
Constraint Satisfaction
Problems

CPSC 470 – Artificial Intelligence
Brian Scassellati

Alpha-Beta Pruning Example

8 7 2 9 1 6 2 4 1 1 3 5 3 9 2 6 5 2 1 32 9 7 2 11 6 4

MAX

MIN MIN

MAX MAX

[5,5]

[4, 4]

[8,8] [9,+∞] [4,4]

X

[5,5]

[5,5] [9,+∞]

X

[6,+∞]

X

[-∞, 3]

[3,3]

X

In this example, only 16
out of 27 terminal states
are evaluated

In the best case, alpha-beta can
improve the time use from O(bd)
to O(bd/2)

Sudoku

Example puzzle with a unique solution No duplicates in row, column, or 3x3 box

Solving Sudoku via Search

• 20 squares fixed and

61 need to be solved

• Find possible entries

– A2: 1 2 3 4 5 6 7 8 9

– A3: 1 2 3 4 5 6 7 8 9

• Build a tree:

A2 A3

A2

A3 A3 A3 A3

1

6 7

9

• 61 depth, max 8 branching factor

• 4.6 x 1038 possibilities

• Even on 1 million 10GHz, 1024 core

machines, this is 1300 billion years!

A Smarter Way
• Find possible entries

– A2: 1 2 3 4 5 6 7 8 9
– A3: 1 2 3 4 5 6 7 8 9

• Once we choose A2,
that further limits our
choices

A2 A3

A2

A3 A3 A3 A3

1
6 7

9

Constraint Satisfaction Problems

• In a typical search problem
– state is a “black box” – any data structure that supports

successor function, heuristic function, and goal test
• In a constraint satisfaction problem (CSP):

– state is an assignment of values from a domain Di to a
set of variables Xi

– goal test is a set of constraints specifying allowable
combinations of values for subsets of variables

• A solution to a CSP is one that is complete (all variables
are assigned) and consistent (no constraints are violated)

• Simple example of a formal representation language

Sudoku as a CSP
• Domain = {1, 2, 3, 4, 5, 6, 7, 8, 9}
• Variables = { A1, A2, ... A9,

B1, B2, … B9,
…
I1, I2, … I9 }

• Constraints from row, column,
and 3x3 cell restrictions

• Constraints =
{A1≠A2, A1≠A3, A1≠A4, …
A1≠B1, A1≠C1, A1≠D1, …
A1≠B2, A1≠B3, A1≠C1, …}

Simpler Example: Map Coloring

• Variables Vi = {WA, NT, Q, NSW, V, SA, T }
• Domain Di = {red, green, blue}
• Constraints: adjacent regions must have different colors

– e.g., WA ≠ NT, or (WA,NT) in {(red,green), (red,blue), (green,red), (green,blue),
(blue,red), (blue,green)}

Simpler Example: Map Coloring

• Solutions are complete and consistent assignments
• One solution is shown above

WA = red, NT = green, Q = red, NSW = green,
V = red, SA = blue, T = green

Constraint Graph
• Constraint graph:

– nodes are variables
– arcs are constraints

• CSP benefits
– Standard representation pattern:

variables with values
– Generic goal, successor functions
– Generic heuristics (no domain

specific expertise)
– Graph can simplify search.

• e.g. Tasmania is an independent
subproblem.

WA ¹ NT

WA ¹ SA

N
T ¹

S
A

NT ¹ Q

SA ¹ V

SA ¹ NSW

SA ¹
Q

Q
¹

NSW

V ¹
NSW

Another Example: Cryptarithmetic

T W O
+ T W O

F O U R

Another Example: Cryptarithmetic

Variables: F, O, U, R, T, W, X1, X2, X3
Domain: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
Constraints: Alldiff (F, O, U, R, T, W)

O + O = R + 10 · X1
X1 + W + W = U + 10 · X2
X2 + T + T = O + 10 · X3
X3 = F, T ≠ 0, F ≠ 0

Varieties of CSPs
• Discrete variables

– finite domains:
• n variables, domain size d à O(dn) complete assignments
• e.g., Boolean CSPs, incl.~Boolean satisfiability (NP-complete)

– infinite domains:
• integers, strings, etc.
• e.g., job scheduling, variables are start/end days for each job
• need a constraint language, e.g., StartJob1 + 5 ≤ StartJob3

• Continuous variables
– e.g., start/end times for Hubble Space Telescope

observations
– linear constraints solvable in polynomial time by linear

programming

Varieties of constraints

• Unary constraints involve a single variable,
– e.g., SA ≠ green

• Binary constraints involve pairs of
variables,
– e.g., SA ≠ WA

• Higher-order constraints involve 3 or more
variables,
– e.g., cryptarithmetic column constraints

Real-world CSPs
• Assignment problems

– e.g., who teaches what class

• Timetabling problems
– e.g., which class is offered when and where?

• Transportation scheduling
• Factory scheduling
• Circuit layout

• Notice that many real-world problems involve real-valued
variables

Solving CSPs
• Let’s start with a straightforward approach, then fix it.
• Just like we did with Sudoku, let’s treat this as a search

problem.
– Initial state: the empty assignment { }
– Successor function: assign a value to an unassigned variable

that does not conflict with current assignment
à fail if no legal assignments

– Goal test: the current assignment is complete

Backtracking search
• Variable assignments are commutative, i.e.,

[WA = red] followed by [NT = green] is the same as
[NT = green] followed by [WA = red]

• Only need to consider assignments to a single variable
at each depth of the tree

• Depth-first search for CSPs with single-variable
assignments is called backtracking search

• Backtracking search is the basic uninformed algorithm
for CSPs

• Can solve n-queens for n ≈ 25

Backtracking search

Backtracking example

Backtracking example

Backtracking example

Backtracking example

Improving backtracking efficiency

• General-purpose methods can give huge
gains in speed:
– Which variable should be assigned next?
– In what order should its values be tried?
– Can we detect inevitable failure early?

• Heuristics:
1. Most constrained variable
2. Most constraining variable
3. Least constraining value
4. Forward checking

H1: Most constrained variable

• Most constrained variable:
choose the variable with the fewest legal values

• a.k.a. minimum remaining values (MRV)
heuristic

H2: Most constraining variable

• Tie-breaker among most constrained
variables

• Most constraining variable:
– choose the variable with the most constraints

on remaining variables

H3: Least constraining value

• Given a variable, choose the least
constraining value:
– the one that rules out the fewest values in the

remaining variables
• Combining these heuristics makes 1000

queens feasible

H4: Forward checking

• Idea:
– Keep track of remaining legal values for unassigned

variables
– Terminate search when any variable has no legal

values

H4: Forward checking

• Idea:
– Keep track of remaining legal values for unassigned

variables
– Terminate search when any variable has no legal

values

H4: Forward checking

• Idea:
– Keep track of remaining legal values for unassigned

variables
– Terminate search when any variable has no legal

values

H4: Forward checking

• Idea:
– Keep track of remaining legal values for unassigned

variables
– Terminate search when any variable has no legal

values

Constraint propagation

• Forward checking propagates information from assigned
to unassigned variables, but doesn't provide early
detection for all failures:
– NT and SA cannot both be blue!

• Constraint propagation repeatedly enforces constraints
locally

Arc consistency

• Simplest form of propagation makes each arc consistent
• X àY is consistent iff

for every value x of X there is some allowed y

Arc consistency

• Simplest form of propagation makes each arc consistent
• X àY is consistent iff

for every value x of X there is some allowed y

Arc consistency

• Simplest form of propagation makes each arc consistent
• X àY is consistent iff

for every value x of X there is some allowed y
• If X loses a value, neighbors of X need to be rechecked

Arc consistency

• Simplest form of propagation makes each arc consistent
• X àY is consistent iff

for every value x of X there is some allowed y
• If X loses a value, neighbors of X need to be rechecked
• Arc consistency detects failure earlier than forward checking
• Can be run as a preprocessor or after each assignment

Arc consistency algorithm AC-3

• Time complexity: O(n2d3)

Example: 4-Queens Problem

1

3
2

4

32 41

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

Example: 4-Queens Problem

1

3
2

4

32 41

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

Example: 4-Queens Problem

1

3
2

4

32 41

X1
{1,2,3,4}

X3
{ ,2, ,4}

X4
{ ,2,3, }

X2
{ , ,3,4}

Example: 4-Queens Problem

1

3
2

4

32 41

X1
{1,2,3,4}

X3
{ ,2, ,4}

X4
{ ,2,3, }

X2
{ , ,3,4}

Example: 4-Queens Problem

1

3
2

4

32 41

X1
{1,2,3,4}

X3
{ , , , }

X4
{ ,2,3, }

X2
{ , ,3,4}

Backtrack!!!

Example: 4-Queens Problem

1

3
2

4

32 41

X1
{ ,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

Picking up a little later after two
steps of backtracking….

Example: 4-Queens Problem

1

3
2

4

32 41

X1
{ ,2,3,4}

X3
{1, ,3, }

X4
{1, ,3,4}

X2
{ , , ,4}

Example: 4-Queens Problem

1

3
2

4

32 41

X1
{ ,2,3,4}

X3
{1, ,3, }

X4
{1, ,3,4}

X2
{ , , ,4}

Example: 4-Queens Problem

1

3
2

4

32 41

X1
{ ,2,3,4}

X3
{1, , , }

X4
{1, ,3, }

X2
{ , , ,4}

Example: 4-Queens Problem

1

3
2

4

32 41

X1
{ ,2,3,4}

X3
{1, , , }

X4
{1, ,3, }

X2
{ , , ,4}

Example: 4-Queens Problem

1

3
2

4

32 41

X1
{ ,2,3,4}

X3
{1, , , }

X4
{ , ,3, }

X2
{ , , ,4}

Example: 4-Queens Problem

1

3
2

4

32 41

X1
{ ,2,3,4}

X3
{1, , , }

X4
{ , ,3, }

X2
{ , , ,4}

Example: n-queens
• States: n queens in n columns (nn states)
• Actions: move queen in column
• Goal test: no attacks
• Evaluation: h(n) = number of attacks

• Given random initial state, AC-3 can solve
n-queens in almost constant time for
arbitrary n with high probability (e.g., n =
10,000,000)

Summary
• CSPs are a special kind of problem:

– states defined by values of a fixed set of variables
– goal test defined by constraints on variable values

• Backtracking = depth-first search with one variable
assigned per node

• Heuristics help significantly
• Forward checking prevents assignments that

guarantee later failure
• Constraint propagation (e.g., arc consistency) does

additional work to constrain values and detect
inconsistencies

