Constraint Satisfaction
Problems

CPSC 470 — Artificial Intelligence
Brian Scassellati

Alpha-Beta Pruning Example

In this example, only 16 In the best case, alpha-beta can
out of 27 terminal states [5,5] improve the time use from O(b9)
MAX »
are evaluated to O(b¥?)
[4, 4] MIN [5.,5] MIN [0, 3]
MAX MAX
[8,8] [9,+00] [4.4] [5,5] [9,+o0] [6,+00] [3,3]

Sudoku

4 8 5 4 | 1| 7| 3| 6| 9|8)| 2|5
3 6 | 3| 2|1 |5| 89| 4|7

7 9 | 5| 8|7 | 2|4]|3]|1]6

2 6 8| 2|54 |3|7|1]|6]|29

8 4 7|19 1]15|8|6|4]| 3|2

4 1 3 /4|69 |1]|2]7)|5] 8

6 3 7 2|1 8|96 |4 3|5 |71

5 3| 2 1 S| 713|291 6 | 8 | 4
1 4 1|6 | 4|8 |7|5|2|9]3

Example puzzle with a unique solution No duplicates in row, column, or 3x3 box

Solving Sudoku via Search

Y |AZ A3 °L [®1 « 20 squares fixed and
> 61 need to be solved
- 7 - * Find possible entries
. p ~A2:1ZBHB6T89
p ; ~A3: 128436789
5 3 . * Build a tree:
5 3| 2 1
4

* 61 depth, max 8 branching factor
* 4.6 x 1038 possibilities
« Even on 1 million 10GHz, 1024 core

machines, this is 1300 billion years!

A Smarter Way

A2

A3

8

5

* Find possible entries
~A2:12ZBHB6T789
~A3:123436789

 Once we choose A2,

that further limits our
choices

Constraint Satisfaction Problems

In a typical search problem

— state is a “black box” — any data structure that supports
successor function, heuristic function, and goal test

In a constraint satisfaction problem (CSP):

— state is an assignment of values from a domain D; to a
set of variables X;

— goal test is a set of constraints specifying allowable
combinations of values for subsets of variables

A solution to a CSP is one that is complete (all variables
are assigned) and consistent (no constraints are violated)

Simple example of a formal representation language

Sudoku as a CSP

s| « Domain={1, 2, 3,4,5,6, 7, 8, 9}

Variables = { A1, A2, ... A9,

6 B1, B2, ... B9,

: 1,12, ...19)

Constraints from row, column,

and 3x3 cell restrictions

Constraints =
{A1£A2, A1#A3, A1#A4, ...
A1£B1, A1#C1, A1#£D1, ...
A1#B2, A1#B3, A1#C1, ...}

Simpler Example: Map Coloring

Northern
Territory
Western Queensland

Australia

-—\/“\/-
New South Wales

hﬁ\

Tasmania

South
Australia

« Variables V, = {WA, NT, Q, NSW, V, SA, T}
« Domain D; = {red, green, blue}

« Constraints: adjacent regions must have different colors

— e.g., WA #NT, or (WA,NT) in {(red,green), (red,blue), (green,red), (green,blue),
(blue,red), (blue,green)}

Simpler Example: Map Coloring

Y

les

kﬂ

Tasm'ia

« Solutions are complete and consistent assignments
* One solution is shown above

WA =red, NT = green, Q =red, NSW = green,

V =red, SA = Dblue, T = green

Constraint Graph

« Constraint graph:

— nodes are variables
— arcs are constraints

e CSP benefits

— Standard representation pattern:
variables with values

— Generic goal, successor functions

— Generic heuristics (no domain \
specific expertise) i

— Graph can simplify search.

* e.g. Tasmania is an independent Victoria
SprrOblem Tasmania

Another Example: Cryptarithmetic

Another Example: Cryptarithmetic

T W
T W
O u

A10 O

4
F

%5 X; X;

Variables: £ O, U R, T W, X,, X,, X;
Domain: {0, 1, 2, 3,4, 5, 6, 7, 8§, 9}
Constraints: Alldiff (F, O, U, R, T, W)
O+0=R+ 10X,
X, +W+WwW=U+10"-X,
X, +T+T=0+10"X;
X;=F,T#0,F+#0

Varieties of CSPs

 Discrete variables

— finite domains:
* nvariables, domain size d = O(d") complete assignments
* e.g., Boolean CSPs, incl.~Boolean satisfiability (NP-complete)
— infinite domains:
* integers, strings, etc.
* e.g., job scheduling, variables are start/end days for each job
* need a constraint language, e.g., StartJob, + 5 < StartJob,

 Continuous variables

— e.g., start/end times for Hubble Space Telescope
observations

— linear constraints solvable in polynomial time by linear
programming

Varieties of constraints

* Unary constraints involve a single variable,
—e.g., SA # green
* Binary constraints involve pairs of
variables,
—e.g.,, SA#WA
» Higher-order constraints involve 3 or more

variables,
— e.g., cryptarithmetic column constraints

Real-world CSPs

Assignment problems
— e.g., who teaches what class

Timetabling problems

— e.g., which class is offered when and where?
Transportation scheduling

Factory scheduling
Circuit layout

Notice that many real-world problems involve real-valued
variables

Solving CSPs

« Let’s start with a straightforward approach, then fix it.

o Just like we did with Sudoku, let's treat this as a search
problem.
— Initial state: the empty assignment { }

— Successor function: assign a value to an unassigned variable
that does not conflict with current assignment

—> fail if no legal assignments

— Goal test: the current assignment is complete

Backtracking search

Variable assignments are commutative, i.e.,

[WA = red] followed by [NT = green] is the same as
INT = green] followed by [WA = red]

Only need to consider assignments to a single variable
at each depth of the tree

Depth-first search for CSPs with single-variable
assignments is called backtracking search

Backtracking search is the basic uninformed algorithm
for CSPs

Can solve n-queens for n = 25

Backtracking search

function BACKTRACKING-SEARCH(csp) returns a solution, or failure
return RECURSIVE-BACKTRACKING({}, csp)

function RECURSIVE-BACKTRACKING(assignment,csp) returns a solution, or
failure
if assignment is complete then return assignment
var <— SELECT- UNASSIGNED- VARIABLE(Variables/[csp/, assignment, csp)
for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
if value is consistent with assignment according to Constraints[csp| then
add { var = wvalue } to assignment
result «+— RECURSIVE- BACKTRACKING(assignment, csp)
if result # failue then return result
remove { var = value } from assignment
return failure

Backtracking example

S8

Backtracking example

oS

— T

o 1 £

Backtracking example

(A

_\

— |

¢ ¢ ¢

A
.

Backtracking example

[T\
T
‘}_"};‘ ‘Ht; “—Li—
— T~
<o 9%
— T~

SR =

Improving backtracking efficiency

» General-purpose methods can give huge
gains in speed:
— Which variable should be assigned next?
— In what order should its values be tried?
— Can we detect inevitable failure early?

* Heuristics:
1. Most constrained variable
2. Most constraining variable
3. Least constraining value

4. Forward checking

H1: Most constrained variable

\—L: _’“—L _""}‘l:_"“;:

* Most constrained variable:
choose the variable with the fewest legal values

* a.k.a. minimum remaining values (MRV)
heuristic

—
Ny

H2: Most constraining variable
\—L:—" Hp——” H}:—’ H%

* Tie-breaker among most constrained
variables
* Most constraining variable:

— choose the variable with the most constraints
on remaining variables

H3: Least constraining value

‘ ‘4‘% Allows 1 value for SA
[l’:‘ -‘_Lt\——.‘_lh<‘_% Allows 0 values for SA

« Given a v_ariable, choose the least
constraining value:

— the one that rules out the fewest values in the
remaining variables

« Combining these heuristics makes 1000
queens feasible

H4: Forward checking
H:'

e |dea:

— Keep track of remaining legal values for unassigned
variables

— Terminate search when any variable has no legal
values

H4: Forward checking

WA

S A S

NT

Q

NSW

BENEETEIETEIRTEIDNT 2T N
L HEETEETEETE TN
* |dea:
— Keep track of remaining legal values for unassigned
variables

— Terminate search when any variable has no legal
values

H4: Forward checking

WA

NT

Q NSW

oD

\

SA

e |dea:

— Keep track of remaining legal values for unassigned
variables

— Terminate search when any variable has no legal
values

H4: Forward checking

}—L: —”‘Hb_’“_%_"_%

WA NT Q NSW \'} SA T
EVE/EPEENE/ENE(ENE(ENE(EEE
B PEErE/ErE[ErE] PE[EEE
] E[owe mEeE L
L I | BN E

* |dea:
— Keep track of remaining legal values for unassigned
variables

— Terminate search when any variable has no legal
values

Constraint propagation

S S o)

WA NT Q NSW v SA T
AEfEENEIENEENEIENEIESEIET D
I HEEFEENEIENE HECN
]] A EET N HET N

« Forward checking propagates information from assigned
to unassigned variables, but doesn't provide early
detection for all failures:

— NT and SA cannot both be blue!

« Constraint propagation repeatedly enforces constraints
locally

Arc consistency

‘—L: _"H;—_"H:

WA NT Q NSW v SA T
I O (H EHEEH HETNH

« Simplest form of propagation makes each arc consistent
« X 2>Yis consistent iff

for every value x of X there is some allowed y

Arc consistency

‘—L: _"‘H-;_"H:

WA NT Q NSW vV SA T

L B 1 (L O
« Simplest form of propagation makes each arc consistent
« X 2>Yis consistent iff

for every value x of X there is some allowed y

Arc consistency

SSEA SShM S~

] B m xpxim RN

&

« Simplest form of propagation makes each arc consistent
« X 2>Yis consistent iff

for every value x of X there is some allowed y
« If Xloses a value, neighbors of X need to be rechecked

Arc consistency

SSE SSEM S

WA NT Q N SA T

SwW vV
I B I XX Xminm
— % ——
Simplest form of propagation makes each arc consistent
X =Y is consistent iff

for every value x of X there is some allowed y

If X loses a value, neighbors of X need to be rechecked
Arc consistency detects failure earlier than forward checking
Can be run as a preprocessor or after each assignment

Arc consistency algorithm AC-3

function A C-3(csp) returns the CSP, possibly with reduced domains
inputs: csp, a binary CSP with variables { X, X5, ..., X,}
local variables: gueue, a queue of arcs, initially all the arcs in ¢csp

while gueue is not empty do
(X:, X;) <« REMOVE-FIRST(queue)
if RM-INCONSISTENT-VALUES(X;, X;) then
for each X; in NEIGHBORS[X;| do
add (X%, X;) to queue

function RM-INCONSISTENT-VALUES(X;, X;) returns true iff remove a value
removed<— false
for each z in DoMAIN[X]] do
if no value y in DOMAIN[X] allows (z,y) to satisfy constraint(X;, X;)
then delete z from DOMAIN[X;]|; removed < true
return removed

Time complexity: O(n4d?3)

Example: 4-Queens Problem

X1 X2
{1121314} {1121314}

1 2 3 4

DWW NN =

X3 X4
{1121314} {1121314}

Example: 4-Queens Problem

X1 X2
{1121314} {1121314}
1 2 3 4
Hele®
[|®
THEC
4 ‘ X3 X4

{1121314} {1121314}

Example: 4-Queens Problem

X1 X2
{1121314} - { 14 I3I4}
1 2 3 4
Hele®
[|®
THEC
4 ‘ X3 X4

{ lzl I4} { 12131 }

Example: 4-Queens Problem

X1 X2
{1121314}] { I 1314}
1 2 3 4
a0
AN
3| 0@
4 AL X3 X4

{ lzl I4} { 12131 }

Example: 4-Queens Problem

X1 X2
{1121314}] {l 1314}
1 2 3 4
a0
AN
3| 0@
4 @0 X4

X3
Backtm_ek{ﬁ—' {23}

Example: 4-Queens Problem

Picking up a little later after two

steps of backtracking.... X1 X2
{ 121314} {1121314}
1 2 3 4
1 @
:He/®®
3] @
4 ‘ X3 X4

{1121314} {1121314}

Example: 4-Queens Problem

X1 X2
{ 121314} { I 7 I4}
1 2 3 4
[@
.Heo@e®
3| @
4 ‘ X3 X4

{1, ,3, } {1, 3,4}

Example: 4-Queens Problem

X1 X2
{ 121314} { r 7 I4}
1 2 3 4
1 @
2400 ®
3 @@
T +‘ @ X3 X4

{1, ,3, } {1, 3,4}

Example: 4-Queens Problem

X1 X2
{ 121314} { r 7 I4}
1 2 3 4
1 @
2400 ®
3 @@
T +‘ @ X3 X4

{11 r 7 } {1I I3I }

Example: 4-Queens Problem

X1 X2
{121314} {I 4 I4}
1 2 3 4
! | O+®
2400 ®
3 @@
T ‘+" X3 X4

{11 r 7 } {1I I3I }

Example: 4-Queens Problem

X1 X2
{121314} {I 4 I4}
1 2 3 4
! | O+®
2400 ®
3 @@
T ‘+" X3 X4

{11 r 7 } { 14 I3I }

Example: 4-Queens Problem

X1 X2
{ ,2,3,4} {,, 4}
1 2 3 4
1 Q<+'Q
2<+'O Q0
3| |@ ‘+
4 +‘ O X3 X4

{11 r 7 } { 14 I3I }

Example: n-queens

States: n queens in n columns (n" states)
Actions: move queen in column

Goal test: no attacks

Evaluation: h(n) = number of attacks

W ¥ ¥ 7
2O m N e
EBvEl™ rEvEl™ 'm .
- “m L &

h=5 h=2 h=0

Given random initial state, AC-3 can solve
n-queens in almost constant time for
arbitrary n with high probabillity (e.g., n =
10.000,000)

Summary

CSPs are a special kind of problem:
— states defined by values of a fixed set of variables
— goal test defined by constraints on variable values

Backtracking = depth-first search with one variable
assigned per node

Heuristics help significantly

Forward checking prevents assignments that
guarantee later failure

Constraint propagation (e.g., arc consistency) does
additional work to constrain values and detect
iInconsistencies

