Building a Knowledge Base

CPSC 470 - Artificial Intelligence Brian Scassellati

Syntax and Semantics of First-Order Logic

```
Sentence }->\mathrm{ AtomicSentence
    | Sentence Connective Sentence
    | Quantifier Variable,...Sentence
    | \Sentence
    | (Sentence)
AtomicSentence }->\mathrm{ Predicate(Term,...)
        | Term = Term
Term }->\mathrm{ Function(Term,...)
    | Constant
    | Variable
Connective }->=>|\wedge|\vee|
Quantifier }->\forall|
Variable }->a|b|c|
Function }->\mathrm{ Mother |LeftLegOf |...
Predicate }->\mathrm{ Before |HasColor | Raining |...
Constant }->A|\mp@subsup{X}{1}{}|\mathrm{ John |...
```

- Quantifiers (\exists, \forall)
- The real power of first-order logic
- Express properties of entire collections of objects rather than having to enumerate all the objects by name
- Universal Quantifier (\forall)
- "all cats are mammals" $\forall x \operatorname{Cat}(x) \Rightarrow \operatorname{Mammal}(x)$
- Existential Quantifier (\exists)
- "there exists a fish that can fly" $\exists x$ Fish(x)^CanFly(x)

Situation Calculus

- Situations are
 indexed
At(Agent,[1,1], S_{0}) ^ At(Agent,[1 2], S_{1})
- Changes from one situation to the next
Result(Forward, $\left.\mathrm{S}_{0}\right) \Rightarrow \mathrm{S}_{1}$
Result(Turn $\left.(R), S_{1}\right) \Rightarrow S_{2}$

Analogies to Programming

Today we will:

- Develop a methodology for building knowledge bases for particular domains and the world in general
- Write some sample "programs" by developing a few example knowledge bases

What is knowledge engineering?

- What do I need that for?
- I can just use really long variable names
- Not machine readable/interpretable
- Does not help when adding new facts
- Degenerate case: propositional logic
- Any method of building structures should do the job
- Yes, but you might avoid some common pitfalls

Properties of Good Knowledge Representation

- Expressive
- Concise
- Unambiguous
- Context-insensitive
- Effective
- Clear
- Correct

How to develop a Knowledge Base

 (in 5 easy steps)- Decide what to talk about
- Decide on a vocabulary of predicates, functions, and constants
- Ontology
- Encode general knowledge within the domain
- Limiting errors
- Encode a description of the specific problem
- Pose queries and get answers

Ontology

- Choices that you make in specifying the basic elements of the logic (the functions, predicates, and terms) dictate a vocabulary
- This vocabulary gives a way of thinking about the world, a way of dividing the world into meaningful units, a theory of the nature of existence

Limiting Errors

- A properly designed knowledge base will have most common errors isolated to a single statement
- Errors in a program might be at the line $\mathrm{x}=\mathrm{x}+1$
- But this tells us little about how to solve the error
- Errors in a KB should be more selfcontained (rely on less external context)

Electronic Circuits Domain

- Domain specific knowledge representation example
- This circuit claims to add two bits with a carry bit
- Can we build a logic to analyze this claim?

Electronic Circuits Domain: Decide what to talk about

- Circuits
- Gate Types
- Individual Gates
- Terminals of Gates and Circuits
- Inputs
- Outputs
- Connectivity
- Signals

Electronic Circuits Domain: Decide on a Vocabulary

- Name individual gates with constants (X1, X2, A1, A2, ...)
- Gate types with a function (Type (X1)=XOR)
- Could use alternate notations (XOR(X1) or Type(X1,XOR))
- But using a function guarantees that each gate has only one type
- Terminals (Out $(1, \mathrm{X} 1)$ is the first output of gate X 1)
- Connectivity (Connected(Out(1, X1), In(2, A2)))
- Signal values as objects (Signal($\ln (1, \mathrm{X} 1))=\mathrm{On}$)

Electronic Circuits Domain: Encode General Rules

- OR gates: output is on iff any inputs are on $\forall \mathrm{g}$ Type $(\mathrm{g})=\mathrm{OR} \Rightarrow$

Signal(Out $(1, \mathrm{~g}))=\mathrm{On} \Leftrightarrow \exists \mathrm{n}$ Signal $(\operatorname{In}(\mathrm{n}, \mathrm{g}))=O n$

- AND gates: output is off iff any inputs are off $\forall \mathrm{g}$ Type(g)=AND \Rightarrow

Signal(Out($1, \mathrm{~g})$)=Off $\Leftrightarrow \exists \mathrm{n}$ Signal $(\operatorname{In}(\mathrm{n}, \mathrm{g}))=$ Off

- NOT gate: output is different from input
$\forall \mathrm{g}$ Type(g)=NOT \Rightarrow
Signal(Out $(1, \mathrm{~g})) \neq$ Signal $(\ln (1, \mathrm{~g}))$
- XOR gates: output is on iff inputs differ $\forall \mathrm{g}$ Type(g)=XOR \Rightarrow

Signal(Out($1, \mathrm{~g}))=$ On $\Leftrightarrow \operatorname{Signal}(\ln (1, \mathrm{~g})) \neq \operatorname{Signal}(\operatorname{In}(2, \mathrm{~g}))$

Electronic Circuits Domain: Encode General Rules

- If two terminals are connected, then they have the same signal
$\forall \mathrm{t} 1, \mathrm{t} 2$ Connected($\mathrm{t} 1, \mathrm{t} 2$) \Rightarrow Signal(t1) $=$ Signal(t2)
- The signal at every terminal is either on or off, but not both
$\forall t$ Signal $(\mathrm{t})=\mathrm{On} \vee$ Signal $(\mathrm{t})=\mathrm{Off}$
On $=$ Off
- Connected is commutative
$\forall \mathrm{t} 1, \mathrm{t} 2 \operatorname{Connected}(\mathrm{t} 1, \mathrm{t} 2) \Leftrightarrow \operatorname{Connected}(\mathrm{t} 2, \mathrm{t} 1)$

Electronic Circuits Domain: Encode Specific Instance

- Circuit C1
- $\operatorname{Type}(\mathrm{X} 1)=\mathrm{XOR}$
- $\operatorname{Type}(\mathrm{X} 2)=\mathrm{XOR}$
- $\operatorname{Type}(\mathrm{A} 1)=$ AND
- $\operatorname{Type}(\mathrm{A} 2)=\mathrm{AND}$
- $\operatorname{Type}(\mathrm{O} 1)=\mathrm{OR}$

- Connected(Out(1,X1), In(1,X2))
- Connected(Out(1,X1), In(2,A2))
- Connected(Out(1,A2), In(1,01))
- Connected(Out(1,A1), In(2,O1))
- Connected(Out(1,X2), Out(1,C1))
- Connected(Out(1,O1), Out(2,C1))
- Connected($\ln (1, \mathrm{C} 1), \operatorname{In}(1, \mathrm{X} 1))$
- Connected($\operatorname{In}(1, \mathrm{C} 1), \operatorname{In}(1, \mathrm{~A} 1))$
- Connected ($\ln (2, \mathrm{C} 1), \ln (2, \mathrm{X} 1))$
- Connected($\ln (2, \mathrm{C} 1), \operatorname{In}(2, \mathrm{~A} 1))$
- Connected ($\operatorname{In}(3, \mathrm{C} 1), \ln (2, \mathrm{X} 2))$
- Connected($\ln (3, C 1), \ln (1, A 2))$

Electronic Circuits Domain: Pose Queries and Get Answers

-What values are output given input (1,0,1)?

- Assert

Signal(In(1,C1))=On ^Signal(In(2,C1))=Off ^ Signal(In(3,C1))=On

- Infer values of

Signal(Out(1,C1)) and Signal(Out(2,C1))

- Rewrite as a quantifier:
$\exists \mathrm{v} 1, \mathrm{v} 2$ Signal $(\ln (1, \mathrm{C} 1))=\mathrm{On} \wedge$ Signal $(\ln (2, \mathrm{C} 1))=\mathrm{Off} \wedge$ Signal (In(3,C1))=On \wedge Signal(Out(1,C1))=v1 ^ Signal(Out(2,C2)=v2

Electronic Circuits Domain: Pose Queries and Get Answers

- What combinations of inputs would cause the output $(0,1)$?
- Assert

Signal(Out(1,C1))=Off \wedge Signal(Out(2,C1))=On

- Infer values of inputs

Signal(In(1,C1)) and Signal(In(2,C1)) and Signal(In(3,C1))

- Rewrite as a quantifier:
$\exists i 1, i 2, i 3 \operatorname{Signal}(\ln (1, C 1))=i 1 \wedge \operatorname{Signal}(\ln (2, C 1))=i 2 \wedge$
Signal ($\operatorname{In}(3, C 1))=\mathrm{i} 3 \wedge$ Signal $($ Out $(1, \mathrm{C} 1))=\mathrm{Off} \wedge$ Signal(Out(2,C2)=On

General Ontology

- Rather than building domain-specific representations, can we build just one domaingeneral representation and use it for everything?

Topics for a General Ontology

- How can we represent these types within our general knowledge base?
- Categories
- Measures
- Composite objects
- Events and processes
- Time, space, and change
- Physical objects
- Substances
- Mental objects (beliefs, desires, etc.)

Categories

- So far, we have defined categories by using a predicate: Fish(x)
- Reification is the process of turning a predicate or function into an object
- Vegetables is the set of all veggies

BobTheTomato \in Vegetables

- Reified categories allow us to make assertions about the entire categories
Population(Humans) $=7,700,000,000$
- Categories allow us to organize the KB through inheritance

Measures

- Quantitative properties of objects like mass, length, and cost
Length(Box13)=Meters(1.4)
Price(Orange13)=Cents(20)
- Distinguish between amounts and instruments
$\forall d \mathrm{~d} \in$ Days \Rightarrow Duration(d)=Hours(24)
$\forall \mathrm{b} \quad \mathrm{b} \in$ DollarBills \Rightarrow CashValue(b) $=\$(1.00)$

Composite Objects

- An object that has parts is a composite object
- Define a relation to indicate
- PartOf(Nose, Face)
- PartOf(Face, Head)
- PartOf(Head, Body)
- Transitive!
- Infer PartOf(Nose, Body)

Events

- Why not just rely on situation calculus?
- Situations are only instantaneous points in time
- Only works well when a single action links situations
- If the world can change on its own, or if multiple agents are involved, then situation calculus is not sufficient

Events

- Introduce a new event calculus
- Events are chunks of the universe in "space" and time
- Intervals are sections along the time dimension
- Places are sections along the "space" dimension
- New notation for events
$\forall \mathrm{c}, \mathrm{i} \mathrm{E}(\mathrm{c}, \mathrm{i}) \Leftrightarrow \exists \mathrm{e} \mathrm{e} \in \mathrm{c} \wedge$ SubEvent(e,i)
E(Drive(Scaz,Boston,NewHaven),
LastMonday)

Predicates on Time Invervals

- Interval is defined by a start time and an end time
- Define intervals in first-order logic $\forall i, j \operatorname{Meet}(\mathrm{i}, \mathrm{j}) \Leftrightarrow \operatorname{Time}(E n d(\mathrm{i}))=\operatorname{Time}($ Start(j)) $\forall i, j$ After $(\mathrm{j}, \mathrm{i}) \Leftrightarrow$ Before(i,j) $\forall i, j$ Overlap(i,j) $\Leftrightarrow \exists \mathrm{k}$ During $(\mathrm{k}, \mathrm{i}) \wedge$ During (k, j)

Physical Objects

US President

- Physical objects can also be viewed as events...
- They have a spatial and a temporal extent
- Objects that change across time/space are called fluents

Substances

- Can we also represent things like sand, glass, butter, etc.?
- Intrinsic properties are part of the substance itself
- Melting point, density, etc.
- Survive division
- Extrinsic properties are specific to an object
- Weight, temperature, etc.
- Do not survive division
- A substance is defined only by intrinsic properties

Mental Objects (Beliefs, Desires, etc.)

- It might be useful to know what you know (and what you don't know)
- Stopping pointless searches
- Attempting to acquire missing information
- Requires a new level of representation
- First order logic is referentially transparent
- (You can freely substitute a term for an equal term)
- Beliefs are opaque
- (You can't substitute Superman for Clark)
- Allow a new form of representation: strings
- "Clark" is a string of five characters
- "Clark" =" ${ }^{\text {"Superman" }}$

Coming Up

Administrivia

- PS \#2 due tonight
- PS \#3 out today (no programming)
- Hopefully, more office hours coming soon...
- Up next: Inference

