
Practical Planning

CPSC 470 – Artificial Intelligence
Brian Scassellati

STRIPS planner
STanford Research Institute Problem Solver

• “Holy Roman Empire” naming

• Represent states and goals in first-order
logic
At(Home) Ù Have(Milk) Ù Have(Drill) Ù

Have(Banana)

• Assume existential quantification of
variables
At(x) Ù Sells(x, Milk)

Update of Knowledge

Grip(Æ)
On(B,A)
TopClear(B)
OnTable(A)
TopClear(C)
OnTable(C)
On(E,D)
TopClear(E)
OnTable(D)

Grip(B)
TopClear(A)
TopClear(B)
OnTable(A)
TopClear(C)
OnTable(C)
On(E,D)
TopClear(E)
OnTable(D)

Grip(Æ)
TopClear(A)
TopClear(B)
OnTable(A)
On(B,C)
OnTable(C)
On(E,D)
TopClear(E)
OnTable(D)

Grip(Æ)
TopClear(A)
TopClear(B)
On(A,B)
On(B,C)
OnTable(C)
On(E,D)
TopClear(E)
OnTable(D)

Grip(A)
TopClear(A)
TopClear(B)
OnTable(A)
On(B,C)
OnTable(C)
On(E,D)
TopClear(E)
OnTable(D)

UnStack(B,A) Stack(B,C) Pickup(A) Stack(A,B)

A
EB

C D A
E

B

C D A
EB

C D
A EB

C D

A
EB

C D

Why STRIPS is Insufficient
for many Domains

• Hierarchical plans
– Allow for more complex plans by varying level of abstraction

• Resource Limitations
– Consumption and generation of resources
– Time as a resource

• Based on situation calculus, assumes all actions take place
simultaneously and in one unit of time

• Actions in a plan may have durations, deadlines, and time windows
• Complex conditions

– No conditionals in STRIPS
– No universals in STRIPS

• Dealing with incomplete or inaccurate information
– Conditional planning
– Execution monitoring

Hierarchical Decomposition
• Primitive and abstract

operators
• New decomposition

methods
• Describe a

decomposition:
– A set of steps
– A set of bindings
– A set of links
– A set of orderings of

steps

Extending the STRIPS Language
to handle Hierarchical Plans

A decomposition is like a
subroutine or a macro
decomposition for an
operator

Decompose(Construction,
Plan(

Steps: { S1: Build(Foundation), S2: Build(Frame),
S3: Build(Roof), S4: Build(Walls), S5: Build(Interior)},

Orderings: {S1 < S2 < S3 < S5, S2 < S4 < S5},
Bindings: {},
Links:{S1→S2, S2→S3, S2→S4, S3→S5, S4→S5}
))

Hierarchical Decomposition

• Must match the pre-conditions and the post-
conditions for each decomposition

• The creation of abstract operators encapsulates
the details of creation and leaves only a set of
pre- and post- conditions

Search Space for Hierarchical Decomposition

Non-hierarchical planner generates 3x1030 plans

Hierarchical planner generates 576 plans

Resource Constraints

• Planning with consumables
– Shopping example

• Reason about quantities
• Purchase items
• Paying in cash
• Making change

– STRIPS is not equipped to deal with these
types of operations. We must extend the
language

Resource Constraints

• Use Measures
– Quantitative properties of objects like mass,

length, and cost
Length(Box13)=Meters(1.4)
Price(Orange13)=Cents(20)

– Distinguish between amounts and instruments
"d dÎDays Þ Duration(d)=Hours(24)
"b bÎDollarBills Þ CashValue(b)=$(1.00)

Resource Constraints

• Add inequality tests and basic arithmetic
operations to the STRIPS language

At(Store) Ù InStock(x) Ù MyCash ³ Price(x,Store)

Buy(x,Store)

Have(x) Ù MyCash←MyCash - Price(x,Store)

At(GasStation)

Fillup(GasLevel)

GasLevel ←Gallons(15) Ù MyCash ← MyCash – (UnitPrice(Gas) x (Gallons(15) – GasLevel))

Resource Constraints: Time

• Treat time as just another limited resource
• Some differences

– Actions executed in parallel consume the
maximum of their respected times

• (as opposed to money, in which parallel actions
consume the sum)

– Time constraints must be consistent with
ordering constraints

– Time can never move backward

Complex Conditions
• STRIPS representation

– Represent states and goals in first-order logic
At(Home) Ù Have(Milk) Ù Have(Drill) Ù Have(Banana)

– Assume existential quantification of variables
At(x) Ù Sells(x, Milk)

• We will sometime require more complex operators for
real-world applications
– Conditional effects
– Universal quantification
– Negated goals
– Disjunctive goals

• These additions will require both changes to the
representation language and to the theorem prover

Complex Conditions
Conditional Effects

Move(b,x,y)
Precond: On(b,x) Ù Clear(b) Ù

Clear(y)
Effect: On(b,y) Ù Clear(x) Ù ¬On(b,x)

Ù ¬Clear(y) when y ≠ Table

“Move block b from x to y”
Include in the effect that y now

becomes clear except when y is
the table

Universal Quantification

Carry(bag,x,y)
Precond: Bag(bag) Ù At(bag,x)
Effect: At(bag,y), ¬ At(bag,x) Ù

"i Item(i) Þ (At(i,y) Ù ¬At(i,x))
when In(i,bag)

“When you carry a bag from x to y, all
items in the bag at x are now at y”

Allows us to define the rules of
movement without listing each
individual object

Complex Conditions

• Negated and Disjunctive Goals
– Disjunctive preconditions

• Can perform an action if either p or q
• Relatively easy to change syntax
• Relatively easy to change theorem prover

– Disjunctive Effects
• Action results in either effect p or q
• Relatively easy to change syntax
• Relatively hard to change theorem prover

Incomplete or Inaccurate
Information

• Problems can evolve from
– Sensory failures
– Execution errors
– Flawed planning
– Inaccessible world information

• Two methods for addressing this
– Conditional planning
– Execution monitoring

Conditional Planning

• Deals with incomplete information by
constructing a plan that accounts for
alternate situations/contingencies

• Agent executes sensing actions to test
appropriate conditions

• Simple example
– Shopping agent

• Check price to see if it exceeds current cash

On(Spare)

Inflated(Spare)

Conditional Planning Example

Start Finish
On(Tire1)

Inflate(Tire1)
Flat(Tire1)

Check(Tire1)

Remove(Tire1) Puton(Spare)

Flat(Tire1)
Inflated(Spare)

On(x)

Inflated(x)

Intact(Tire1)

On(Tire1)

Inflated(Tire1)
True

Intact(Tire1)
Intact(Tire1)

Intact(Tire1)

Finish

¬Intact(Tire1)

On(x)

Inflated(x)

¬Intact(Tire1)

¬Intact(Tire1) ¬Intact(Tire1)

Execution Monitoring
• Monitor what is happening while a plan is

executing
– Provides meaningful description of state throughout

execution
– Monitors for errors in perception and execution

• Blocks world example

A E
B

F
C

G
D

A E
B

F
C

G
D

A E
B

F

C

G

D
C
D

Start State Current State Finish State

Move(D,B)
Move(C,D)

Building a Blocks World Plan

Start Finish

OnTable(A)
On(B,E)
On(C,F)

On(C,D)

On(D,B)

On(D,G)
Clear(A)
Clear(C)
Clear(D)
Clear(B)

Move(D,B)

Move(C,D)
On(C,F)
Clear(C)
Clear(D)

On(D,G)
Clear(D)
Clear(B)

A E
B

F
C

G
D

A E
B

F
C

G
D

A E
B

F

C

G

D
C
D

Start State Current State Finish State

ordering
constraint

Executing a Blocks World Plan
(while maintaining a future plan)

Start Finish

OnTable(A)
On(B,E)
On(C,F)

On(C,D)

On(D,B)

On(D,G)
Clear(A)
Clear(C)
Clear(D)
Clear(B)

Move(D,B)

Move(C,D)
On(C,F)
Clear(C)
Clear(D)

On(D,G)
Clear(D)
Clear(B)

A E
B

F
C

G
D

A E
B

F
C

G
D

A E
B

F

C

G

D
C
D

Start State Current State Finish State

Clear(G)
On(D,B)
Clear(F)
On(C,D)

Executing a Blocks World Plan
(mistakes happen…)

Start Finish

OnTable(A)
On(B,E)
On(C,F)

On(C,D)

On(D,B)

On(D,G)
Clear(A)
Clear(C)
Clear(D)
Clear(B)

Move(D,B)

Move(C,D)
On(C,F)
Clear(C)
Clear(D)

On(D,G)
Clear(D)
Clear(B)

A E
B

F
C

G
D

A E
B

F
C

G
D

A E
B

F

C

G

D
C

D

Start State Current State Finish State

Clear(G)
On(D,B)
Clear(F)
On(C,A)

Mistake!

Move(C,D)
On(C,A)
Clear(C)
Clear(D)

Re-plan!

C
On(C,D)

Planning in Real-World Systems:
Mars Rover Opportunity

• Launched: July 7, 2003

• Time delay 4-30 minutes

• Designed for

– 90 Martian days

– 1000m travel

• Active deployment

– 5,111 Martian days

– 45,000m travel

– returned 217,000 images

– discovered hematite, a

mineral formed in water

Administrivia

• Friday: Reasoning with Uncertainty
• PS 4 out today, due next Wednesday.

