First-Order Logic

CPSC 470 — Artificial Intelligence
Brian Scassellati

Where we left off...

Wumpus World

Propositional Logic Syntax W

Sentence — AtomicSentence | ComplexSentence .' @A

AtomicSentence — True | False | P | Q | ...

AAATAVAAY,
) breeze breeze
ComplexSentence — (Sentence) | AVAVAVAYAVAY, AVAVAVAAVAV]
Sentence Connective Sentence | S J |.

breeze breeze

—Sentence .| NV
. breeze
Connective > A |V | = | < ANV

An Agent for the Wumpus World

« Convert perceptions into

sentences:
“In square [1,1], there is no breeze
and no stench” ... becomes... & |3 23
—B11 A =Sy O

« Start with some knowledge of the ‘ﬁ' WOMRUS?
world (in the form of rules) 1.2

R1: —|S11 — —|W11 /\ —|VV12 /\ —|W21
R2: —|821 = —|W11 AN —|VV21 AN —|W22 ﬁ' 1,1 *' 2.1

R4 : 812:> W13 V VV12 V W22\/ VV11

Finding the Wumpus

2,3

Percepts:

S12

1.

Apply modus ponens and and-elimination
to —|S11 — —|VV11 A\ —|W12 /\ —|W21 to get

—W,, —W,;, Wy

Apply modus ponens and and-elimination
to —|821 — —|W11 A\ —|W21 /\ —|W22 to get

Apply modus ponens to
812 — W13 V W12 V W22 V W11 to get
Wiz v Wy, v Wy, v Wy,

Apply unit resolution to #3 and #1
Wiz v Wy,

Apply unit resolution to #4 and #2
W3

The wumpus is in square [1,3]!!!

Problems with Propositional Logic

 Too many propositions!

— How can you encode a rule such as “don’t go
forward if the wumpus is in front of you™?

— In propositional logic, this takes (16 squares *
4 orientations) = 64 rules!
* Truth tables become unwieldy quickly

— Size of the truth table is 2" where n is the
number of propositional symbols

More Problems with
Propositional Logic

* No good way to represent changes in the
world
— How do you encode the location of the agent?

* What kinds of practical applications is this
good for?

— Relatively little

First-Order Logic

Also known as First-Order Predicate
Calculus (FOPC)

Most studied form of knowledge
representation

Ontological commitments
— World is composed of objects and properties

Expressions will include both
— Sentences: represent facts
— Terms: represent objects

Syntax and Semantics
of First-Order Logic

Sentence — AtomicSentence

| Sentence Connective Sentence

| Quantifier Variable,... Sentence

| =Sentence
| (Sentence)
AtomicSentence — Predicate(Term,...)
| Term = Term
Term — Function(Term,...)
| Constant
| Variable
Connective > = | A |V | <&
Quantifier — ¥ | 3
Variable —» a |b|c]|...
Function — Mother | LeftLegOf |...

Predicate — Before | HasColor | Raining |...

Constant - A | X, | John | ...

Constant Symbols (A, B, John, ...)

— A symbol names exactly one object

— But each object might have multiple
names (and some objects might not
have a name)

Predicate Symbols (Round,
Brother,...)

— Defined by a set of tuples of objects
that satisfy the predicate

Function Symbols (Cosine,
FatherOf, ...)

— A relation in which any given object is
related to exactly one other object by
this relation

— Uniquely determines an object (without
giving it a name)

Syntax and Semantics
of First-Order Logic

Sentence — AtomicSentence

| Sentence Connective Sentence

| Quantifier Variable,... Sentence

| =Sentence
| (Sentence)
AtomicSentence — Predicate(Term,...)
| Term = Term
Term — Function(Term,...)
| Constant
| Variable
Connective > = | A |V | <&
Quantifier — ¥ | 3
Variable - a |b|c]...
Function — Mother | LeftLegOf |...

Predicate — Before | HasColor | Raining |...

Constant - A | X, | John | ...

« Variables (a, b, ¢, ...)
— Stand for an object (without
naming it)
« Terms (John, FatherOf(John),
a,...)

— A logical expression that refers
to an object

— Can be a constant or a variable

— Can be a function of a list of
terms

Syntax and Semantics
of First-Order Logic

Sentence — AtomicSentence ° Ato m | C S e N te N CeS Vl a

| Sentence Connective Sentence

| Quantifier Variable,... Sentence P red |CateS

| =Sentence

| (Sentence) — Examp|eS
AtomicSentence —> |P;:ea’icc_zt;(Term,...) o ROund(COCOHUt)
Term — Function(Term,...) ° BrOther(Cain’ Abel)
| Constant * Older(John, 35)
| Variable
Connective > = | A |V | <& ’ Square(Baseba”)
Quantifier >V |3 — Assertions that represent a fact
Variable —» a |b|c]|...
Function — Mother | LeftLegOf |... abOUt the World
Predicate — Before | HasColor | Raining |... _ Aga|n, can be true or false glven

Constant - A | X, | John | ...
the state of the world

Syntax and Semantics
of First-Order Logic

Sentence — AtomicSentence

| Sentence Connective Sentence

| Quantifier Variable,... Sentence

| =Sentence
| (Sentence)
AtomicSentence — Predicate(Term,...)
| Term = Term
Term — Function(Term,...)
| Constant
| Variable
Connective > = | A |V | <&
Quantifier — ¥ | 3
Variable —» a |b|c]|...
Function — Mother | LeftLegOf |...

Predicate — Before | HasColor | Raining |...

Constant - A | X, | John | ...

« Atomic Sentences via Equality

— Examples
* Father(John)=Henry
« 1=Cosine(pi)
* Three=Two

— Asserts that the two terms refer
to the same real-world object

Syntax and Semantics
of First-Order Logic

Sentence — AtomicSentence

| Sentence Connective Sentence

| Quantifier Variable,... Sentence

| ~Sentence
| (Sentence)
AtomicSentence — Predicate(Term,...)
| Term = Term
Term — Function(Term,...)
| Constant
| Variable
Connective > = | A |V | <&
Quantifier — ¥ | 3
Variable —» a |b|c]|...
Function — Mother | LeftLegOf |...

Predicate — Before | HasColor | Raining |...

Constant - A | X, | John | ...

 Connectives (= A Vv &)

— Work the same way as in
predicate calculus

 Complex Sentence
— Atomic Sentence
— Connectives
— Negated Sentence
— Parentheses

Syntax and Semantics
of First-Order Logic

Sentence —>|A;0micSen?nce S ° Quantlflers (3, \v/)
entence Connective Sentence
| Quantifier Variable,... Sentence — The real pOWGr' Of f| rSt-OFder
| =Sentence Iog | C
| (Sentence) . .
AtomicSentence — Predicate(Term,...) - Express prOpertleS Of entlre
| Term = Term collections of objects rather than
T”m%F“"TféO”<T”m’---> having to enumerate all the
onstant .
Variable objects by name
Connective — = | | v| & — Universal Quantifier (V)
- e:lmi' « “all cats are mammals”
Function — Mother | LeftLegOf |... VX Cat(x)jmammal(x)
Predicate — Before | HasColor | Raining |... _ EXIStentlaI Quantlfler (EI)

Constant - A | X, | John | ... B) i "
» “there exists a fish that can fly

dx Fish(x)ACanFly(x)

Universal Quantification (V)

 Makes a statement about all objects in the
universe

— vx Cat(x)=Mammal(x) expands using conjunction:

Cat(Felix)=Mammal(Felix) A Cat(Fluffy)=Mammal(Fluffy) A
Cat(Spot)=Mammal(Spot) A
Cat(Sylvester)=Mammal(Sylvester) A ...

— What if the universe includes non-cats?

Cat(Scaz)=Mammal(Scaz) A Cat(Tree)=Mammal(Tree) A ...

« Still OK... because if Cat(Scaz) is false, then
Cat(Scaz)=Mammal(Scaz) is true

— Can we express “all cats are mammals” as

vx Cat(x) A Mammal(x)
* No... requires that all objects are both cats and mammals

Existential Quantification (3)

 Makes a statement about some object in the
universe

— “Spot has a sister that is a cat” is expressed as
dx Sister(x,Spot) A Cat(x)

— Expands using disjunction:
(Sister(Fluffy, Spot) A Cat(Fluffy)) v
(Sister(Richard, Spot) A Cat(Richard)) v
(Sister(BigRock, Spot) A Cat(BigRock)) v ...

— What if multiple objects fulfill the requirements?
« Still ok... True or True is still True

— Can you express this with an implication?
dx Sister(x,Spot) = Cat(x)

Results in nonsense... if any object is not Spot’s sister, then
this relation is true

Nested Quantifiers

* “If x is the parent of y, then y is the child of X"
vx Vy Parent(x,y) = Child(y,x)
Syntactic sugar:
vx,y Parent(x,y) = Child(y,x)
» “Everybody loves somebody”
vx 3y Loves(x,y)

* |s this the same as dy Vx Loves(x,y) ?

— No... this sentence states that “there exists
someone who is loved by everyone”

Connections between V and -

“Everyone dislikes parsnips” is equivalent to
“there does not exist someone who likes
parsnips’.

Vx —Likes(x,Parsnips) is equivalent to

— 3Jx Likes(x,Parsnips)

Similarly, “Everyone likes Scheme” is equivalent
to “there is no one who does not like Scheme”

Vx Likes(x,Scheme) is equivalent to
— 3dx — Likes(x,Scheme)

Extensions and Variations
of First-Order Logic

Higher-Order Logics

* “First-Order” Logic implies that you can quantify
over objects, but not over relations

* Higher order logics allow quantification over
relations and functions
— Define equality as objects that have the same
properties
Xy (x=y) < (Vp p(x) < p(Y))

— or the equality of functions that give the same value
for all arguments

vi,g (f=g) < (Vx f(x)=g(x))

Functional and Predicate
Expressions using A

 Allows for the construction of complex
predicates

 Examples

— A predicate for “difference of squares”
A X,y X2-y?
(Axy x*-y?)(2,1)=3

— A predicate for “are of differing gender and of the
same age”

A X,y Gender(x)#Gender(y) A Age(x)=Age(y)
« Should look familiar from Scheme/Lisp

Other Notations

* Notational variations exist (especially
within other fields that use logic)

« Some other operators are also useful

— Uniqueness quantifier
« “Every student has exactly one advisor”
vx Student(x) = 3! y Advisor(y, x)
— Uniqueness operator

* “The y that is the advisor to Jessica is on
sabbatical”

Sabbatical(@y Advisor(y, Jessica))

\\> Greek letter iota

Advantages of Using First-Order
Logic: Wumpus Example

= &l

B s |V
st >3

T

 Consider an infinite or
unknown board
configuration

 How many
propositional rules are
required?

 First-order logic can
handle this

(Agent

K Effectors

Logical Agents for the
Wumpus World

We will consider three

types of agent:
— Reflex Agent

— Model-Based Agent

— Goal-Based Agent

Sensors =

What the world
is like now

(Condition—action rules>—> \S/Y:;illdazgo:olw

/

Reflex Agent

JUBWIUOIAUTg

/
Glow the world evolve@—»

N

Sensors -

A

What the world

is like now

What my actions do

Agent

@ondltion—acllon ruIes)—. \s/\rﬂitlda(c:jgogolw

f

Effectors

JuswiuoJIAug

\

Model-Based Agent

N

Sensors =

What the world
is like now

What it will be like
if 1 do action A

Effectors

~
J

JuswiuoJIAUg

/

Goal-Based Agent

Logical Agents for the
Wumpus World

 We will consider three
types of agent:
— Reflex Agent

— Model-Based Agent
— Goal-Based Agent

(Agent

Sensors =

)

What the world
is like now

@ondition—actlon ru

What action |
Ies>_. should do now

'

Effectors

JuswiuoIIAUg

4 N

Sensors -

A

Glow the world evolve@—» Ys\lnfét:gwworld

What my actions do

@ondltion—acllon rules>_> \s/\rﬂitlda(c:jgogolw

f

Effectors

Agent

JuswiuoJIAug

\

Reflex Agent

:

Model-Based Agent

C)

Sensors =

~
J

What the world
is like now

What it will be like
if 1 do action A

JuswiuoJIAUg

Effectors

/

Goal-Based Agent

Defining the Interface

L el

breeze

breeze

breeze

breeze

L

breeze

breeze

Percept as a
statement:

— Percept([Stench,
Breeze, Glitter, Bump,
Scream], time)

Agent’s actions

— Turn(left)

— Turn(right)

— Forward

— Shoot

— Grab

— Drop

Determine the best
action for a particular
time

da Action(a,t)

A Simple Reflex Wumpus-Hunter

* Determine a set of action rules
— Anytime you see gold, grab it
Vvs,b,u,c,t Percept([s,b,Glitter,u,c],t) = Action(Grab,t)
 Make some simplifications for perception

— Declare AtGold(t) anytime you detect glitter
Vvs,b,u,c,t Percept([s,b,Glitter,u,c],t) = AtGold(t)
— Simplified action rule
vt AtGold(t) = Action(Grab,t)

 How many rules would you need to do this
In propositional logic?

Limitations of the
Simple Reflex Wumpus-Hunter

 Unable to maintain state

— How do you know when you've grabbed the
gold, or that the wumpus is already dead?

* Unable to avoid infinite loops

— If you have the gold and are tracing back
through your steps, the states look the same
and thus the actions must be the same

Logical Agents for the
Wumpus World

 We will consider three
types of agent:
— Reflex Agent

— Model-Based Agent
— Goal-Based Agent

(Agent

Sensors =

)

What the world
is like now

@ondition

—action rul

What action |
les) ®| should do now

'

JuswiuoIIAUg

Effectors

Reflex Agent

4 N

Sensors -

A

Glow the world evolve@—» stnlite t: gwworld

What my actions do

@ondltion—acllon rules>_> \s/\flgitl da((:jgog olw

f

Effectors

Agent

JuswiuoJIAug

\

Model-Based Agent

Sensors =

What the world
is like now

What it will be like
if 1 do action A

Effectors

~
J

JuswiuoJIAUg

/

Goal-Based Agent

Representing Change in the World

* Maintaining an internal model of the world

* Many ways to accomplish this

— Continually change the knowledge base
(erase some sentences and add others)
 Erase Location(Agent)=Square(1,1)
« Add Location(Agent)=Square(1,2)
— Maintain past knowledge as part of the world
state (and perhaps future possible actions)

* Representing situations and actions is no
different than representing objects and
relations

[=]

[| £/]

/

/

[]
[][]

Situation Calculus

/
Iz,

/

&
=
OE: n

[[[A

[/7 i@

J(/

Simplest (and oldest)
solution to internal
modeling

World consists of a
sequence of
Situations or
snapshots

New situations are
generated by taking
an action

[=]

[| £/]

Situation Calculus

o Situations are

\ N
@:\E indexed
e L At(AAgAent,m 11],2 S‘% A
B Q] TR t(Agent,[1 2],
— ggg \Q\ (Agent,[1 2], S,)
@\:ﬁ\\\\/% * Changes from one
QI \Q\S ‘s Situation to the next
5\:5\ / | Result(Forward, Sy)=S;
:/\s Result(Turn(R), S;)=S,

Situation Calculus Axioms

 Effect axioms tell how the world changes
between situations
— After you drop an object, you are no longer holding it
Vvx,s —Holding(x, Result(Drop,s))

* Frame axioms tell how the world stays the same
between situations

— If you are holding an object and you do not drop it,
you are still holding it
Va,x,s Holding(x,s) A (a # Drop) =
Holding(x, Result(a,s))

Situation Calculus Axioms

 Successor State Axioms combine a frame axiom
with an effect axiom to tell how modifiable
predicates change over time

true afterwards < [an action made it true
v true already and no action made it false]

Va,Xx,s Holding(x,Result(a,s)) <
[(a = Grab A Present(x,s) A Portable(x))
v (Holding(x,s) A a # Release)]

Two ways to represent
world knowledge

« Diagnostic rules infer the presence of hidden
properties directly from percepts
Vl,s At(Agent,l,s) A Stench(s) = Smelly(l)
« Causal rules reflect the assumed direction of
causality in the world
Vi, lp,s At(Wumpus,ly,s) A Adjacent(l4,l,)
= Smelly(l,)
« Systems that use causal rules are called model-

based reasoning systems

— These differences will come up again in a few
weeks...

Finding the Wumpus

* A diagnostic rule can be used to determine
the location of the wumpus

vi,,s Smelly(l,) = |
dl, At(Wumpus,l,,s) A
(|1=|2 V AdjaCent(|1,|2))]

Finding the Safe Squares

» A diagnostic rule can only draw a weak
conclusion about safe squares

vX,y,9,u,c,s Percept([None,None,g,u,c],t) A
At(Agent,x,s) A Adjacent(x,y) = OK(y)

* But sometimes a square can be safe when
smells and breezes abound.

* A causal rule gives a better representation
vx,t (—At(Wumpus,x,t) A =Pit(x)) < OK(x)

— Model-Based Agent
— Goal-Based Agent

Logical Agents for the
Wumpus World

 We will consider three
types of agent:
— Reflex Agent

(Agent

Sensors =

)

What the world
is like now

@ondition—actlon ru

What action |
Ies>_. should do now

'

Effectors

JuswiuoIIAUg

N

Sensors -

-

Glow the world evolveg—b

What the world
is like now

What my actions do

@ondltion—acllon rules>—>

Agent

What action |
should do now

f

Effectors

JuswiuoJIAug

\

Reflex Agent

:

Model-Based Agent

What it will be like

-

What the world
is like now

if I do action A

What action |
should do now

Effectors

/

Goal-Based Agent

JuswiuoJIAUg

Toward a Goal-Based Agent

 How do you turn around once you have
the gold?

— Add a new state that represents the goal
action

Vs Holding(Gold, s) = Goal(GoHome, s)
 How do you find the sequence of actions?
— Search

— Inference
— Planning (coming up in a few weeks...)

Coming Up...

* How to use first-order logic to solve these
problems
— Forward chaining
— Backward chaining

* Things that first-order logic can’t do

