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STRIPS planner
STanford Research Institute Problem Solver

• “Holy Roman Empire” naming

• Represent states and goals in first-order 
logic
At(Home) Ù Have(Milk) Ù Have(Drill) Ù

Have(Banana)

• Assume existential quantification of 
variables
At(x) Ù Sells(x, Milk)



Why STRIPS is Insufficient
for many Domains

• Hierarchical plans
– Allow for more complex plans by varying level of abstraction

• Resource Limitations
– Consumption and generation of resources
– Time as a resource

• Based on situation calculus, assumes all actions take place 
simultaneously and in one unit of time

• Actions in a plan may have durations, deadlines, and time windows
• Complex conditions

– No conditionals in STRIPS
– No universals in STRIPS

• Dealing with incomplete or inaccurate information
– Conditional planning 
– Execution monitoring



Failures of Logic
• First-order logic represents a certainty

– "p Symptom(p,Toothache) Þ Disease(p,Cavity)
• To make the rule true, we must add an almost 

unlimited set of causes
– "p Symptom(p,Toothache) Þ Disease(p,Cavity) Ú

Disease(p, GumDisease) Ú Disease(p, SinusInfection) Ú
…

• Conversion to a causal rule does not help
– "p Disease(p,Cavity) Þ Symptom(p,Toothache)



Why does Logic Fail?
• Laziness

– Too much work to list entire sets of consequents or antecedents
– List all possible causes for a toothache

• Theoretical Ignorance
– No complete theory for the domain exists
– Describe precisely the conditions that cause cancer

• Practical Ignorance
– Even if we know all the rules, we may be uncertain about a 

particular event
– What was the white blood cell count of the patient two years 

ago?

Probability provides a way of summarizing the 
uncertainty that comes from our laziness and ignorance



Basic Probability
• Assume a basic understanding of probability 

theory, but as a quick review:
• Unconditional (prior) probability:

– P(Cavity) = 0.1
• Random Variables

– P(Weather = snow) = 0.05
• Probability distribution

• Conditional (posterior) probability:
– P(Cavity|Toothache) = 0.8



Basic Probability II

• Axioms
0 £ P(A) £ 1
P(True) = 1
P(False) = 0
P(AÚB) = P(A) + P(B) – P(A Ù B)
P(¬A) = 1 – P(A)
P(A Ù B) = P(A|B) P(B)   (the product rule)

BA



Bayes’ Rule

• From the product rule
P(A Ù B) = P(A|B) P(B)
P(A Ù B) = P(B|A) P(A)

• Bayes’ Rule:
P(A|B) P(B) = P(B|A) P(A)
P(B|A) = P(A|B) P(B)

P(A)



Application of Bayes’ Rule

• Medical example:

– 1 in 20 patients reports

a stiff neck

– 1 in 50,000 patients 

has meningitis

– Meningitis causes a 

stiff neck 50% of the

time

– If I have a stiff neck,

what is the chance 

that I have meningitis?

• Apply Bayes’ Rule:

P(S) = 1/20

P(M) = 1/50000

P(S|M) = 0.50

P(M|S) = P(S|M)P(M)

P(S)

P(M|S) = 0.5 x 1/50000

1/20

P(M|S) = 0.0002



Uncertainty and Rational Decisions

• Consider these plans:
– Plan #1: Pay $10 for a 75% chance of event X
– Plan #2: Pay $30 for a 10% chance of event X
– Plan #3: Pay $90 for a 79% chance of event X

• Which plan should you choose?
– If the event X is “receive 2 bonus points on PS5”
– If the event X is “surviving an operation”

• An agent must have a set of preferences in 
order to make decisions in an uncertain world



Probabilistic Reasoning Systems

• We’ve seen the 
syntax and semantics 
of probability

• Now we look at an 
inference mechanism:

Belief networks



A Basic Belief Network
• You have a new home 

alarm that responds 
– Accurately to burglaries
– Occasionally responds to 

earthquakes
• When the alarm rings, 

your neighbors call you at 
work
– John always calls, but 

sometimes confuses the 
telephone for the alarm

– Mary sometimes misses 
the alarm, but only calls 
when the alarm actually 
rings

Nodes are random 
variables

Links show a 
direct influence



A Basic Belief Network
• You have a new home 

alarm that responds 
– Accurately to burglaries
– Occasionally responds to 

earthquakes
• When the alarm rings, 

your neighbors call you at 
work
– John always calls, but 

sometimes confuses the 
telephone for the alarm

– Mary sometimes misses 
the alarm, but only calls 
when the alarm actually 
rings

A conditional probability table 
gives the likelihood of a

particular combination of values



Conditional Independence 
Relations in Belief Nets

• Each variable is conditionally independent of its non-
descendants, given its parents

• Presence of Gas and a working Radio are 
– Independent given evidence about the ignition
– Independent given evidence about the battery
– Independent given no evidence
– Dependent given evidence that the car starts

• If the car does not start, but the radio plays, then the chance of 
being out of gas is increased



Incremental Construction 
of Belief Nets

• Conditional Independence Property
P(X | A, B, C…) = P(X | Parents(X))
where Parents(X) gives those nodes (A, B, etc.) that are 

the parent nodes of X
• Incremental belief net construction:

1. Choose the set of relevant variables
2. Choose an ordering for the variables
3. While there are variables left:

a. Pick a variable a1 and add a node to the network for it.
b. Set Parents(a1) to the minimal set of nodes that satisfies 

the conditional independence property
c. Define the conditional probability table for node a1



Incremental Construction
of Belief Networks 

• Add MaryCalls
• Add JohnCalls

– Dependence with MaryCalls since
P(John|Mary)≠P(John)

• Add Alarm
– More likely if both calls are made

• Add Burglary
– Phone calls don’t tell us anything 

about the chance of a burglar, but the 
alarm does

• Add Earthquake
– Alarm acts as earthquake predictor
– Presence of a burglar helps 

determine whether or not an 
earthquake occurred 

MaryCalls

JohnCalls

Alarm

Burglary

Earthquake



Incremental Construction 
of Belief Networks 

• Order in which you add nodes can make a difference on 
the number of links

• “Correct order” to add nodes is to add the “root causes” 
first and then the variables they influence, and so on…

• If we stick to a causal model, we need fewer probabilities 
and these probabilities will be easier to create



Types of Inference

Given that 
John calls, 
infer the 

chance of 
a burglary

Given that a burglary 
occurred, compute the 
chance that John calls

Given that the alarm rang and there 
was an earthquake, what is the 

chance that there was a burglary? 

Given that John calls and that there 
was an earthquake, compute the 

chance of the alarm going off

E = evidence 
Q = query



Inference with Belief Nets
• Singly connected graph

– only one path between any two 
nodes

• Inference in singly-connected 
graphs
– Causal support for X:

• Evidence “above” X (from the 
direction of X’s parents)

– Evidential support for X:
• Evidence “below” X (from the 

direction of X’s children)

• Multiply connected graph
– multiple paths between nodes



Three Techniques for Inference in 
Multiply Connected Belief Networks
• Clustering

– Transform the network by merging nodes
• Probabilistically equivalent
• Topologically different

• Cutset Conditioning
– Transform by instantiating variables to values and re-

evaluating the network
• Stochastic Simulation

– Generate many consistent concrete models and 
approximate an exact evaluation



Clustering in Belief Networks

• Try to change a multiply-connected graph into a 
singly-connected graph by merging nodes

• Introduces complexity into each merged node, 
but the payoff is in the use of simpler inference 
mechanisms



Cutset Conditioning

• “Opposite” of clustering: transforms the network 
into several simpler graphs
– Number of graphs is exponential in the size of the 

cutset
• Transform by instantiating variables to values 

and re-evaluating the network



Stochastic Simulation Methods
• If we want to estimate 

P(WetGrass | Rain) then 
we just start at a root 
node and simulate a 
large number of trials
– Choose a value for Cloudy

based on the probability
– Propagate this value 

through the network
– Count the number of 

instances of WetGrass
and Rain to estimate the 
probability



Where do Probabilities come from?

• Frequentist
– Probabilities come from experiments
– “9 out of 10 dentists agree”

• Objectivist
– Probabilities are real aspects of the universe
– Propensities of objects to act in certain ways

• Subjectivist
– Probabilities characterize an agent’s beliefs
– “In my opinion, there is a 30% chance of success”



Computing Probabilities and 
Reference Classes 

• Probability that the sun will exist tomorrow

Can be derived from the type, age, size, and 
temperature of the sun???

Where d is the number of days that the sun has 
existed so far (formula due to Laplace)

(d+1)  
(d+2)

Where ε is the proportion of stars in the universe 
that go nova every day1-ε

In all previous experiments (previous days), the 
sun has continued to exist1

There has never been an experiment that tested 
the existence of the sun tomorrowUndefined



Administrivia

• Coming up next…learning!


