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Where we left off…
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An Agent for the Wumpus World
• Convert perceptions into 

sentences:
“In square [1,1], there is no breeze 
and no stench” … becomes…
¬B11 Ù ¬S11

• Start with some knowledge of the 
world (in the form of rules)
R1 : ¬S11 Þ ¬W11 Ù ¬W12 Ù ¬W21

R2 : ¬S21 Þ ¬W11 Ù ¬W21 Ù ¬W22

….
R4 : S12 Þ W13 Ú W12 Ú W22 Ú W11
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1,2

1,1

2,3

2,2
WUMPUS?

2,1
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Finding the Wumpus

breeze

stench

1,3

1,2

1,1

2,3

2,2

2,1

1. Apply modus ponens and and-elimination 
to ¬S11 Þ ¬W11 Ù ¬W12 Ù ¬W21 to get 

¬W11         ¬W12 ¬W21
2. Apply modus ponens and and-elimination 

to ¬S21 Þ ¬W11 Ù ¬W21 Ù ¬W22 to get
¬W22 ¬W21 ¬W31

3. Apply modus ponens to 
S12 Þ W13 Ú W12 Ú W22 Ú W11 to get 
W13 Ú W12 Ú W22 Ú W11

4. Apply unit resolution to #3 and #1
W13 Ú W22

5. Apply unit resolution to #4 and #2
W13

The wumpus is in square [1,3]!!!

Percepts:
¬S11

¬S21

S12



Problems with Propositional Logic

• Too many propositions!
– How can you encode a rule such as “don’t go 

forward if the wumpus is in front of you”?
– In propositional logic, this takes (16 squares * 

4 orientations) = 64 rules!
• Truth tables become unwieldy quickly

– Size of the truth table is 2n where n is the 
number of propositional symbols



More Problems with 
Propositional Logic

• No good way to represent changes in the 
world
– How do you encode the location of the agent?

• What kinds of practical applications is this 
good for?
– Relatively little



First-Order Logic
• Also known as First-Order Predicate 

Calculus (FOPC)
• Most studied form of knowledge 

representation
• Ontological commitments

– World is composed of objects and properties
• Expressions will include both 

– Sentences: represent facts
– Terms: represent objects
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Syntax and Semantics
of First-Order Logic

• Constant Symbols (A, B, John, …)
– A symbol names exactly one object
– But each object might have multiple 

names (and some objects might not 
have a name)

• Predicate Symbols (Round, 
Brother,…)
– Defined by a set of tuples of objects 

that satisfy the predicate
• Function Symbols (Cosine, 

FatherOf, …)
– A relation in which any given object is 

related to exactly one other object by 
this relation

– Uniquely determines an object (without 
giving it a name)
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Syntax and Semantics
of First-Order Logic

• Variables (a, b, c, …)
– Stand for an object (without 

naming it)
• Terms (John, FatherOf(John), 

a,…)
– A logical expression that refers 

to an object
– Can be a constant or a variable
– Can be a function of a list of 

terms
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Syntax and Semantics
of First-Order Logic

• Atomic Sentences via 
Predicates
– Examples:

• Round(Coconut)
• Brother(Cain, Abel)
• Older(John, 35)
• Square(Baseball)

– Assertions that represent a fact 
about the world 

– Again, can be true or false given 
the state of the world
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Syntax and Semantics
of First-Order Logic

• Atomic Sentences via Equality
– Examples

• Father(John)=Henry

• 1=Cosine(pi)

• Three=Two

– Asserts that the two terms refer 
to the same real-world object



Syntax and Semantics
of First-Order Logic

• Connectives ( Þ Ù Ú Û )
– Work the same way as in 

predicate calculus
• Complex Sentence 

– Atomic Sentence
– Connectives
– Negated Sentence
– Parentheses
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Syntax and Semantics
of First-Order Logic

• Quantifiers ($, ")
– The real power of first-order 

logic
– Express properties of entire 

collections of objects rather than 
having to enumerate all the 
objects by name

– Universal Quantifier (")
• “all cats are mammals”
"x Cat(x)ÞMammal(x)

– Existential Quantifier ($)
• “there exists a fish that can fly”
$x  Fish(x)ÙCanFly(x)



Universal Quantification (")

• Makes a statement about all objects in the 
universe
– "x Cat(x)ÞMammal(x) expands using conjunction:

Cat(Felix)ÞMammal(Felix) Ù Cat(Fluffy)ÞMammal(Fluffy) Ù
Cat(Spot)ÞMammal(Spot) Ù
Cat(Sylvester)ÞMammal(Sylvester) Ù …

– What if the universe includes non-cats?
Cat(Scaz)ÞMammal(Scaz) Ù Cat(Tree)ÞMammal(Tree) Ù …
• Still OK… because if Cat(Scaz) is false, then 

Cat(Scaz)ÞMammal(Scaz) is true

– Can we express “all cats are mammals” as 
"x Cat(x) Ù Mammal(x)
• No… requires that all objects are both cats and mammals



Existential Quantification ($)
• Makes a statement about some object in the 

universe
– “Spot has a sister that is a cat” is expressed as 

$x  Sister(x,Spot) Ù Cat(x)
– Expands using disjunction:

(Sister(Fluffy, Spot) Ù Cat(Fluffy)) Ú
(Sister(Richard, Spot) Ù Cat(Richard)) Ú
(Sister(BigRock, Spot) Ù Cat(BigRock)) Ú …

– What if multiple objects fulfill the requirements? 
• Still ok… True or True is still True

– Can you express this with an implication?
$x  Sister(x,Spot) Þ Cat(x)
Results in nonsense… if any object is not Spot’s sister, then 

this relation is true



Nested Quantifiers

• “If x is the parent of y, then y is the child of x”

"x "y  Parent(x,y)  Þ Child(y,x)

Syntactic sugar:  

"x,y  Parent(x,y)  Þ Child(y,x)

• “Everybody loves somebody”

"x $y  Loves(x,y)

• Is this the same as   $y "x Loves(x,y) ?

– No… this sentence states that “there exists 

someone who is loved by everyone”



Connections between " and $
• “Everyone dislikes parsnips” is equivalent to 

“there does not exist someone who likes 
parsnips”:
"x ¬Likes(x,Parsnips)  is equivalent to
¬ $x  Likes(x,Parsnips)

• Similarly, “Everyone likes Scheme” is equivalent 
to “there is no one who does not like Scheme”
"x Likes(x,Scheme)  is equivalent to
¬ $x ¬ Likes(x,Scheme)



Extensions and Variations
of First-Order Logic



Higher-Order Logics
• “First-Order” Logic implies that you can quantify 

over objects, but not over relations
• Higher order logics allow quantification over 

relations and functions
– Define equality as objects that have the same 

properties 
"x,y (x=y) Û ("p  p(x) Û p(y))

– or the equality of functions that give the same value 
for all arguments
"f,g (f=g) Û ("x  f(x)=g(x))



Functional and Predicate 
Expressions using λ

• Allows for the construction of complex 
predicates

• Examples
– A predicate for “difference of squares”

λ x,y  x2-y2

(λ x,y  x2-y2)(2, 1) = 3
– A predicate for “are of differing gender and of the 

same age”
λ x,y Gender(x)≠Gender(y) Ù Age(x)=Age(y)

• Should look familiar from Scheme/Lisp



Other Notations
• Notational variations exist (especially 

within other fields that use logic)
• Some other operators are also useful

– Uniqueness quantifier
• “Every student has exactly one advisor”
"x  Student(x) Þ $! y Advisor(y, x)

– Uniqueness operator
• “The y that is the advisor to Jessica is on 

sabbatical”
Sabbatical( i y Advisor(y, Jessica))

Greek letter iota



Advantages of Using First-Order 
Logic: Wumpus Example

breeze breeze

breeze

breezebreeze

breeze

stench

stench

stench

• Consider an infinite or 
unknown board 
configuration

• How many 
propositional rules are 
required?

• First-order logic can 
handle this



Logical Agents for the 
Wumpus World

• We will consider three 
types of agent:
– Reflex Agent
– Model-Based Agent
– Goal-Based Agent

Reflex Agent Goal-Based Agent

Model-Based Agent



Logical Agents for the 
Wumpus World

• We will consider three 
types of agent:
– Reflex Agent
– Model-Based Agent
– Goal-Based Agent

Reflex Agent Goal-Based Agent

Model-Based Agent



Defining the Interface
• Percept as a 

statement:
– Percept([Stench, 

Breeze, Glitter, Bump, 
Scream], time)

• Agent’s actions
– Turn(left)
– Turn(right)
– Forward
– Shoot
– Grab
– Drop

• Determine the best 
action for a particular 
time
$a Action(a,t)

breeze breeze

breeze

breezebreeze

breeze

stench

stench

stench



A Simple Reflex Wumpus-Hunter

• Determine a set of action rules
– Anytime you see gold, grab it

"s,b,u,c,t Percept([s,b,Glitter,u,c],t) Þ Action(Grab,t)

• Make some simplifications for perception
– Declare AtGold(t) anytime you detect glitter

"s,b,u,c,t Percept([s,b,Glitter,u,c],t) Þ AtGold(t)
– Simplified action rule

"t  AtGold(t) Þ Action(Grab,t)

• How many rules would you need to do this 
in propositional logic?



Limitations of the 
Simple Reflex Wumpus-Hunter

• Unable to maintain state
– How do you know when you’ve grabbed the 

gold, or that the wumpus is already dead?
• Unable to avoid infinite loops

– If you have the gold and are tracing back 
through your steps, the states look the same 
and thus the actions must be the same



Logical Agents for the 
Wumpus World

• We will consider three 
types of agent:
– Reflex Agent
– Model-Based Agent
– Goal-Based Agent

Reflex Agent Goal-Based Agent

Model-Based Agent



Representing Change in the World

• Maintaining an internal model of the world
• Many ways to accomplish this

– Continually change the knowledge base 
(erase some sentences and add others)

• Erase   Location(Agent)=Square(1,1)
• Add Location(Agent)=Square(1,2)

– Maintain past knowledge as part of the world 
state (and perhaps future possible actions)

• Representing situations and actions is no 
different than representing objects and 
relations



Situation Calculus
• Simplest (and oldest) 

solution to internal 
modeling

• World consists of a 
sequence of 
situations or 
snapshots

• New situations are 
generated by taking 
an action



Situation Calculus
• Situations are 

indexed
At(Agent,[1,1], S0) Ù

At(Agent,[1 2], S1)
• Changes from one 

situation to the next
Result(Forward, S0)ÞS1

Result(Turn(R), S1)ÞS2



Situation Calculus Axioms
• Effect axioms tell how the world changes 

between situations
– After you drop an object, you are no longer holding it
"x,s  ¬Holding(x, Result(Drop,s))

• Frame axioms tell how the world stays the same 
between situations
– If you are holding an object and you do not drop it, 

you are still holding it
"a,x,s  Holding(x,s) Ù (a ≠ Drop) Þ

Holding(x, Result(a,s))



Situation Calculus Axioms
• Successor State Axioms combine a frame axiom 

with an effect axiom to tell how modifiable 
predicates change over time

true afterwards Û [an action made it true
Ú true already and no action made it false]

"a,x,s  Holding(x,Result(a,s)) Û
[(a = Grab Ù Present(x,s) Ù Portable(x))
Ú (Holding(x,s) Ù a ≠ Release)]



Two ways to represent 
world knowledge

• Diagnostic rules infer the presence of hidden 
properties directly from percepts
"l,s  At(Agent,l,s) Ù Stench(s) Þ Smelly(l)

• Causal rules reflect the assumed direction of 
causality in the world
"l1,l2,s  At(Wumpus,l1,s) Ù Adjacent(l1,l2) 

Þ Smelly(l2)
• Systems that use causal rules are called model-

based reasoning systems
– These differences will come up again in a few 

weeks…



Finding the Wumpus

• A diagnostic rule can be used to determine 
the location of the wumpus

"l1,s Smelly(l1) Þ [
$l2 At(Wumpus,l2,s) Ù

(l1=l2 Ú Adjacent(l1,l2))  ] 



Finding the Safe Squares

• A diagnostic rule can only draw a weak 
conclusion about safe squares

"x,y,g,u,c,s  Percept([None,None,g,u,c],t) Ù
At(Agent,x,s) Ù Adjacent(x,y) Þ OK(y)

• But sometimes a square can be safe when 
smells and breezes abound.

• A causal rule gives a better representation 

"x,t  (¬At(Wumpus,x,t) Ù ¬Pit(x)) Û OK(x)



Logical Agents for the 
Wumpus World

• We will consider three 
types of agent:
– Reflex Agent
– Model-Based Agent
– Goal-Based Agent

Reflex Agent Goal-Based Agent

Model-Based Agent



Toward a Goal-Based Agent
• How do you turn around once you have 

the gold?
– Add a new state that represents the goal 

action
"s  Holding(Gold, s) Þ Goal(GoHome, s)

• How do you find the sequence of actions?
– Search
– Inference
– Planning (coming up in a few weeks…)



Coming Up…

• How to use first-order logic to solve these 
problems
– Forward chaining
– Backward chaining

• Things that first-order logic can’t do


