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Al as Game Playing

LEE SEDOL
. 00:01:00

Go: Google AIphaGo VS. Lee Sedol (2016) Poker (No-limit hold’em): CMU Libratus (2017)



Al Is also
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Source: Boston Dynamics. https://www.youtube.com/watch?v=WcbGRBPkrps



Definitions of Al

Think like Humans

“The automation of activities that we
associate with human thinking,
activities such as decision-
making, problem solving,
learning...” — Bellman, 1978

Think Rationally

“The study of mental faculties
through the use of computational
models” — Charniak and
McDermott, 1985

Thought

Act like Humans

“The art of creating machines that
perform functions that require
intelligence when performed by
people.” — Kurzweil, 1990

A

Act Rationally

“A field of study that seeks to
explain and emulate intelligent
behavior in terms of

computational processes.” —
Schalkoff, 1990

A

Action

Defined in terms of Humans

Defined in terms of Logic




What Al was...

Spreadsheets

Graphical interfaces

lcon-oriented interfaces

Object-oriented programming languages
Sketching software

Automated theorem provers

and every robotics, vision, natural language, sound
processing and reasoning project...

Al is a Moving Target



Hype



Al Headlines from today (1/14/19)

Al beats expert doctors at finding

cervical pre-cancers - Tech News
The Star Online - today

IBM's Al Machine Makes A Convincing
Case That It's Mastering The Human

Art Of Persuasion
Forbes + today

The Future of Artificial Intelligence In
The Workplace

Forbes + 2 days ago

How Al is making business travel

better
CNN - 5days ago

Most Kiwi staff see Al as a threat

rather than an opportunity: survey
CIO New Zealand - today

Remember Elon Musk's Scary Warning
Against Al? Here's More Reason to
Worry.

Entrepreneur + 3 days ago

Commentary: Bad news. Artificial

intelligence is biased
Channel NewsAsia + 2 days ago - Opinion

Never mind killer robots—here are six
real Al dangers to watch out for in
2019

MIT Technology Review + 6 days ago




The good, the bad, and the ugly

Al is the new electricity!

— Andrew Ng, Chief scientist Baidu

Will robots take our children’s jobs?

— NYT, Dec 11, 2017

Bill Gates: Al taking everyone’s jobs will be a good thing
— Business Insider, Jan 25, 2018

Al is more dangerous than nuclear weapons

— Elon Musk at SXSW, Mar 13, 2018

Stephen Hawking: Al could destroy civilization!

— Newsweek, Nov 7, 2017



Growth of Al

Growth of Annually Published Papers

10x
= A| papers within CS
8x Papers in field of CS
7)) Papers from all fields
=
Q 6x
Q.
a
4x
2x
(1996 Value) 1x
2000 2005 2010 2015

Year

Source: Scopus.com. via 2017 Al index (http://aiindex.orq/)



Growth of Al:
Large Corporate Al Investments

- Late 2015: Toyota announces LR )
$1b USD investment in Al A
* Hired leadership:
— CEO Gil Pratt, former DARPA PM
— CTO James Kuffner, former Google
autonomous vehicle lead
* Feb 2017: two systems
announced
— Chauffeur (level 4/5 autonomy)
— Guardian (level 1/2 driver assist)

Source:
http://pressroom.toyota.com/releases/tri+autonomous+test+vehicle+sonoma+raceway+prius+challenge.htm



Growth of Al:
Startup Funding Soaring

Worldwide Venture Capital Investment in Robotics
$1,600 - $1,482M
$1,400 -
$1,200 -
$1,000 -

$800 -

$600

Investment ($ Millions)

$400 - $341M
$251M

$194M $220M
$200 -

o

2011 2012 2013 2014 2015
Year

2012 we—— 5583 MILLION TOTAL FUNDS RAISED BY Al STARTUPS == US. == REST OF WORLD

2016 $5BILLION

Source: (top) Hizook, Jan 12 2016, Funding for Robotics in 2015 (bottom) Fortune, Mar 1 2017. “Betting on Al”.



Growth of Al:
Unprecedented Hiring

“Universities’ Al Talent Poached by

TeCh Giants” acfrle‘coozlpﬁtg:lcil;nce PhDs are
- WSJ, 11/24/16 ST
“Giant Corporations are Hoarding universities.
the W0r|d’S AI Talent” 1,200 PhDs All sectors
— Wired, 11/16/16 1,000
“Over 4,000 Artificial Intelligence job -
roles vacant on shortage of talent Business/
— Forbes, 12/18/18 00

N /

400
Median annual salary (source: NSF) /

— $55,000 post-doc in academia
— $110,000 in industry labs °c . S

Source: National Science Foundation
THE WALL STREET JOURNAL.




Why now?

« Access to massive amounts of data

» Access to powerful computing platforms
— Multicore chips
— Ubiquitous cellphones and tablets
— Cloud computing

» Maturity of robotics hardware



Syllabus

« Approximately one week for each of these topics:
— Search
— Game Playing
— Logical Formalisms
— Inference
— Planning
— Dealing with Uncertainty
— Machine Learning
— Communication and Language
— Perception
— Robotics



Agents as a Unifying Design

-

2N

Sensors =

What the world
is like now

Q—Iow the world evolves
What my actions do

(]
What it will be like
if | do action A

[]

- How happy | will be
‘ in sucﬁ a state

kAgent

What action |
should do now

Effectors

juswuolinuzg

\

effectors

percepts

actions

sSensors

Environment

Accessible

Deterministic

Episodic

Static

Discrete

Do sensors give
complete world

Can next state be

determined by current

Does quality of
an action depend

Does the env.
stay the same

Are the number
of percepts and
actions limited?

state? state and action? only on current while the agent
state? thinks?
Chess (no clack) Yes Yes No Yes Yes
Poker No No No Yes Yes
Taxi driving No No No No No
Image analysis Yes Yes Yes Semi No
Part-picking robot No No Yes No No
Refinery controller No No No No Yes
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Basic Search
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Heuristic Search

Greedy Search

Heuristic function gives
an estimate of the
distance to the goal

Boston

A* Search

Minimize the total path
cost (f) =
actual path so far (g) +

Boston H
o0 estimate of future path
Austin
1057
Key West * 1 * to g Oal (h )
Chicago Nashville Key West Boston
Distance to h=1447 h=1444 h=1927 f=0+2299
Phoenix 1 ] f=2299
Boston 2299 l |
San Phoenix Austin Nashville  Austin v v v
Chi 1447 Francisco  h=0 h=870 h=1444  h=870 Chicago Nashville Key West
icago h=658 l l l f=856+1447 f=945+1444  f=1371+1927
v 2303 f=2303 f=2389 f=3208
Nashville 1444 Phoenix Phoenix Austin  Phoenix
h=0 h=0 h=870 h=0 _; ‘—I—‘
v
Key West 1927 3377 2567 \ 3298 Phoenix ~ Austin  Nashville  Austin
Phoenix San f=(856+1447)+0 l l
Austin 870 . = =
Total Distance Flown h=0 Francisco |~ 2903 L _ _
3846 f:(856+1 863)+658 2303 A Austin Phoenix
San 658 f=3377 Phoenix ‘ 3208
Francisco 3377 2567 Bhoenix
3846

Total Distance Flown



Search and Game Playing

Minimax Search with
Alpha-Beta Pruning

Kasparov VS. Deep Blue



Knowledge Representation

Propositional Logic Syntax

Sentence — AtomicSentence | ComplexSentence
AtomicSentence — True | False | P | Q | ...
ComplexSentence — (Sentence) |
Sentence Connective Sentence |
—Sentence

Connective > A |V | = | &

Inference Rules

a=p,a —a a,,0,,0,,...0,
p a o Na N NQ,
A NONOG N AQ, avp, —f Q,
a, a o va,V.va,
—a=p, =y avp,=pvy

—a=y avy

Wumpus Wor

d

breeze

breeze

breeze

breeze




First-Order Logic

 Existential and Universal o Situation Calculus

Quantifiers At(Agent,[1,1], So) A
Sentence — AtomicSentence At(Agent,['I 2], 81)

| Sentence Connective Sentence

| Quantifier Variable,... Sentence * Changes from one

| —Sentence situation to the next

| (Sentence) Result(Forward, Sy)=S;

AtomicSentence — Predicate(Term,...)
| Term = Term

Term — Function(Term,...)

| Constant

| Variable
Connective > = | A |V | <
Quantifier - ¥V | 3
Variable — a |b|c]...
Function — Mother | LeftLegOf |...
Predicate — Before | HasColor | Raining | ...
Constant - A | X, | John | ...
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Building a Knowledge Base
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— Limiting errors —
Encode a description of the 1

specific problem 2 3 4 5 6
Pose queries and get answers



Inference

Resolution

American(x) A Alcohol(y) A
Minor(z) A Sells(x,y,z) =
Criminal(x)

Minor(Jimmy)
Owns(Jimmy,B1)

Beer(B1)

Owns(Jimmy,x) A Beer(x) =
Sells(Nathan,x,Jimmy)

American(Nathan)
Beer(x)=Alcohol(x)

Using 4, 7 and modus ponens
Alcohol(B1)

Using 5, 3, 4 and modus ponens
Sells(Nathan,B1,Jimmy)
Using 1, 6, 8, 2, 9 and modus
ponens
Criminal(Nathan)

Proof by Refutation

P(w) = Q(w)

Q(y) = S(y)

P(w) = S(w) True = P(x) v R(x)

True = S(x) v R(x)| |R(z) = S(2)

W

True = S(A)




Expert Systems

SAINT DENDRAL

4 intensity
/ z* dx
(1—-22?) £

Try y = arcsinz, yielding:

65 12

. 4
sin” y B 59 | |
/Cos4ydy | l l ] ] N .
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Planning

Partial-Order Planning

Representing World State and Start
Change in a Logical Language /
At(Home)

/ Go(SM)

At(SM) At(SM) Sells(SM,Banana)

Go(HWS) Buy(Banana)
\ At(SM) Sells(SM,Milk)
Sells(HWS,Drill)  At(HWS) Buy(Milk)

Buy(Drill) i

b Pickup(B), Stack(B,C) J \‘

Pickup(A), Stack(A,B) Have(Drill) Have(Milk) Have(Banana)
Finish




Planning in the Real World:
Robot path planning

Configuration Spaces Probabilistic Roadmap Cell Decomposition

Visibility Graphs Potential Fields

=)=}

(qoal

E‘lCLJCI"H"’LL.‘";IJ




Planning in Real-World Systems

Conditional Planning

Start

On(Tire) VOn(Tire'l) Finish
FIat(Tire1)\ Inflated(Tire1
Inflated(Spare) " Flat(Tire1) Inflate(Tire1) (TireD {ue
_ P aﬁe\ Intact(Tire1) Intact(Tire1)
Check(Tire1) P Intact(Tire1)
\%
3
%&lRemove(Tiren »| Puton(Spare)
tact(Tire1) —Intact(Tire1) \
> On(Spare) Finish
Inflated(Spare)

—Intact(Tire1)

Execution Monitoring

n(C,F)
lear(C)

W

Start

REE(R)

lear(C)

Move(C,D)
o

Move(C,D)
/7

Bl [C] |D

Start State

Current State

Finish

n(C,D)

On(D,B)

Finish State



Dealing with Uncertainty

Belief Networks Incremental Construction

Burglary ) [TD Earthquake ) o

P(A)

.95
.94

mMma3|®
esiEeRes iUl Rl

001

T .90

A conditional probability table
gives the likelihood of a
particular combination of values

Earthquake




Learning from Observations

Learning Optimal Decision Trees

5 Decision Tree for

Patrons* deciding whether

Non Some Full to wait for a table
No| |Yes| |WaitEstimate?

30-60

10-30

No Yes
N Yes N Yes
Reservation?| |Fri/Sat?| |Yes| | Alternate?
Yes, No N(/\r es Ye No
Yes Bar? No| |Yes Raining? Yes
N\ \
No| |Yes No| |Yes

POS: 1,3,4,6,8,12
NEG: 2,5,7,9,10,11

Yone Some Fu
POS: POS: 1,3,6,8 POS: 4,12
NEG: 7,11 NEG: NEG: 2,5,9,10
POS: 1,3,4,6,8,12
NEG: 2,5,7,9,10,11
rench . . Burger
POS: 1 It3458. 6 POS: 4,g'hai POS: 3,12
NEG: 5 NEG: 10 NEG: 2,11 NEG: 7,9
v
B _ p;+n; n;
Remainder(A) = Z o LG o)
i=1
Remainder(Patrons) =35 1(0,1)+ 5 1(1,0)+ S 1(£,2
. 2 _ 4
Remainder(Patrons) = 0 +0+5 (—g log2 - log 3)

Remainder(Patrons) = 0.459 bits



Supervised Learning
Using Version Spaces

Most general boundaries (G) = ~ = -

This region all inconsistent +

More general + + + -+
(/ \ \d / \ ? + + + +

(a) (b) (c) (d)
|:| predict negative |:| predict positive

\ f\. \ / | l - (a) consistent

Y (b) false negative

(c) generalization includes the false
negative example

Most specific boundaries (S) (d) false positive

this region all inconsistent

(e) specialization removes the false
positive example



Environment

Genetic Algorithms

Genotype

Interafctlon W'th<31evelopment
environment

Phenotype

Interaction with
environment + Selection

competition

“New” Population

<?]eproduction

Evolving physical morphology
and control: Karl Sims

Following




Learning Using Neural Nets

Perceptrons Multi-Layer Networks

Output units 0,

Hidden units a;

Input units 7,

a
. .. . . . Input Output
[J VVJ" 01 [J VVJ 0 —_— ; -
Links Links

Input Output Input Output

Units Units Units Unit —

Input Activation Output
. Function  Function P
Perceptron Network Single Perceptron

Backprop and Linear Seperability



Features

»

Patterns of Local [@hieh

Deep Learning
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Reinforcement Learning

(Rewarded at the end of an action sequence)

Utility Learning Action-Value Learning
(Temporal Difference) (Q-Learning)
Learn a utility function that maps statesto < Learn an action-value function that gives
utilities and select an action by the expected utility of taking a given
maximizing expected value action in a given state
Needs a model of the environment (needs <+ No need for an environment model
to know the results of actions) Do not know where actions lead, so it
Predictive cannot look ahead

O(a,i) < Qa,i) + a(R(i) + max Q(a', j) — O(a.1))

—_
~

-0.0380 | 0.0886 | 0.2152

Estimated 12 —
e 1 — LMS
-0.1646 -0.4430 E Utl I |ty — Temporal Difference |
’ Adaptive DP
Val ues 0.6 — Exploratory ADP
04 TD Q-learning

-0.2911 | -0.0380 | -0.5443 | -0.7722

RMS error, policy loss (TD Q-learning)
o
[

(0] 20 40 60 80 100

1 2 3 4 Number of epochs



Communication:
Grammars, Syntax, and Semantics

Incorporation

Intention
Tell(H,—Alive(Wumpus, S3))

Know(H,—Alive(Wumpus, Disambiguation o
S3)) —Alive(Wumpus, S3) °

Generation Analysis
The wumpus
is dead.

¢ | [thawahmpahsihzdeyd]

. The wumpus

Perception 8




Klatt Synthesizer

DECTalk Demo

Communication

Speech Generation

Control Parameters

S — S

Hiss

Parallel Branch 4@

Voicing :
?}— Cascade Branch
B e
]

Friction

Y. e erreeemssrreeesseeeemsseesseass e eeee ees easm e nan srsnemenndt

Readme.txt j
April 2001

DECtalk[R] Software demonstration program for Intel platforms running
Windows[TM] 95, Windows[TM] 98, Windows ME, Windows[TM] NT, and V|

For DE Ctalk[R] demos for:

Wce2.00,

Wce2.11 (Palm Size PC and MS HPC Pro)

Wce3.00 (Pocket PC)
After double clicking on self extracting executable downloaded from we|
the following files will appear.

For Windows v

« [ »

Speaking | _| - [200wWPM ] »>1/m

Hidden Markov

Demo of Dragon

Speech Recognition

Phone HMM for [m]:

0.3 0.9 0.4

L

)

©

® -

E Output probabilities for the phone HMM:
Onset: Mid: End:
C1:05 C3:0.2 C4:0.1
C2:0.2 C4:07 C6:0.5
C3:0.3 C5:0.1 C7.0.4

(@)

S

X

©

)

Qo

n

=

©

g

=

© i st

Z and Reports by Vaice:




Perception

Mathematical Tools:
Convolution

L e L L O e

Blur |

h(x) = [ f(u)g(x —u)du

=S fu)g(x—u)

U=—00

Applications:

Pre-attentive and

Post-attentive
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A A A
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Higher-Level Perception

Finding Similar Images Motion Identification

Results
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Robotics: Kinematics

Basic Joint Types Forward Kinematics Inverse Kinematics

(from joints to positions)  (from positions to joints)

E Given Y1, Y2 find x,y Given x,y find Y1, Y2

(x,Y) X ,y)

Problems with
ambiguous solutions
(or no solutions)




Robot Control Architectures

Back-out-of-tight
Situations Layer

€ Collide

Lost

»a

Wander

v

P Go

eeoffecccccccccccce

ecocoflocdecd

e00000000000

Run away

Forward

v

Reverse

Explore
Layer

eecccoce

n
>

Avoid-Objects Layer -

Motors

Breaks

©0000000000000000000000000000000000000000000000000000000000000000000000000

—— o E
o
-PNOT—L'
> o *
- T e
1
> o *
> * "

MODE weights o DAMN COH'H?‘MIH(]S‘ VEHICLE
MANAGER ' ARBITER CONTROLLER
/‘vates/ * * \
AVOID SEEK
OBSTACLES GOAL
FOLLOW MAINTAIN
ROAD HEADING
Motor Schema 1
Robot

Motor Schema 2




Humanoid Robots

Adult-sized Research Robots




Social Robotics and HRI




The Future of Al



Course Information

 Official prerequisites:
— After CPSC 201 and 202 (or by permission of the
instructor)
« Description:

— Introduction to artificial intelligence research, focusing
on reasoning and perception. Topics include
knowledge representation, predicate calculus,
temporal reasoning, vision, robotics, planning, and
learning.

« SKkills

— Quantitative Reasoning



Grading

« Grading will be determined as follows:
— Final Exam : 30%
— Midterm Exam : 20%
— Problem Sets : 50%

* These weights are subject to minor variations.

« Each problem on the problem sets and exams
will be worth a specified number of points, which
will be shown with the problem.



Date
01/14/19
01/16/19
01/18/19
01/21/19
01/23/19
01/25/19
01/28/19
01/30/19
02/01/19
02/04/19
02/06/19
02/08/19
02/11/19
02/13/19
02/15/19
02/18/19
02/20/19
02/22/19
02/25/19
02/27/19
03/01/19
03/04/19
03/06/19
03/08/19

Syllabus

Lecture Topic
Course Overview
Intelligent Agents
Python Intro
No class - MLK
Basic Search Algorithms
Informed Search Algorithms
Adversarial Search and Game Playing
TBA
Guest— Dragomir Radev — NLP
Constraint satisfaction problems
Propositional Logic
First Order Logic
Building a Knowledge Base
Inference
Planning
Motion Planning
Planning in the Real World
Reasoning Under Uncertainty
Learning from Observations
Guest - Marynel Vasquez - robot navigation
Supervised Learning
Midterm Exam
Genetic Algorithms
Flex day
Spring break

Date
03/25/19
03/27/19
03/29/19

04/01/19

04/03/19
04/05/19
04/08/19
04/10/19
04/12/19

04/15/19

04/17/19
04/19/19
04/22/19
04/24/19
04/26/19

Lecture Topic
Neural Networks
Deep Learning
Reinforcement Learning | (utility functions)
Reinforcement Learning Il (action-value
learning)
Natural Language Processing
Communication
Introduction to Machine Perception
Higher-level Perception
Vision and Robotics
Robotics: Kinematics, Sensors and
Actuators
Robotics: Control Architectures
Humanoid Robots
Emergence
Current Topics in Al
The Future of Al



Assignments (draft list)

HW 0: Introduction to the Course Environment
HW 1: Search (Pacman)

HW 2: Game Playing (Othello)

HW 3: Logic and Representations

HW 4: Planning (Blocks world)

HW 5: Supervised Learning (Muir Trail)

HW 6: Deep learning (Autonomous vehicles)

HW 7: Reinforcement learning (Pacman revisited)
HW 8: Vision

HW 9: Robotics Control



Collaboration Policy

Homework assignments are your individual
responsibility, and plagiarism will not be
tolerated.

You are encouraged to discuss assignments
with the instructor, with the TAs, and with other
students.

However, each student is required to implement
and write any assignment on their own.

You will not copy, nor will you allow your work to
be copied.



Specifics

Coding and write up should be done
independently

Do not show your work to anyone
Do not look at anyone’s work
Do not use existing code (e.g., github)




Attendance Policy

 Attendance at lectures is critical to
success In this course

» Lectures will contain material that is not
covered by the text (and may not appear
on the lecture slides).

* You are responsible for all material
presented in lectures, material contained
In the assigned reading, and material
covered by the homework assignments.



How to Get Help

» Use the right channels for communication
— Piazza (not canvas)

— Email (always include CPSC 470 in the
subject line)

— TAs and ULA staff listed on each assignment



