Artificial Intelligence CPSC 470/570

Brian Scassellati scaz@cs.yale.edu

Al as Game Playing

Checkers: Chinook vs. Tinsley (1994)

Go: Google AlphaGo vs. Lee Sedol (2016)

Chess: IBM Deep Blue vs. Kasparov (1997)

Poker (No-limit hold'em): CMU Libratus (2017)

Al is also

Source: Boston Dynamics. https://www.youtube.com/watch?v=WcbGRBPkrps

Definitions of AI

Think like Humans "The automation of activities that we associate with human thinking, activities such as decision- making, problem solving, learning" – Bellman, 1978	Think Rationally "The study of mental faculties through the use of computational models" – Charniak and McDermott, 1985	Thought
Act like Humans "The art of creating machines that perform functions that require intelligence when performed by people." – Kurzweil, 1990	Act Rationally "A field of study that seeks to explain and emulate intelligent behavior in terms of computational processes." – Schalkoff, 1990	Action
Defined in terms of Humans	Defined in terms of Logic	

What AI was...

- Spreadsheets
- Graphical interfaces
- Icon-oriented interfaces
- Object-oriented programming languages
- Sketching software
- Automated theorem provers and every robotics, vision, natural language, sound processing and reasoning project...

AI is a Moving Target

Нуре

AI Headlines from today (1/14/19)

Al beats expert doctors at finding cervical pre-cancers - Tech News

The Star Online • today

Most Kiwi staff see AI as a threat rather than an opportunity: survey CIO New Zealand · today

IBM's AI Machine Makes A Convincing Case That It's Mastering The Human Art Of Persuasion

Forbes • today

The Future of Artificial Intelligence In The Workplace

Forbes • 2 days ago

Remember Elon Musk's Scary Warning Against AI? Here's More Reason to Worry.

Commentary: Bad news. Artificial intelligence is biased Channel NewsAsia · 2 days ago · Opinion

How AI is making business travel better

CNN • 5 days ago

Never mind killer robots—here are six real AI dangers to watch out for in 2019

MIT Technology Review • 6 days ago

The good, the bad, and the ugly

- Al is the new electricity!
 - Andrew Ng, Chief scientist Baidu
- Will robots take our children's jobs?
 NYT, Dec 11, 2017
- Bill Gates: AI taking everyone's jobs will be a good thing
 Business Insider, Jan 25, 2018
- AI is more dangerous than nuclear weapons
 Elon Musk at SXSW, Mar 13, 2018
- Stephen Hawking: AI could destroy civilization!
 - Newsweek, Nov 7, 2017

Growth of AI

Growth of Annually Published Papers

Source: Scopus.com, via 2017 AI index (http://aiindex.org/)

Growth of AI: Large Corporate AI Investments

- Late 2015: Toyota announces
 \$1b USD investment in AI
- Hired leadership:
 - CEO Gil Pratt, former DARPA PM
 - CTO James Kuffner, former Google autonomous vehicle lead
- Feb 2017: two systems announced
 - Chauffeur (level 4/5 autonomy)
 - Guardian (level 1/2 driver assist)

Source:

http://pressroom.toyota.com/releases/tri+autonomous+test+vehicle+sonoma+raceway+prius+challenge.htm

Growth of AI: Startup Funding Soaring

Source: (top) Hizook, Jan 12 2016, Funding for Robotics in 2015 (bottom) Fortune, Mar 1 2017. "Betting on AI".

Growth of AI: Unprecedented Hiring

- "Universities' AI Talent Poached by Tech Giants"
 WS L 11/24/16
 - WSJ, 11/24/16
- "Giant Corporations are Hoarding the World's AI Talent"

– Wired, 11/16/16

- "Over 4,000 Artificial Intelligence job roles vacant on shortage of talent – Forbes, 12/18/18
- Median annual salary (source: NSF)
 - \$55,000 post-doc in academia
 - \$110,000 in industry labs

School's Out

More computer science PhDs are taking jobs in industry, while a smaller portion are joining universities.

Why now?

- Access to massive amounts of data
- Access to powerful computing platforms

 Multicore chips
 - Ubiquitous cellphones and tablets
 - Cloud computing
- Maturity of robotics hardware

Syllabus

- Approximately one week for each of these topics:
 - Search
 - Game Playing
 - Logical Formalisms
 - Inference
 - Planning
 - Dealing with Uncertainty
 - Machine Learning
 - Communication and Language
 - Perception
 - Robotics

Agents as a Unifying Design

Environment	Accessible	Deterministic	Episodic	Static	Discrete
	Do sensors give complete world state?	Can next state be determined by current state and action?	Does quality of an action depend only on current state?	Does the env. stay the same while the agent thinks?	Are the number of percepts and actions limited?
Chess (no clock)	Yes	Yes	No	Yes	Yes
Poker	No	No	No	Yes	Yes
Taxi driving	No	No	No	No	No
Image analysis	Yes	Yes	Yes	Semi	No
Part-picking robot	No	No	Yes	No	No
Refinery controller	No	No	No	No	Yes

Basic Search

200

Austin

320

Key West

255

Branching Factor *b*=3

Heuristic Search

Search and Game Playing

Kasparov vs. Deep Blue

Minimax Search with Alpha-Beta Pruning

Knowledge Representation

Propositional Logic Syntax

 $\begin{array}{l} Sentence \rightarrow AtomicSentence \mid ComplexSentence\\ AtomicSentence \rightarrow True \mid False \mid P \mid Q \mid ...\\ ComplexSentence \rightarrow (Sentence) \mid\\ & Sentence Connective Sentence \mid\\ & \neg Sentence\\ Connective \rightarrow \land \mid \lor \mid \Rightarrow \mid \Leftrightarrow \end{array}$

Inference Rules

$rac{lpha \Rightarrow eta \ , lpha}{eta}$	$\frac{\neg \neg \alpha}{\alpha}$	$\frac{\alpha_1,\alpha_2,\alpha_3,\ldots\alpha_n}{\alpha_1\wedge\alpha_2\wedge\ldots\wedge\alpha_n}$
$\frac{\alpha_1 \wedge \alpha_2 \wedge \alpha_3 \wedge \ldots \wedge \alpha_n}{\alpha_i}$	$\frac{\alpha \lor \beta \ , \ \neg \beta}{\alpha}$	$\frac{\alpha_i}{\alpha_1 \lor \alpha_2 \lor \ldots \lor \alpha_i}$
$\frac{\neg \alpha \Rightarrow \beta \ , \ \beta}{\neg \alpha \Rightarrow \gamma}$	$\Rightarrow \gamma$ <u>a</u>	$\frac{\alpha \vee \beta}{\alpha \vee \gamma}, \neg \beta \vee \gamma$

Wumpus World

First-Order Logic

Existential and Universal Quantifiers

Sentence \rightarrow AtomicSentence

Sentence Connective Sentence *Quantifier Variable,...Sentence ¬Sentence* (Sentence) AtomicSentence \rightarrow Predicate(Term,...) *Term* = *Term* $Term \rightarrow Function(Term,...)$ Constant Variable *Connective* $\rightarrow \Rightarrow | \land | \lor | \Leftrightarrow$ *Quantifier* $\rightarrow \forall \mid \exists$ *Variable* \rightarrow *a* | *b* | *c* |... Function \rightarrow Mother | LeftLegOf | ... $Predicate \rightarrow Before \mid HasColor \mid Raining \mid ...$ Constant $\rightarrow A \mid X_1 \mid John \mid ...$

- Situation Calculus At(Agent,[1,1], S₀) ∧ At(Agent,[1 2], S₁)
- Changes from one situation to the next Result(Forward, S₀)⇒S₁

Building a Knowledge Base

- Decide what to talk about
- Decide on a vocabulary of predicates, functions, and constants
 - Ontology
- Encode general knowledge within the domain
 - Limiting errors
- Encode a description of the specific problem
- Pose queries and get answers

Inference

Resolution

- American(x) ∧ Alcohol(y) ∧ Minor(z) ∧ Sells(x,y,z) ⇒ Criminal(x)
- Minor(Jimmy)
- Owns(Jimmy,B1)
- Beer(B1)
- Owns(Jimmy,x) ∧ Beer(x) ⇒ Sells(Nathan,x,Jimmy)
- American(Nathan)
- Beer(x)⇒Alcohol(x)
- Using 4, 7 and modus ponens Alcohol(B1)
- Using 5, 3, 4 and modus ponens Sells(Nathan,B1,Jimmy)
- Using 1, 6, 8, 2, 9 and modus ponens

Criminal(Nathan)

Proof by Refutation

Expert Systems

SAINT

$$\int \frac{x^4}{(1-x^2)^{\frac{5}{2}}} dx$$

$$\int \frac{\sin^4 y}{\cos^4 y} dy$$

XCON (R1)

DENDRAL

Mass spectrogram for $C_8H_{10}O$

CYC

Planning

Planning in the Real World: Robot path planning

Configuration Spaces

Probabilistic Roadmap

Cell Decomposition

Start

qqoal

-Goal

Visibility Graphs

Qini

Potential Fields

Planning in Real-World Systems

Conditional Planning

Dealing with Uncertainty

Belief Networks

A conditional probability table gives the likelihood of a particular combination of values

Incremental Construction

Learning from Observations

Learning Optimal Decision Trees

$$Remainder(A) = \sum_{i=1}^{\nu} \frac{p_i + n_i}{p + n} I(\frac{p_i}{p_i + n_i}, \frac{n_i}{p_i + n_i})$$

$$Remainder(Patrons) = \frac{2}{12} I(0,1) + \frac{4}{12} I(1,0) + \frac{6}{12} I(\frac{2}{6}, \frac{4}{6})$$

$$Remainder(Patrons) \approx 0 + 0 + \frac{6}{12} (-\frac{2}{6} \log \frac{2}{6} - \frac{4}{6} \log \frac{4}{6})$$

$$Remainder(Patrons) \approx 0.459 \text{ bits}$$

Supervised Learning Using Version Spaces

- (a) consistent
- (b) false negative
- (c) generalization includes the false negative example
- (d) false positive
- (e) specialization removes the false positive example

Genetic Algorithms

Evolving physical morphology and control: Karl Sims

Following

Learning Using Neural Nets

Perceptrons

 I_j $W_{j,i}$ O_i Input Output Units Units

Perceptron Network

Single Perceptron

Multi-Layer Networks

Backprop and Linear Seperability

Deep Learning

Reinforcement Learning

(Rewarded at the end of an action sequence)

Utility Learning

(Temporal Difference)

- Learn a utility function that maps states to utilities and select an action by maximizing expected value
- Needs a model of the environment (needs to know the results of actions)
- Predictive

Action-Value Learning (Q-Learning)

- Learn an action-value function that gives the expected utility of taking a given action in a given state
- No need for an environment model
- Do not know where actions lead, so it cannot look ahead

 $Q(a,i) \leftarrow Q(a,i) + \alpha(R(i) + \max_{a'} Q(a',j) - Q(a,i))$

Communication: Grammars, Syntax, and Semantics

Communication

Speech Generation

DECTalk Demo

Speaking 🔳

For DECtalk[R] demos for: Wce2.00, Wce2.11 (Palm Size PC and MS HPC Pro) Wce3.00 (Pocket PC) After double clicking on self extracting executable downloaded from we the following files will appear. For Windows

▶ 200 WPM

Hidden Markov Models

Demo of Dragon NaturallySpeaking

Speech Recognition

Phone HMM for [m]:

Output probabilities for the phone HMM:

Mid:	End:
C3: 0.2	C4: 0.1
C4: 0.7	C6: 0.5
C5: 0.1	C7: 0.4
	Mid: C3: 0.2 C4: 0.7 C5: 0.1

Perception

Pre-attentive and Post-attentive \land QASDFGEROP UKJERTHCFM AZESFGQWRT FGHUYYBXLW VNRHJBDKWL RTGFMXVPOS **Q P F S H F R T Y U**

Higher-Level Perception

Finding Similar Images

Motion Identification

image at time t

image at time $t + \delta$

flow field (sparse)

Region Segmentation

Object Detection and Recognition

Robotics: Kinematics

Basic Joint Types

Forward Kinematics

(from joints to positions) Given Y1, Y2 find x,y

Inverse Kinematics

(from positions to joints) Given x,y find Y1, Y2

Problems with ambiguous solutions (or no solutions)

Robot Control Architectures

Humanoid Robots

Service Robots

Commercial Robots

Child-sized Research Robots

Social Robotics and HRI

In the Smithsonian Institution's National Museum of American History and ON THIS WEB SITE!

The Future of Al

Course Information

- Official prerequisites:
 - After CPSC 201 and 202 (or by permission of the instructor)
- Description:
 - Introduction to artificial intelligence research, focusing on reasoning and perception. Topics include knowledge representation, predicate calculus, temporal reasoning, vision, robotics, planning, and learning.
- Skills
 - Quantitative Reasoning

Grading

- Grading will be determined as follows:
 - Final Exam : 30%
 - Midterm Exam : 20%
 - Problem Sets : 50%
- These weights are subject to minor variations.
- Each problem on the problem sets and exams will be worth a specified number of points, which will be shown with the problem.

Syllabus

Date	Lecture Topic	Date	Lecture Topic
01/14/19	Course Overview	03/25/19	Neural Networks
01/16/19	Intelligent Agents	03/27/19	Deep Learning
01/18/19	Python Intro	03/29/19	Reinforcement Learning I (utility functions)
01/21/19	No class - MLK	04/01/10	Reinforcement Learning II (action-value
01/23/19	Basic Search Algorithms	04/01/19	learning)
01/25/19	Informed Search Algorithms	04/03/19	Natural Language Processing
01/28/19	Adversarial Search and Game Playing	04/05/19	Communication
01/30/19	ТВА	04/08/19	Introduction to Machine Perception
02/01/19	Guest– Dragomir Radev – NLP	04/10/19	Higher-level Perception
02/04/19	Constraint satisfaction problems	04/12/19	Vision and Robotics
02/06/19	Propositional Logic	04/15/10	Robotics: Kinematics, Sensors and
02/08/19	First Order Logic	04/13/13	Actuators
02/11/19	Building a Knowledge Base	04/17/19	Robotics: Control Architectures
02/13/19	Inference	04/19/19	Humanoid Robots
02/15/19	Planning	04/22/19	Emergence
02/18/19	Motion Planning	04/24/19	Current Topics in Al
02/20/19	Planning in the Real World	04/26/19	The Future of AI
02/22/19	Reasoning Under Uncertainty		
02/25/19	Learning from Observations		
02/27/19	Guest - Marynel Vasquez - robot navigation		
03/01/19	Supervised Learning		
03/04/19	Midterm Exam		
03/06/19	Genetic Algorithms		
03/08/19	Flex day		

Spring break

Assignments (draft list)

- HW 0: Introduction to the Course Environment
- HW 1: Search (Pacman)
- HW 2: Game Playing (Othello)
- HW 3: Logic and Representations
- HW 4: Planning (Blocks world)
- HW 5: Supervised Learning (Muir Trail)
- HW 6: Deep learning (Autonomous vehicles)
- HW 7: Reinforcement learning (Pacman revisited)
- HW 8: Vision
- HW 9: Robotics Control

Collaboration Policy

- Homework assignments are your individual responsibility, and plagiarism will not be tolerated.
- You are encouraged to discuss assignments with the instructor, with the TAs, and with other students.
- However, each student is required to implement and write any assignment on their own.
- You will not copy, nor will you allow your work to be copied.

Specifics

- Coding and write up should be done independently
- Do not show your work to anyone
- Do not look at anyone's work
- Do not use existing code (e.g., github)

Attendance Policy

- Attendance at lectures is critical to success in this course
- Lectures will contain material that is not covered by the text (and may not appear on the lecture slides).
- You are responsible for all material presented in lectures, material contained in the assigned reading, and material covered by the homework assignments.

How to Get Help

- Use the right channels for communication
 Piazza (not canvas)
 - Email (always include CPSC 470 in the subject line)
 - TAs and ULA staff listed on each assignment