
Building a Knowledge Base

CPSC 470 – Artificial Intelligence
Brian Scassellati

...|||
...|||

...||
...|||

|
|||

|
|

...),(
|

...),(
)(|

|
...,|

|

1 JohnXAConstant
RainingHasColorBeforePredicate

LeftLegOfMotherFunction
cbaVariable

Quantifier
Connective

Variable
Constant

TermFunctionTerm
TermTerm
TermPredicateenceAtomicSent

Sentence
Sentence

SentenceVariableQuantifier
SentenceConnectiveSentence

enceAtomicSentSentence

®
®
®
®

$"®
ÛÚÙÞ®

®
=

®

¬

®

Syntax and Semantics
of First-Order Logic

• Quantifiers ($, ")
– The real power of first-order

logic
– Express properties of entire

collections of objects rather than
having to enumerate all the
objects by name

– Universal Quantifier (")
• “all cats are mammals”
"x Cat(x)ÞMammal(x)

– Existential Quantifier ($)
• “there exists a fish that can fly”
$x Fish(x)ÙCanFly(x)

Situation Calculus
• Situations are

indexed
At(Agent,[1,1], S0) Ù

At(Agent,[1 2], S1)
• Changes from one

situation to the next
Result(Forward, S0)ÞS1

Result(Turn(R), S1)ÞS2

Analogies to Programming

Today we will:
• Develop a methodology

for building knowledge
bases for particular
domains and the world
in general

• Write some sample
“programs” by
developing a few
example knowledge
bases

Choose a
language

Choose or write
a compiler

Write a
program

Run your
compiled program

Choose a
logic

Implement the
proof theory

Build a
Knowledge Base

Infer new
facts

Knowledge
EngineeringProgramming

What is knowledge engineering?

• What do I need that for?
– I can just use really long variable names

• Not machine readable/interpretable
• Does not help when adding new facts

– Degenerate case: propositional logic

– Any method of building structures should do
the job

• Yes, but you might avoid some common pitfalls

Properties of Good
Knowledge Representation

• Expressive
• Concise
• Unambiguous
• Context-insensitive
• Effective
• Clear
• Correct

How to develop a Knowledge Base
(in 5 easy steps)

• Decide what to talk about
• Decide on a vocabulary of predicates, functions,

and constants
– Ontology

• Encode general knowledge within the domain
– Limiting errors

• Encode a description of the specific problem
• Pose queries and get answers

Ontology

• Choices that you make in specifying the
basic elements of the logic (the functions,
predicates, and terms) dictate a
vocabulary

• This vocabulary gives a way of thinking
about the world, a way of dividing the
world into meaningful units, a theory of the
nature of existence

Limiting Errors
• A properly designed knowledge base will

have most common errors isolated to a
single statement

• Errors in a program might be at the line
x=x+1
– But this tells us little about how to solve the

error
• Errors in a KB should be more self-

contained (rely on less external context)

Electronic Circuits Domain

• Domain specific knowledge representation
example

• This circuit claims to add two bits with a carry bit
• Can we build a logic to analyze this claim?

Electronic Circuits Domain:
Decide what to talk about

• Circuits
• Gate Types
• Individual Gates
• Terminals of Gates

and Circuits
– Inputs
– Outputs

• Connectivity
• Signals

Electronic Circuits Domain:
Decide on a Vocabulary

• Name individual gates with constants (X1, X2, A1, A2, …)
• Gate types with a function (Type(X1)=XOR)

– Could use alternate notations (XOR(X1) or Type(X1,XOR))
– But using a function guarantees that each gate has only one type

• Terminals (Out(1,X1) is the first output of gate X1)
• Connectivity (Connected(Out(1, X1), In(2, A2)))
• Signal values as objects (Signal(In(1,X1))=On)

Electronic Circuits Domain:
Encode General Rules

• OR gates: output is on iff any inputs are on
"g Type(g)=OR Þ

Signal(Out(1,g))=On Û $n Signal(In(n,g))=On
• AND gates: output is off iff any inputs are off

"g Type(g)=AND Þ
Signal(Out(1,g))=Off Û $n Signal(In(n,g))=Off

• NOT gate: output is different from input
"g Type(g)=NOT Þ

Signal(Out(1,g)) ≠ Signal(In(1,g))
• XOR gates: output is on iff inputs differ

"g Type(g)=XOR Þ
Signal(Out(1,g))=On Û Signal(In(1,g)) ≠ Signal(In(2,g))

Electronic Circuits Domain:
Encode General Rules

• If two terminals are connected, then they
have the same signal
"t1,t2 Connected(t1,t2)ÞSignal(t1)=Signal(t2)

• The signal at every terminal is either on or
off, but not both
"t Signal(t)=On Ú Signal(t)=Off
On≠Off

• Connected is commutative
"t1,t2 Connected(t1,t2) Û Connected(t2,t1)

Electronic Circuits Domain:
Encode Specific Instance

• Connected(Out(1,X1), In(1,X2))
• Connected(Out(1,X1), In(2,A2))
• Connected(Out(1,A2), In(1,O1))
• Connected(Out(1,A1), In(2,O1))
• Connected(Out(1,X2), Out(1,C1))
• Connected(Out(1,O1), Out(2,C1))

• Connected(In(1,C1), In(1,X1))
• Connected(In(1,C1), In(1,A1))
• Connected(In(2,C1), In(2,X1))
• Connected(In(2,C1), In(2,A1))
• Connected(In(3,C1), In(2,X2))
• Connected(In(3,C1), In(1,A2))

• Circuit C1
• Type(X1) = XOR
• Type(X2) = XOR
• Type(A1) = AND
• Type(A2) = AND
• Type(O1) = OR

Electronic Circuits Domain:
Pose Queries and Get Answers

• What values are output given input (1,0,1)?
– Assert

Signal(In(1,C1))=On Ù Signal(In(2,C1))=Off Ù
Signal(In(3,C1))=On

– Infer values of
Signal(Out(1,C1)) and Signal(Out(2,C1))

– Rewrite as a quantifier:
$v1,v2 Signal(In(1,C1))=On Ù Signal(In(2,C1))=Off Ù

Signal(In(3,C1))=On Ù Signal(Out(1,C1))=v1 Ù
Signal(Out(2,C2)=v2

Electronic Circuits Domain:
Pose Queries and Get Answers

• What combinations of inputs would cause the
output (0,1)?
– Assert

Signal(Out(1,C1))=Off Ù Signal(Out(2,C1))=On

– Infer values of inputs
Signal(In(1,C1)) and Signal(In(2,C1))

and Signal(In(3,C1))

– Rewrite as a quantifier:
$i1,i2,i3 Signal(In(1,C1))=i1 Ù Signal(In(2,C1))=i2 Ù

Signal(In(3,C1))=i3 Ù Signal(Out(1,C1))=Off Ù
Signal(Out(2,C2)=On

General Ontology

• Rather than building domain-specific
representations, can we build just one domain-
general representation and use it for everything?

Topics for a General Ontology
• How can we represent these types within our

general knowledge base?
– Categories
– Measures
– Composite objects
– Events and processes
– Time, space, and change
– Physical objects
– Substances
– Mental objects (beliefs, desires, etc.)

Categories
• So far, we have defined categories by using a

predicate: Fish(x)
• Reification is the process of turning a predicate

or function into an object
– Vegetables is the set of all veggies
BobTheTomatoÎVegetables

• Reified categories allow us to make assertions
about the entire categories
Population(Humans)=7,700,000,000

• Categories allow us to organize the KB through
inheritance

Measures

• Quantitative properties of objects like
mass, length, and cost
Length(Box13)=Meters(1.4)
Price(Orange13)=Cents(20)

• Distinguish between amounts and
instruments
"d dÎDays Þ Duration(d)=Hours(24)
"b bÎDollarBills Þ CashValue(b)=$(1.00)

Composite Objects

• An object that has parts is a composite
object

• Define a relation to indicate
– PartOf(Nose, Face)
– PartOf(Face, Head)
– PartOf(Head, Body)

• Transitive!
– Infer PartOf(Nose, Body)

Events
• Why not just rely on

situation calculus?
– Situations are only

instantaneous points in
time

– Only works well when a
single action links
situations

• If the world can change
on its own, or if multiple
agents are involved, then
situation calculus is not
sufficient

Events

• Introduce a new event
calculus

• Events are chunks of the
universe in “space” and time

• Intervals are sections along
the time dimension

• Places are sections along
the “space” dimension

• New notation for events
"c,i E(c,i) Û $e eÎc Ù

SubEvent(e,i)
E(Drive(Scaz,Boston,NewHaven),

LastMonday)

Predicates on Time Invervals

• Interval is defined by a start time and an end time
• Define intervals in first-order logic
"i,j Meet(i,j) Û Time(End(i))=Time(Start(j))
"i,j After(j,i) Û Before(i,j)
"i,j Overlap(i,j) Û $k During(k,i) Ù During(k,j)

Physical Objects
• Physical objects can

also be viewed as
events…
– They have a spatial

and a temporal extent
• Objects that change

across time/space are
called fluents

US President

Poland

Substances
• Can we also represent things like sand, glass,

butter, etc. ?
• Intrinsic properties are part of the substance

itself
– Melting point, density, etc.
– Survive division

• Extrinsic properties are specific to an object
– Weight, temperature, etc.
– Do not survive division

• A substance is defined only by intrinsic
properties

Mental Objects
(Beliefs, Desires, etc.)

• It might be useful to know what you know (and
what you don’t know)
– Stopping pointless searches
– Attempting to acquire missing information

• Requires a new level of representation
– First order logic is referentially transparent

• (You can freely substitute a term for an equal term)
– Beliefs are opaque

• (You can’t substitute Superman for Clark)

• Allow a new form of representation: strings
– “Clark” is a string of five characters
– “Clark”≠”Superman”

Coming Up
• Real-world uses

of logical
systemsChoose a

language

Choose or write
a compiler

Write a
program

Run your
compiled program

Choose a
logic

Implement the
proof theory

Build a
Knowledge Base

Infer new
facts

Knowledge
EngineeringProgramming

How do we
automate the

process of
inferring new

facts?

Administrivia

• PS #2 due tonight
• PS #3 out today (no programming)
• Hopefully, more office hours coming

soon…
• Up next: Inference

