First-Order Logic

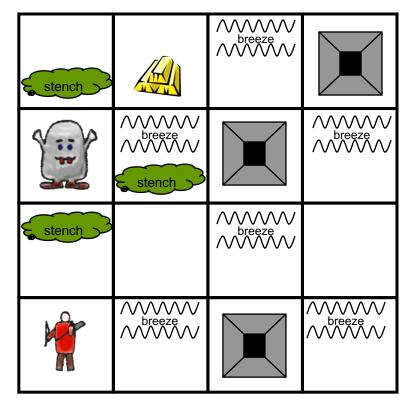
CPSC 470 – Artificial Intelligence Brian Scassellati

Where we left off...

Propositional Logic Syntax

 $Sentence \rightarrow AtomicSentence \mid ComplexSentence$ $AtomicSentence \rightarrow True \mid False \mid P \mid Q \mid ...$ $ComplexSentence \rightarrow (Sentence) \mid$ $Sentence Connective Sentence \mid$ $\neg Sentence$ $Connective \rightarrow \land \mid \lor \mid \Rightarrow \mid \Leftrightarrow$

Wumpus World



An Agent for the Wumpus World

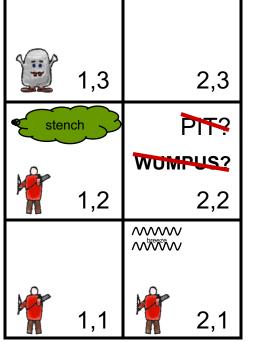
 Convert perceptions into sentences:

> "In square [1,1], there is no breeze and no stench" ... becomes...

 $\neg B_{11} \wedge \neg S_{11}$

• Start with some knowledge of the world (in the form of rules) R1 : $\neg S_{11} \Rightarrow \neg W_{11} \land \neg W_{12} \land \neg W_{21}$

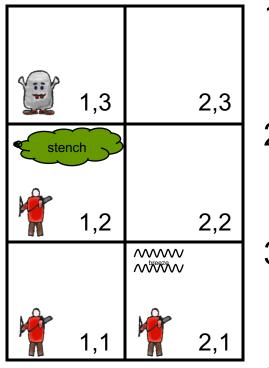
$$R2: \neg S_{21} \Rightarrow \neg W_{11} \land \neg W_{21} \land \neg W_{22}$$



. . . .

$$\mathsf{R4}:\mathsf{S}_{12} \Longrightarrow \mathsf{W}_{13} \lor \mathsf{W}_{12} \lor \mathsf{W}_{22} \lor \mathsf{W}_{11}$$

Finding the Wumpus



Percepts:

 $\neg S_{11} \\
 \neg S_{21} \\
 S_{12}$

Apply modus ponens and and-elimination 1. to $\neg S_{11} \Rightarrow \neg W_{11} \land \neg W_{12} \land \neg W_{21}$ to get $\neg W_{11} \neg W_{12} \neg W_{21}$ 2. Apply modus ponens and and-elimination to $\neg S_{21} \Rightarrow \neg W_{11} \land \neg W_{21} \land \neg W_{22}$ to get $\neg W_{22} \neg W_{21} \neg W_{31}$ 3. Apply modus ponens to $S_{12} \Rightarrow W_{13} \lor W_{12} \lor W_{22} \lor W_{11}$ to get $W_{13} \vee W_{12} \vee W_{22} \vee W_{11}$ Apply unit resolution to #3 and #1 4. $W_{13} \vee W_{22}$ 5. Apply unit resolution to #4 and #2 W_{13}

The wumpus is in square [1,3]!!!

Problems with Propositional Logic

- Too many propositions!
 - How can you encode a rule such as "don't go forward if the wumpus is in front of you"?
 - In propositional logic, this takes (16 squares * 4 orientations) = 64 rules!
- Truth tables become unwieldy quickly
 - Size of the truth table is 2ⁿ where n is the number of propositional symbols

More Problems with Propositional Logic

No good way to represent changes in the world

- How do you encode the location of the agent?

- What kinds of practical applications is this good for?
 - Relatively little

First-Order Logic

- Also known as First-Order Predicate Calculus (FOPC)
- Most studied form of knowledge representation
- Ontological commitments

 World is composed of objects and properties
- Expressions will include both
 - Sentences: represent facts
 - Terms: represent objects

Sentence \rightarrow AtomicSentence Sentence Connective Sentence *Quantifier Variable,...Sentence ¬Sentence* (Sentence) AtomicSentence \rightarrow Predicate(Term,...) *Term* = *Term* $Term \rightarrow Function(Term,...)$ Constant Variable *Connective* $\rightarrow \Rightarrow | \land | \lor | \Leftrightarrow$ *Quantifier* $\rightarrow \forall \mid \exists$ *Variable* \rightarrow *a* | *b* | *c* |... Function \rightarrow Mother | LeftLegOf |... *Predicate* \rightarrow *Before* | *HasColor* | *Raining* |... Constant $\rightarrow A \mid X_1 \mid John \mid ...$

Constant Symbols (A, B, John, ...)

- A symbol names exactly one object
- But each object might have multiple names (and some objects might not have a name)
- Predicate Symbols (Round, Brother,...)
 - Defined by a set of tuples of objects that satisfy the predicate
- Function Symbols (Cosine, FatherOf, ...)
 - A relation in which any given object is related to exactly one other object by this relation
 - Uniquely determines an object (without giving it a name)

Sentence \rightarrow *AtomicSentence* Sentence Connective Sentence *Quantifier Variable,...Sentence ¬Sentence* (Sentence) AtomicSentence \rightarrow Predicate(Term,...) *Term* = *Term* $Term \rightarrow Function(Term,...)$ *Constant* Variable *Connective* $\rightarrow \Rightarrow | \land | \lor | \Leftrightarrow$ *Quantifier* $\rightarrow \forall \mid \exists$ *Variable* $\rightarrow a | b | c | \dots$ Function \rightarrow Mother | LeftLegOf |... $Predicate \rightarrow Before \mid HasColor \mid Raining \mid ...$ Constant $\rightarrow A \mid X_1 \mid John \mid ...$

- Variables (*a*, *b*, *c*, ...)
 - Stand for an object (without naming it)
- Terms (John, FatherOf(John), a,...)
 - A logical expression that refers to an object
 - Can be a constant or a variable
 - Can be a function of a list of terms

```
Sentence \rightarrow AtomicSentence
                  Sentence Connective Sentence
                 Quantifier Variable,...Sentence
                 ¬Sentence
                 (Sentence)
AtomicSentence \rightarrow Predicate(Term,...)
                              Term = Term
Term \rightarrow Function(Term,...)
                  Constant
                  Variable
Connective \rightarrow \Rightarrow | \land | \lor | \Leftrightarrow
Quantifier \rightarrow \forall \mid \exists
Variable \rightarrow a | b | c |...
Function \rightarrow Mother | LeftLegOf |...
Predicate \rightarrow Before \mid HasColor \mid Raining \mid ...
Constant \rightarrow A \mid X_1 \mid John \mid ...
```

- Atomic Sentences via Predicates
 - Examples:
 - Round(Coconut)
 - Brother(Cain, Abel)
 - Older(John, 35)
 - Square(Baseball)
 - Assertions that represent a fact about the world
 - Again, can be true or false given the state of the world

Sentence \rightarrow AtomicSentence Sentence Connective Sentence *Quantifier Variable,...Sentence ¬Sentence* (Sentence) AtomicSentence \rightarrow Predicate(Term,...) *Term* = *Term* $Term \rightarrow Function(Term,...)$ Constant Variable *Connective* $\rightarrow \Rightarrow | \land | \lor | \Leftrightarrow$ *Quantifier* $\rightarrow \forall \mid \exists$ *Variable* \rightarrow *a* | *b* | *c* |... Function \rightarrow Mother | LeftLegOf |... $Predicate \rightarrow Before \mid HasColor \mid Raining \mid ...$ Constant $\rightarrow A \mid X_1 \mid John \mid ...$

- Atomic Sentences via Equality
 - Examples
 - Father(John)=Henry
 - 1=Cosine(pi)
 - Three=Two
 - Asserts that the two terms refer to the same real-world object

Sentence \rightarrow AtomicSentence Sentence Connective Sentence *Quantifier Variable,...Sentence ¬Sentence* (Sentence) AtomicSentence \rightarrow Predicate(Term,...) *Term* = *Term* $Term \rightarrow Function(Term,...)$ Constant Variable *Connective* $\rightarrow \Rightarrow | \land | \lor | \Leftrightarrow$ *Quantifier* $\rightarrow \forall \mid \exists$ *Variable* \rightarrow *a* | *b* | *c* |... Function \rightarrow Mother | LeftLegOf |... $Predicate \rightarrow Before \mid HasColor \mid Raining \mid ...$ Constant $\rightarrow A \mid X_1 \mid John \mid ...$

• Connectives ($\Rightarrow \land \lor \Leftrightarrow$)

- Work the same way as in predicate calculus
- Complex Sentence
 - Atomic Sentence
 - Connectives
 - Negated Sentence
 - Parentheses

Sentence \rightarrow AtomicSentence Sentence Connective Sentence Quantifier Variable,...Sentence *¬Sentence* (Sentence) AtomicSentence \rightarrow Predicate(Term,...) *Term* = *Term* $Term \rightarrow Function(Term,...)$ Constant Variable *Connective* $\rightarrow \Rightarrow | \land | \lor | \Leftrightarrow$ *Quantifier* $\rightarrow \forall \mid \exists$ *Variable* \rightarrow *a* | *b* | *c* |... Function \rightarrow Mother | LeftLegOf |... $Predicate \rightarrow Before \mid HasColor \mid Raining \mid ...$ Constant $\rightarrow A \mid X_1 \mid John \mid ...$

Quantifiers (∃, ∀)

The real power of first-order logic

- Express properties of entire collections of objects rather than having to enumerate all the objects by name
- Universal Quantifier (∀)
 - "all cats are mammals"
 ∀x Cat(x)⇒Mammal(x)
- Existential Quantifier (\exists)
 - "there exists a fish that can fly"
 ∃x Fish(x)∧CanFly(x)

Universal Quantification (\forall)

- Makes a statement about all objects in the universe
 - ∀x Cat(x)⇒Mammal(x) expands using conjunction:
 Cat(Felix)⇒Mammal(Felix) ∧ Cat(Fluffy)⇒Mammal(Fluffy) ∧
 Cat(Spot)⇒Mammal(Spot) ∧
 Cat(Sylvester)⇒Mammal(Sylvester) ∧ …
 - What if the universe includes non-cats?
 - $Cat(Scaz) \Rightarrow Mammal(Scaz) \land Cat(Tree) \Rightarrow Mammal(Tree) \land \dots$
 - Still OK... because if Cat(Scaz) is false, then Cat(Scaz)⇒Mammal(Scaz) is true
 - Can we express "all cats are mammals" as
 ∀x Cat(x) ∧ Mammal(x)
 - No... requires that all objects are both cats and mammals

Existential Quantification (3)

- Makes a statement about some object in the universe
 - "Spot has a sister that is a cat" is expressed as
 ∃x Sister(x,Spot) ∧ Cat(x)
 - Expands using disjunction: (Sister(Fluffy, Spot) ^ Cat(Fluffy)) ~ (Sister(Richard, Spot) ^ Cat(Richard)) ~ (Sister(BigRock, Spot) ^ Cat(BigRock)) ~ ...
 - What if multiple objects fulfill the requirements?
 - Still ok... True or True is still True
 - Can you express this with an implication?
 - $\exists x \text{ Sister}(x, \text{Spot}) \Rightarrow \text{Cat}(x)$

Results in nonsense... if any object is not Spot's sister, then this relation is true

Nested Quantifiers

- "If x is the parent of y, then y is the child of x"
 ∀x ∀y Parent(x,y) ⇒ Child(y,x)
 Syntactic sugar:
 ∀x,y Parent(x,y) ⇒ Child(y,x)
- "Everybody loves somebody"
 ∀x ∃y Loves(x,y)
- Is this the same as $\exists y \forall x Loves(x,y)$?
 - No... this sentence states that "there exists someone who is loved by everyone"

Connections between \forall and \exists

 "Everyone dislikes parsnips" is equivalent to "there does not exist someone who likes parsnips":

 $\forall x \neg Likes(x, Parsnips)$ is equivalent to

 $\neg \exists x \ Likes(x, Parsnips)$

 Similarly, "Everyone likes Scheme" is equivalent to "there is no one who does not like Scheme"
 ∀x Likes(x,Scheme) is equivalent to
 ¬∃x ¬ Likes(x,Scheme)

Extensions and Variations of First-Order Logic

Higher-Order Logics

- "First-Order" Logic implies that you can quantify over *objects*, but not over *relations*
- Higher order logics allow quantification over relations and functions
 - Define equality as objects that have the same properties

 $\forall x, y (x=y) \Leftrightarrow (\forall p \ p(x) \Leftrightarrow p(y))$

 or the equality of functions that give the same value for all arguments

 $\forall f,g (f=g) \Leftrightarrow (\forall x f(x)=g(x))$

Functional and Predicate Expressions using λ

- Allows for the construction of complex predicates
- Examples
 - A predicate for "difference of squares"

 λ x,y x²-y²

 $(\lambda x, y x^2 - y^2)(2, 1) = 3$

A predicate for "are of differing gender and of the same age"

 $\lambda x, y Gender(x) \neq Gender(y) \land Age(x) = Age(y)$

Should look familiar from Scheme/Lisp

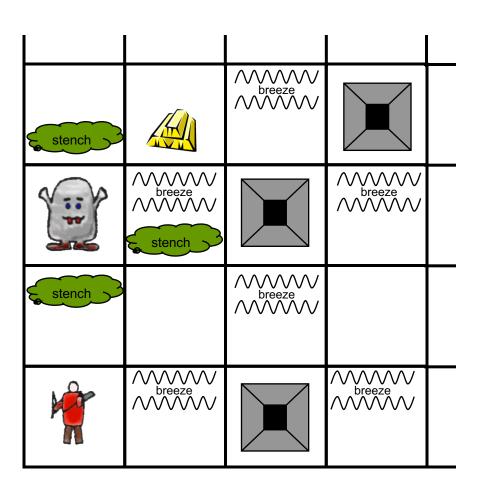
Other Notations

- Notational variations exist (especially within other fields that use logic)
- Some other operators are also useful – Uniqueness quantifier
 - "Every student has exactly one advisor"
 ∀x Student(x) ⇒ ∃! y Advisor(y, x)
 - Uniqueness operator
 - "The y that is the advisor to Jessica is on sabbatical"

Sabbatical (1) y Advisor(y, Jessica))

Greek letter iota

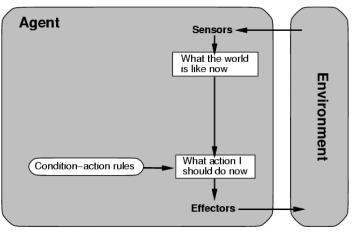
Advantages of Using First-Order Logic: Wumpus Example



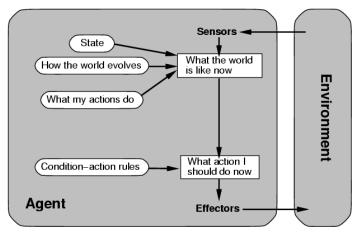
- Consider an infinite or unknown board configuration
- How many propositional rules are required?
- First-order logic can handle this

Logical Agents for the Wumpus World

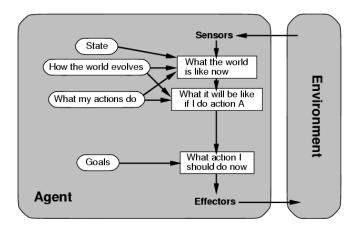
- We will consider three types of agent:
 - Reflex Agent
 - Model-Based Agent
 - Goal-Based Agent



Reflex Agent



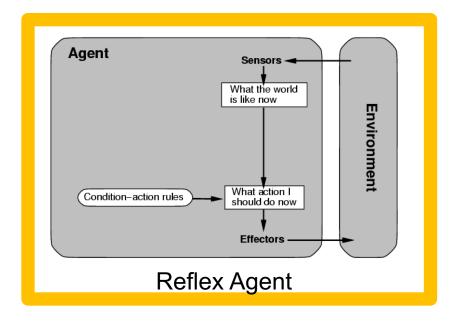
Model-Based Agent

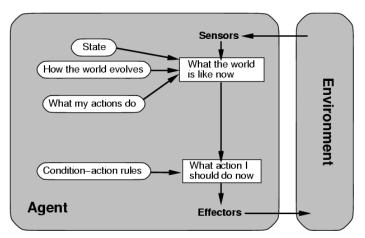


Goal-Based Agent

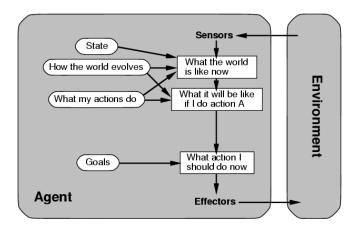
Logical Agents for the Wumpus World

- We will consider three types of agent:
 - Reflex Agent
 - Model-Based Agent
 - Goal-Based Agent



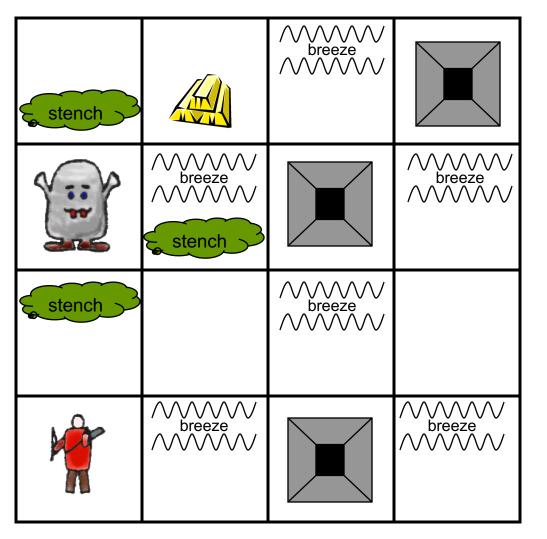


Model-Based Agent



Goal-Based Agent

Defining the Interface



- Percept as a statement:
 - Percept([Stench, Breeze, Glitter, Bump, Scream], time)
- Agent's actions
 - Turn(left)
 - Turn(right)
 - Forward
 - Shoot
 - Grab
 - Drop
- Determine the best action for a particular time
 - ∃a Action(a,t)

A Simple Reflex Wumpus-Hunter

- Determine a set of action rules
 - Anytime you see gold, grab it ∀s,b,u,c,t Percept([s,b,Glitter,u,c],t) ⇒ Action(Grab,t)
- Make some simplifications for perception
 - Declare AtGold(t) anytime you detect glitter ∀s,b,u,c,t Percept([s,b,Glitter,u,c],t) ⇒ AtGold(t)
 - Simplified action rule

 $\forall t \ AtGold(t) \Rightarrow Action(Grab,t)$

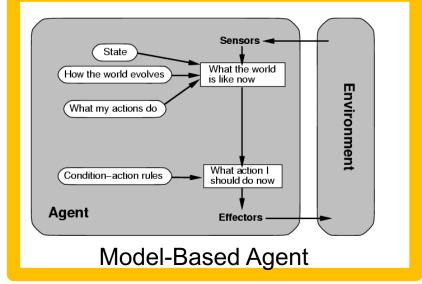
 How many rules would you need to do this in propositional logic?

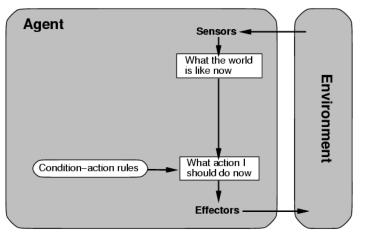
Limitations of the Simple Reflex Wumpus-Hunter

- Unable to maintain state
 - How do you know when you've grabbed the gold, or that the wumpus is already dead?
- Unable to avoid infinite loops
 - If you have the gold and are tracing back through your steps, the states look the same and thus the actions must be the same

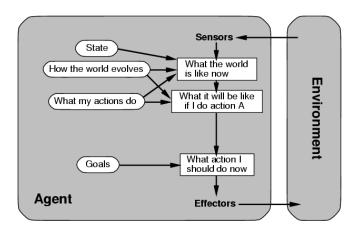
Logical Agents for the Wumpus World

- We will consider three types of agent:
 - Reflex Agent
 - Model-Based Agent
 - Goal-Based Agent





Reflex Agent

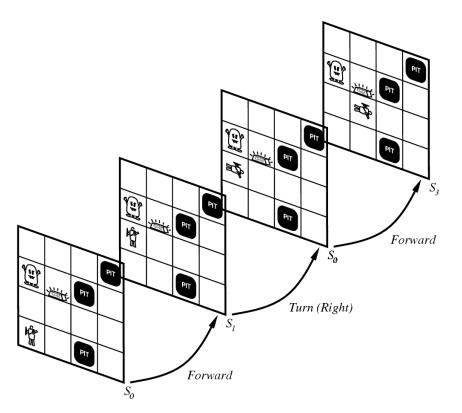


Goal-Based Agent

Representing Change in the World

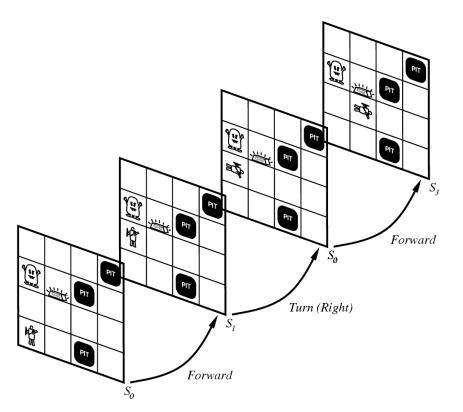
- Maintaining an internal model of the world
- Many ways to accomplish this
 - Continually change the knowledge base (erase some sentences and add others)
 - Erase Location(Agent)=Square(1,1)
 - Add Location(Agent)=Square(1,2)
 - Maintain past knowledge as part of the world state (and perhaps future possible actions)
- Representing situations and actions is no different than representing objects and relations

Situation Calculus



- Simplest (and oldest) solution to internal modeling
- World consists of a sequence of situations or snapshots
- New situations are generated by taking an action

Situation Calculus



 Situations are indexed

At(Agent,[1,1], S_0) \land At(Agent,[1 2], S_1)

Changes from one situation to the next
 Result(Forward, S₀)⇒S₁
 Result(Turn(R), S₁)⇒S₂

Situation Calculus Axioms

- Effect axioms tell how the world changes between situations
 - After you drop an object, you are no longer holding it
 ∀x,s ¬Holding(x, Result(Drop,s))
- Frame axioms tell how the world stays the same between situations
 - If you are holding an object and you do not drop it, you are still holding it

 $\forall a,x,s \text{ Holding}(x,s) \land (a \neq Drop) \Rightarrow$ Holding(x, Result(a,s))

Situation Calculus Axioms

 Successor State Axioms combine a frame axiom with an effect axiom to tell how modifiable predicates change over time

true afterwards \Leftrightarrow [an action made it true \lor true already and no action made it false]

 $\forall a,x,s \; Holding(x,Result(a,s)) \Leftrightarrow$ [(a = Grab \land Present(x,s) \land Portable(x)) \lor (Holding(x,s) \land a \neq Release)]

Two ways to represent world knowledge

- Diagnostic rules infer the presence of hidden properties directly from percepts
 ∀I,s At(Agent,I,s) ∧ Stench(s) ⇒ Smelly(I)
- Causal rules reflect the assumed direction of causality in the world

 $\forall I_1, I_2, s At(Wumpus, I_1, s) \land Adjacent(I_1, I_2) \\ \Rightarrow Smelly(I_2)$

- Systems that use causal rules are called modelbased reasoning systems
 - These differences will come up again in a few weeks...

Finding the Wumpus

• A diagnostic rule can be used to determine the location of the wumpus

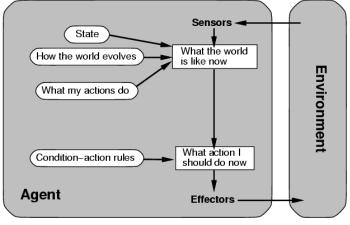
$\begin{array}{l} \forall \mathsf{I}_1, \mathsf{s} \; \mathsf{Smelly}(\mathsf{I}_1) \Rightarrow [\\ \exists \mathsf{I}_2 \; \; \mathsf{At}(\mathsf{Wumpus}, \mathsf{I}_2, \mathsf{s}) \land \\ & (\mathsf{I}_1 = \mathsf{I}_2 \lor \mathsf{Adjacent}(\mathsf{I}_1, \mathsf{I}_2)) \end{array} \right] \end{array}$

Finding the Safe Squares

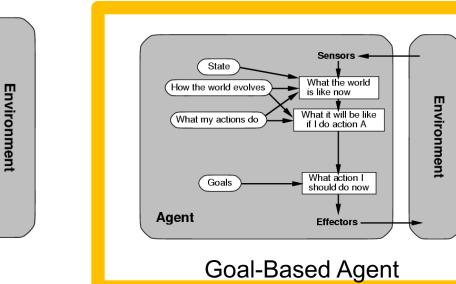
- A diagnostic rule can only draw a weak conclusion about safe squares
 ∀x,y,g,u,c,s Percept([None,None,g,u,c],t) ∧ At(Agent,x,s) ∧ Adjacent(x,y) ⇒ OK(y)
- But sometimes a square can be safe when smells and breezes abound.
- A causal rule gives a better representation
 ∀x,t (¬At(Wumpus,x,t) ∧ ¬Pit(x)) ⇔ OK(x)

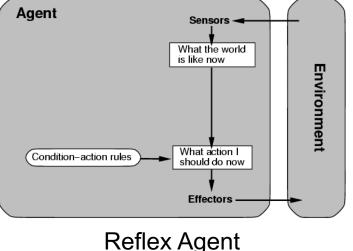
Logical Agents for the Wumpus World

- We will consider three types of agent:
 - Reflex Agent
 - Model-Based Agent
 - Goal-Based Agent



Model-Based Agent





Toward a Goal-Based Agent

- How do you turn around once you have the gold?
 - Add a new state that represents the goal action
 - $\forall s \text{ Holding(Gold, s)} \Rightarrow \text{Goal(GoHome, s)}$
- How do you find the sequence of actions?
 Search
 - Inference
 - Planning (coming up in a few weeks...)

Coming Up...

- How to use first-order logic to solve these problems
 - Forward chaining
 - Backward chaining
- Things that first-order logic can't do