benefit of predictive container schedul-
ing. In fact, non-predictive policies (for 
example, based on feedback control) 
are not even acceptable in some cases. 
For instance, blindly live migrating 
containers that will incur long blackout 
times is certain to annoy customers.

ML has been shown to produce more 
accurate predictions for cloud resource 
management than more traditional 
methods, such as regressions or time-
series analysis. For example, Cao6 and 
Chen8 demonstrate that ML techniques 
produce more accurate resource uti-
lization predictions than time-series 
models. Our results quantitatively com-
pare some ML and non-ML methods.

Opportunities for ML  
in Cloud Platforms
Cloud platforms involve a variety of 
resource managers, such as the con-
tainer scheduler and the server health 
management system. Here, we discuss 
some of the ways in which managers 
can benefit from ML.

Container scheduler. The scheduler 
selects the server on which a contain-
er will run. It can use ML to identify 
(and avoid) container placements that 
would lead to performance interfer-
ence, or to adjust its configuration pa-
rameters (for example, how tightly to 
pack containers on each server). It can 
also use ML-derived predictions of the 
containers’ resource utilizations to bal-
ance the disk access load, or to reduce 
the likelihood of physical resource ex-
haustion in oversubscribed servers. 
Predictions of server health are also 
useful for it to stop assigning contain-
ers to servers that are likely to fail soon. 
Finally, it can use predictions of con-
tainer lifetime when considering serv-
ers that will undergo planned main-
tenance or software updates. We have 
used lifetime predictions to match 
batch workloads to latency-sensitive 
services with enough idle capacity for 
the container.27

Server defragmenter/migration man-
ager. As containers arrive/complete, 
each server may be left with available 
resources that are insufficient for large 
containers. As a result, the server de-
fragmentation system may decide to 

another approach. We discuss these 
dimensions, the possible integration 
designs, and their architectural, func-
tional, and API implications.

As one point in this multi-dimen-
sional space, we built Resource Central 
(RC)9—a general ML and prediction-
serving system for providing workload 
and infrastructure insights to resource 
managers in the Azure Compute fabric. 
RC collects telemetry from containers 
and servers, learns from their prior be-
haviors and, when requested, produces 
predictions of their future behaviors. 
We are currently using RC to accurately 
predict many characteristics of the 
Azure Compute workload. We present 
an overview RC, its initial uses and re-
sults, and describe the lessons from 
building it.

Though RC has been successful so 
far, it has limitations. For example, it 
does not implement certain forms of in-
teraction with resource managers. More 
broadly, the integration of ML into real 
cloud platforms in a general, maintain-
able, and at-scale manner is still in its 
infancy. We close the article with some 
open questions and challenges.

ML vs. Traditional Techniques
Resource management in cloud plat-
forms is often implemented by static 
policies that have two shortcomings. 
First, they are tuned offline based 
on relatively few benchmark work-
loads. For example, threshold-based 
policies typically involve hand-tuned 
thresholds that must be used for wide-
ly different workloads. In contrast, 
ML-informed dynamic policies can 
naturally adapt to actual production 
workloads.20,26 For the same example, 
each server can learn different thresh-
olds for its own resource management.

Second, the static policies tend to 
require reactive actions, and may incur 
unnecessary overheads and customer 
impact. As an example, consider a com-
mon policy for scheduling containers 
onto servers, such as best fit. It may 
cause some co-located containers to 
interfere in their use of resources (for 
example, shared cache space) and re-
quire (reactive) live migrations.23 Live 
migration is expensive and may cause 
a period of unavailability (aka “black-
out” time). In contrast, ML techniques 
enable predictive management: having 
accurate predictions of container inter-

Cloud platforms 
are extremely 
expensive to build 
and operate, so 
providers have a 
strong incentive to 
optimize their use.



FEBRUARY 2020  |   VOL.  63  |   NO.  2  |   COMMUNICATIONS OF THE ACM     53

contributed articles

their codes with monitoring calls into 
the platform (for example, using AWS’s 
CloudWatch3 or Azure’s Monitor21). 
When they do not, lower-level counters 
(for example, resource utilization, CPU 
performance counters) must be used 
as an imperfect proxy for application 
performance. Given that most work-
loads are not instrumented, we expect 
that ML techniques will most often use 
counters. Nevertheless, providers also 
run first-party workloads, which can 
potentially be instrumented.

Predictions vs. actions. Another di-
mension concerns the role of the ML 
techniques. One approach is for them 
to produce insights (for example, per-
formance, load, container lifetime pre-
dictions) that managers can leverage to 
improve decisions as in Figure 1 (top). 
This approach gives managers sole 
control and understanding of the man-
agement policies. Another approach is 
for the ML to produce actual manage-
ment actions (for example, migrate this 
container, change this resource alloca-
tion) to be taken by managers. In this 
case, the ML embodies a deeper under-
standing of the policies (or may itself 
define the policies). Targeting the ML 
at producing actions may lead to poli-
cies that more easily adapt to the actual 

live-migrate active containers onto a 
subset of the servers. A migration man-
ager can also live-migrate (for example, 
low-priority) containers to alleviate any 
unexpected server resource contention 
or interference. It can use application-
level performance information (when 
it is available) or ML techniques on 
lower-level performance counters to 
identify these behaviors. The manager 
can use predictions of the containers’ 
expected lifetimes and blackout times 
to live-migrate only those that will 
likely remain active for a substantial 
amount of time and not incur a notice-
able blackout time if migrated.

Power capping manager. This man-
ager ensures the capacity of the (over-
subscribed) power delivery system is 
not exceeded, using CPU speed scal-
ing. To tackle a power emergency (the 
power draw is about to exceed a circuit 
breaker limit), this manager can use 
predictions of the performance impact 
of speed scaling on different workloads 
to guide its apportioning of the avail-
able power budget. Similarly, it can use 
predictions of workload interactivity as 
a guide. Ideally, containers executing 
interactive or highly sensitive work-
loads should receive all the power they 
want, to the detriment of containers 
running batch and background tasks. 
In this context, the container scheduler 
can use predictions of interactivity to 
smartly schedule interactive and delay-
insensitive workloads across servers.

Server health manager. This manager 
monitors hardware health and takes 
faulty servers out of rotation for main-
tenance. When a server starts to misbe-
have, this manager can use predictions 
of the lifetime of the containers run-
ning on the server. Using these predic-
tions, it can determine when mainte-
nance can be scheduled, and whether 
containers need to be live-migrated to 
prevent unavailability.

This is only a partial list of opportu-
nities for ML-based resource manage-
ment. The challenge is determining 
the best system designs for exploiting 
these opportunities.

Potential Designs  
for ML-Centric Clouds
When deciding how to exploit ML 
in cloud resource management, we 
must consider: The ML techniques 
and their inputs and outputs, and 

the managers and their mechanisms 
(management actions) and policies. 
We must also consider many ques-
tions: Can we use application-level 
performance data for learning? How 
should the ML and the managers in-
teract? Should the ML produce behav-
ioral insights/predictions or actual 
management actions? How tightly 
integrated with the managers should 
the ML be? How quickly does the ML 
need to observe the effect of the man-
agement actions? Is it possible to 
create general frameworks/APIs that 
can apply to many types of resource 
management? Next, we discuss our 
thoughts along these dimensions.

Application performance vs. counters. 
Managers must optimize resource us-
age without noticeably hurting end-to-
end application performance. Thus, 
having direct data on application per-
formance enables precise manage-
ment with or without ML. Some appli-
cation metrics are easier to obtain than 
others. For example, VM lifetimes are 
“visible” to the platform, whereas re-
quest latencies within VMs implement-
ing a service often are not. When con-
tainers are opaque to the platform, the 
way to obtain application performance 
data is for developers to instrument 

Figure 1. Two designs.
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whereas actions are manager-specific.
Integration vs. separation. Related 

to the dimension here is the question 
of whether the ML should be fully in-
tegrated or completely separate from 
managers. When the ML outputs ac-
tions, the fully integrated design is a 
natural one, as in Figure 1 (bottom). 
For insights, both integration and 
separation are viable options. How-
ever, for generality and maintainabil-
ity, cleanly separating the ML and the 
managers via well-defined APIs is ben-
eficial: multiple managers can use the 
same ML implementation, which the 
platform can maintain independently 
of the managers.

Immediate vs. delayed feedback. A 
final dimension is whether the ML is 

able to observe the result of its previous 
outputs or the manager actions within 
a short time. Designs that produce ML 
models offline will likely observe these 
effects only at a coarse time granularity 
(for example, daily). Such granularity is 
a good match when the input feature 
characteristics also change slowly. How-
ever, techniques such as reinforcement 
learning and bandit learning often 
benefit from actions being observable 
much sooner. For such techniques, of-
fline model-learning may not be ideal.

Resource Central
RC is one point in this multidimen-
sional space. We built it as a general ML 
and prediction-serving system into the 
Azure Compute fabric. RC9 learns from 
low-level counters from all containers 
and servers, produces various behavior-
al models offline, and provides predic-
tions online to multiple managers via a 
simple REST API.

RC leverages a wealth of historical 
data to produce accurate predictions. 
For example, from the perspective of 
each Azure subscription, many con-
tainers exhibit peak CPU utilizations 
in consistent ranges across executions; 
containers that execute user-facing 
workloads consistently do so across 
executions; tenant deployment sizes 
are unlikely to vary widely across ex-
ecutions, and so on.9 In all these cases, 
prior behavior is a good predictor for 
future behavior.

workload and infrastructure behaviors, 
whereas leaving this responsibility to 
managers may produce policies that 
are unnecessarily general. Producing 
actions may also be the only alterna-
tive when it is impractical to collect la-
beled training data (for example, when 
fast management decisions must be 
made at the servers themselves, based 
on fine-grained performance data). On 
the other hand, leveraging ML for in-
sights simplifies the managers, making 
them easier to understand and debug. 
In fact, relying on insights is less likely 
to cause negative feedback loops that 
could potentially degrade customer 
experience. Insights may also inform 
multiple managers (for example, con-
tainer scheduler and power manager), 

Figure 2. RC architecture comprising offline and online components.
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Table 2. Behaviors and their buckets.

Behavior Bucket 1 Bucket 2 Bucket 3 Bucket 4

Avg CPU utilization 0–25% 25%–50% 50%–75%  75%–100%

Deployment size 1 >1 and ≤10 >10 and ≤100 >100

Lifetime ≤15 mins >15 and ≤60 mins >1 and ≤24 hs >24 hs

Blackout time ≤0.1 s >0.1 and ≤1 s >1 and ≤3 s >3 s

Table 1. Behavior, ML modeling approaches, model and full feature dataset sizes.

Behavior Approach #features Model size Feature data size

Avg CPU utilization Gradient Boosting Tree 247 414KB 416MB

Deployment size Gradient Boosting Tree 41 351KB 296MB

Lifetime Gradient Boosting Tree 247 438KB 416MB

Blackout time Gradient Boosting Tree 998 290KB 4.5MB



FEBRUARY 2020  |   VOL.  63  |   NO.  2  |   COMMUNICATIONS OF THE ACM     55

contributed articles

rently retrains models once a day.
The online part of RC is a REST 

(Representational State Transfer) ser-
vice within which the models execute 
to produce predictions. RC’s clients 
(for example, the container scheduler) 
call the service passing as input the 
model name and information about 
the container(s) for which they want 
predictions, for example, the subscrip-
tion identification. The model may 
require historical feature data as ad-
ditional inputs, which RC fetches from 
Azure Storage. As an example of fea-
ture data, the lifetime model requires 
information on historical lifetimes 
(for example, percentage of short-lived 
and long-lived containers to date) for 
the same subscription from the store. 
Each prediction result is a predicted 
value and a score. The score reflects 
the model’s confidence in the predict-
ed value. The client may choose to ig-
nore a prediction when the score is too 
low. It may also ignore (or not wait for) 
a prediction if it thinks that RC is mis-
behaving (or unavailable).

RC relies heavily on caching, as cli-
ents may have stringent performance 
requirements. It caches the prediction 
results, model, and feature data from 
the store in memory.

Current ML models. RC acts as a frame-
work for offline training of ML models 
and serving predictions from them on-
line; RC is agnostic to the specific mod-
eling approach data analysts select. In 
our current implementation, analysts 
can select models from a large reposi-
tory that runs on Cosmos. The three left-
most columns of Table 1 list some of the 
container behaviors we predict and the 
modeling approach we currently use: 
Gradient Boosting Trees (GBTs).18 We 
are also experimenting with deep neural 
networks and plan to start using them in 
the next version of RC.

For classifying numeric behaviors, 
we divide the space of possible values 
into buckets (for example, 0%–24%, 
25%–49%, and so on) and then predict a 
bucket. (As we will discuss, this approach 
has been more accurate for our datasets 
than using regression and then buck-
etizing the result.) When the prediction 
must be converted to a number, the cli-
ent can assume the highest, middle, or 
lowest value for the predicted bucket.

Feature engineering. Each model 
takes many features as input, which we 

RC uses customer, container, and/
or server features to identify correla-
tions that managers can leverage in 
their decision-making. The managers 
query RC with a subset of the features, 
expecting to receive predictions for the 
others. For example, the scheduler may 
query RC while providing the customer 
name and type, deployment type and 
time, and container role name. RC will 
then predict how large the deployment 
by this customer may become and how 
high these containers’ resource utiliza-
tion may get over time.

Architecture. Design rationale. Our 
design for RC follows several basic 
principles related to the dimensions 
we discussed previously and our abil-
ity to operate, maintain, and extend it 
at scale:

1.	 Since application-level perfor-
mance data is rarely available, RC 
should learn from low-level counters.

2.	 For generality, modularity, and 
debuggability, RC should be oblivi-
ous to the management policies and, 
instead, provide workload and in-
frastructure behavior predictions. It 
should also provide an API that is gen-
eral enough for many managers to use.

3.	 For performance and availability, 
RC should be an independent system 
that is off the critical performance and 
availability paths of the managers that 
use it whenever possible.

4.	 Since workload characteristics 
and server behaviors change slowly, 
RC can learn offline and serve predic-
tions online. For availability, these two 
components should be able to operate 
independently of each other.

5.	  For maintainability, it should be 
simple and rely on any existing well-
supported infrastructures.

6.	 For usability, it should require 
minimal modifications to the resource 
managers.

Design. Figure 2 illustrates how we 
designed RC based on these principles. 
The offline workflow consists of data 
extraction, cleanup, aggregation, fea-
ture data generation, training, valida-
tion, and ML model generation. RC 
does these tasks on Cosmos,7 a massive 
data processing system that collects all 
the container and server telemetry from 
the fabric. RC orchestrates these phas-
es, sanity-checks the models and fea-
ture data, and publishes them to Azure 
storage, a highly available store. RC cur-

There are many 
potential uses  
and designs for  
ML in cloud 
platforms.
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works predict resource demand, re-
source utilization, or job/task length 
for provisioning or scheduling pur-
poses.5,6,8,15,17,19,25 For example, Cao6 
recently explored Random Forests to 
predict CPU, memory, and disk utili-
zations, whereas Chen8 used Residual 
Neural Networks for predicting VM 
CPU utilization. We predict a broader 
set of behaviors (including container 
lifetimes, maximum deployment sizes, 
and blackout times) for a broader set 
of purposes (including health manage-
ment and power capping). Still, we do 
not argue that the models we use are 
necessarily the best. Instead, we show 
them simply as examples of ML mod-
els that we have integrated into the RC 
framework and work well in practice.

Prediction accuracy. A key require-
ment for RC is the ability to predict be-
haviors accurately. Obviously, this ac-
curacy depends on the behavior one is 
trying to predict and on the modeling 
approach they use. As such, the best we 
can do is provide evidence from our ex-
perience with RC that many behaviors 
can be predicted accurately.

For our analysis, we use one month 
of data about all VMs in Azure. In this 
dataset, less than 1% of the VMs are 
from “new” subscriptions, that is, sub-
scriptions that appear for the first time 
in the set. We trained RC’s models with 
the first three weeks and tested them 
on the fourth. We provide a similar da-
taset at https://github.com/Azure/Azur-
ePublicDataset.

We divide the space of predictions 
for each behavior into the buckets listed 
in Table 2. Given these buckets, Figure 
3 summarizes the RC prediction results 
for each VM-utilization bucket (left) 

and the most important predictive attri-
butes (right). Figure 4 shows the overall 
accuracy, prediction, and recall results 
(three rightmost bars in each group, 
respectively) for the VM behaviors in 
the tables. We measure accuracy as the 
percentage of predictions that were cor-
rect, assuming the predicted bucket is 
that with the highest confidence score; 
precision for a bucket as the percent-
age of true positives in the set of predic-
tions that named the bucket; and recall 
for a bucket as the percentage of true 
positives in the set of predictions that 
should have named the bucket.

Figure 3 (left) shows recall between 
70% and 95% across VM-utilization 
buckets. When we average bucket 
frequencies and recalls together, we 
find that overall VM-utilization recall 
is 89%. Figure 3 (right) shows that the 
most important attributes in terms of 
F1-score are the percentage of VMs of 
the same subscription that fell in each 
bucket to date. As we discussed in the 
RC paper,9 subscriptions show low (<1) 
coefficient of variation (CoV = standard 
deviation divided by average) for the 
behaviors we study. Thus, it is unsur-
prising that prior observations of the 
behavior are good indicators. Still, our 
results show that other attributes are 
also important: service type (the name 
of a top first-party subscription or “un-
known” for the others), VM type (for 
example, A1, A2), number of cores, VM 
class (IaaS vs PaaS), operating system, 
and deployment time; their relative im-
portance depends on the metric. VM 
role names have little predictive value, 
for example, IaaS VMs often have arbi-
trary role names that do not repeat.

Figure 4 illustrates the high accu-

extract from the attributes available in 
our dataset. We split the attributes into 
three groups: categorical, boolean, and 
numerical. We model categorical attri-
butes (for example, container type, guest 
operating system) as categorical fea-
tures. We represent the features in a vec-
tor of pre-defined length. We concate-
nate the boolean attribute (for example, 
first deployment, production workload) 
values to the input feature vector. Simi-
larly, we normalize and concatenate the 
numerical attribute (for example, num-
ber of cores, container memory size) 
values to the vector. Finally, we place 
the attributes that describe observed 
container/subscription behavior (for ex-
ample, last observed container lifetime) 
into the buckets of Table 2 and use them 
as numerical features. We concatenate 
these features to the vector as well.

Comparison to other systems and 
techniques. As it focuses on produc-
ing predictions, RC fundamentally 
differs from action-prescribing sys-
tems, for example, Agarwal et al.,2 and 
Moritz et al.22 RC currently produces 
its predictions using TLC, a Microsoft-
internal state-of-the-art framework 
that implements many learning algo-
rithms. However, RC can also leverage 
recently proposed frameworks, such 
as TensorFlow,1 for producing its ML 
models. RC’s online component is 
comparable to recent prediction-serv-
ing systems,10,11,16 though with a dif-
ferent architecture and geared toward 
cloud resource management. We are 
not aware of any ML and prediction-
serving frameworks/systems like RC in 
other real cloud platforms.

The literature on predicting work-
load behaviors is extensive. These 

Figure 3. Average CPU utilization recall per bucket (left) and attribute importance (right).
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ployments that are exceptionally large) 
throw off the regression models and ul-
timately produce incorrect buckets.

Initial uses and results in resource 
management. In its first production in-
stantiation, we have implemented RC’s 
online component as a service in each 
Azure Compute cluster. A single version 
of its offline model-generation com-
ponent runs on Cosmos. The first two 
major clients to use RC were the server 
defragmenter, which queries RC for 
lifetime and blackout time predictions 
(and VM metadata); and the container 
scheduler, which queries it for life-
time predictions (and metadata). As of 
March 2019, RC’s clients are directing 
roughly 1.5 billion queries to it daily. 
The next major clients we will produc-
tize are the power capping manager, 
which will use RC’s workload interac-
tivity predictions; and a new predictive 
container rightsizing system, which 
will use RC’s utilization predictions to 
recommend new container sizes. Sev-
eral other uses of RC are being planned.

Our production results from the 
server defragmenter show that, from 
October 2018 to March 2019, RC en-
abled many tens of thousands of VM 
migrations, enabling more than 200 
clusters (that would otherwise have 
been considered “full”) to continue 
receiving new VMs. Our earlier simu-
lation study considered the use of RC-
produced VM utilization predictions for 
safe core oversubscription.9 It showed 
that an RC-informed oversubscribing VM 

racy of our current GBT models, which 
ranges between 74% (lifetime) and 87% 
(blackout time). The GBT prediction 
quality is even higher when we discard 
predictions with low (< 60%) confidence: 
precision ranges between 84% (lifetime) 
and 90% (average CPU utilization and 
blackout time) without substantially 
hurting recall, which ranges between 
72% (lifetime) and 99% (blackout time). 
Again, for all behaviors, the most im-
portant attributes are the percentage of 
VMs classified into each bucket to date.

We expect the prediction quality our 
current models provide will be enough 
for most clients. For example, a VM 
scheduler that oversubscribes CPU 
cores prevents resource exhaustion as 
effectively with RC’s VM utilization pre-
dictions as with an oracle predictor.9

Accuracy by VM group. Interestingly, 
accuracy can be higher for the first VM 
deployments from new subscriptions 
than for deployments from subscrip-
tions we have already seen in the data-
set. For example, for average CPU uti-
lization predictions, these accuracies 
are 92% and 81%, respectively. We con-
jecture that this is because users tend 
to experiment with their first VMs in 
similar ways, so feature data account-
ing for prior subscriptions is predic-
tive of new ones.

We also compare the prediction ac-
curacy for third- and first-party VMs, 
and for first-party production and 
non-production VMs. The former com-
parison shows that accuracy tends to 
be higher for third-party VMs. For ex-
ample, for lifetime, the accuracies for 
third-party and first-party VMs are 83% 
and 74% respectively, whereas for aver-
age CPU utilization they are 84% and 
80% respectively. When comparing 
production and non-production first-
party VMs, the results are more mixed. 
For lifetime, accuracy is higher for pro-
duction VMs (82% vs. 64%), whereas 
the opposite is true for average CPU 
utilization (79% vs. 83%). The wide di-
versity of production workloads makes 
utilization more difficult to predict, 
but at the same time their lifetimes 
are less diverse and easier to predict as 
production VM tend to live long.

Comparison to other techniques. As 
baselines for comparison, we experi-
ment with three techniques: most re-
cent bucket (MRB), most popular bucket 
(MPB), and logistic regression (LR). MRB 

and MPB are non-ML techniques. MRB 
predicts the bucket that was most com-
mon for the VMs in the last deployment 
of the same subscription (lifetime and 
average CPU utilization), the same buck-
et as the last deployment of the same 
subscription (max deployment size), or 
the same bucket as the last VM migra-
tion of a similar size (blackout time). 
MPB predicts the bucket that has been 
most popular since the start of the sub-
scription. LR predicts a bucket based on 
a non-linear probability curve computed 
using the maximum likelihood method. 
We train the LR models with the same 
feature vectors we described earlier. 
Figure 4 shows that MRB exhibits accu-
racies between 54% and 81%, whereas 
MPB stays between 42% and 78%, and 
LR in the 62%–80% range. Clearly, these 
accuracies are substantially worse than 
our GBT results. Compared to MRB 
and MPB, GBT relies on many features 
instead of a simple heuristic, giving it a 
broader context that improves predic-
tions. Compared to LR, GBT performs 
better for higher dimensional data. In 
addition, GBT combines decision trees 
with different parameters to produce 
higher quality results.

Comparison to regression into buckets. 
We also compare GBTs as classifiers 
into buckets with GBTs used for numer-
ical regression and then bucketizing 
the results. We find that the former ap-
proach is substantially more accurate. 
The reason is that “noise” in the nu-
merical values (for example, few VM de-

Figure 4. Accuracy, precision, and recall for all behaviors.

Three leftmost bars of each behavior represent the accuracy for most recent bucket 
(MRB), most popular bucket (MPB), and logistic regression (LR). Two rightmost bars 
represent precision and recall with gradient boosting tree (GBT), when predictions 
with <60% confidence are excluded.
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a first one was implemented as a run-
time library to be linked with clients, 
and another as an independent service 
(as described). Interestingly, there is still 
no consensus on which implementation 
is ideal for Azure. Some teams like the 
ability to get predictions without leaving 
the client’s machine, which the library 
approach enables via RC’s caches. Other 
teams prefer the standard and higher-
level interface of a service, and do not 
want to manage an additional library. Ul-
timately, we expect to build multiple on-
line component implementations that 
will consume models and feature data 
from the same back-end source.

Open Challenges  
and Research Avenues
As should be clear by now, RC is by no 
means the only possible approach to ML-
centric platforms. In fact, RC cannot cur-
rently accommodate certain types of ML 
integration that can be potentially useful. 
Moreover, there are potential additional 
areas for ML integration that nobody has 
explored yet. Clearly, there is a need for 
more research on this topic. The follow-
ing paragraphs identify some research 
challenges and avenues going forward.

Broadly using application-level per-
formance data. As mentioned, low-level 
counters are an indirect measure of 
application performance. For resource 
management without performance 
loss, extracting high-level information 
from applications is key. Today’s extrac-
tion methods require effort from devel-
opers, who do not always have a strong 
incentive to provide the data. The chal-
lenge the cloud provider faces is creat-
ing stronger incentives or extraction 
methods that are automatic, privacy-
preserving, and non-intrusive.

Using action-prescribing ML while being 
general. Increasingly popular ML tech-
niques such as reinforcement and ban-
dit learning prescribe actions. In the re-
source management context, this means 
the ML must understand the acceptable 
management mechanisms and poli-
cies (these techniques could define the 
policies themselves, but this would make 
manager debugging very difficult), and 
be adjusted for every manager that can 
benefit. Moreover, it must be safe/cheap 
to explore the space of available actions. 
The challenge is creating general designs 
for these ML techniques, perhaps via 
frameworks/APIs that take mechanism 

scheduler can accommodate more VMs, 
while producing 6× fewer cases of physi-
cal resource exhaustion than a baseline 
oversubscribing scheduler that does not 
consider utilization predictions.

Lessons learned. Thinking about ML-
centric cloud platforms and through our 
experience with RC, we learned several 
important lessons:

Separation of concerns. Keeping pre-
dictions and management policies sepa-
rate has worked well in RC. This separa-
tion is making policies easier to debug 
and their results easier to reproduce, as 
they are not obscured by complex ML 
techniques. In Azure’s current managers, 
policies tend to be rule-based and use RC 
predictions as rule attributes (for exam-
ple, if expected lifetime is short, then 
place container in one of these servers). 
The rule-based organization has made it 
easier to integrate predictions into exist-
ing managers.

Reach and extensibility. The ML frame-
work must act as a source of intelligence 
for many resource managers, not all of 
which will be known on day-one. Thus, it 
is critical to be able to easily integrate new 
data sources, predict/understand more 
behaviors, include multiple models for 
each behavior and implement versioning 
per model, among others. RC’s modular 
design has made these extensions easy.

Model updates. We designed RC to 
produce models and feature data offline, 
and then serve predictions and feature 
data online until it produces (in the back-
ground) an updated version of them. 
However, one resource manager we have 
come across requires models to be up-
dated online, so that each prediction ac-
counts for the effect of the previous one. 
As this scenario seems to be rare, we opt-
ed for RC’s more  general design.

Performance. Many of the managers 
do not require extremely fast predictions. 
For example, the server defragmenter can 
easily deal with slow predictions. How-
ever, other managers require substan-
tially higher performance. For example, 
the entire time budget for the container 
scheduler is less than 100 milliseconds. 
In these scenarios, prediction result, 
model, and feature data caching can be 
critical in prediction-serving, especially 
if models are large and complex. Caching 
also helps maintain operation even when 
the data store is unavailable.

Integration with clients. We explored 
two versions of RC’s online component: 

RC is by no means 
the only possible 
approach to ML-
centric platforms. 
In fact, RC 
cannot currently 
accommodate 
certain types of 
ML integration that 
can be potentially 
useful.  
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and policy descriptions as inputs, so that 
they are easier to adopt.

Quick feedback at scale. When operat-
ing at scale, it is difficult to observe the 
result of predictions or management ac-
tions within a short time. For example, 
scheduling a large group of containers 
may impact the resource utilization and 
performance interference at many serv-
ers. Worse, other containers are constantly 
starting and finishing on these same serv-
ers. In this context, obtaining feedback 
from all the servers and isolating the im-
pact of each prediction/action is extremely 
difficult. The problem is even harder when 
the feedback will only be available at an 
undetermined future time. For example, 
a container lifetime prediction can only 
be verified when the container finishes, 
which may take a long time. Thus, when 
quick feedback is needed, the challenges 
become determining when it is available, 
and accurately deriving it from the mas-
sive amount of collected data.

Debuggability. The cloud provider 
must be prepared for scenarios where 
an ML technique (and the managers 
that use it) suddenly starts to misbe-
have, producing poor predictions or 
actions. In these cases, regenerating 
models with more recent data may not 
be enough to fix the problem, because 
model features may have changed se-
mantics or been eliminated altogether. 
Debugging misbehaviors is difficult for 
certain ML techniques, for example, 
neural networks, especially when they 
are tightly integrated with the manager. 
More research is needed on making de-
bugging easier, if such techniques are 
to be used broadly in public clouds.

Other aspects of cloud platforms. Fi-
nally, our focus has been using ML in re-
source management for high efficiency 
and performance. However, ML can also 
benefit network traffic, availability, reli-
ability, security, configuration manage-
ment.4,13,28 An open question is whether 
the ideas, designs, and trade-offs we 
discussed also apply to these other ar-
eas. In our future work, we will explore 
how to extend RC for these types man-
agement in a real platform.

Conclusion
Public cloud providers invest billions 
of dollars into their software and hard-
ware infrastructures. Maximizing the 
use of these expensive resources, while 
maintaining excellent performance and 

availability, is critical for profitability 
and competitiveness. Infusing ML into 
cloud platforms has the potential to 
achieve these goals. In fact, we envision 
many opportunities and designs for 
bringing ML into cloud resource man-
agement. Taking advantage of some 
of these opportunities, we have been 
transforming the Azure Compute fabric 
to leverage predictions of container and 
server behaviors. This transformation 
has relied on Resource Central, our 
general ML and prediction-serving 
framework and system. Our initial ex-
perience shows that one can produce 
simple yet accurate ML models for 
many behaviors and enable resource 
managers to make smarter decisions. 
However, more research is needed on 
this topic, so we have made traces of 
the Azure Compute workload available 
for researchers to use at https://github.
com/Azure/AzurePublicDataset.	
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