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Problem Solving via Search
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Knowledge Representation 
and Logical Reasoning

Wumpus World
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Planning
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Making Decisions 
under Uncertainty

A conditional probability table 
gives the likelihood of a

particular combination of values



Solving Problems

• How to Do the Right Thing™
– Try all possibilities (search)
– Build a Knowledge Base and Apply logical rules 

(inference)
• Dealing with the difficulties of the world

– Dealing with uncertainty
– Attempting to perform a plan

• What do you do when
– You don’t know what the right answer really is
– There are too many choices for search
– Attempt to automatically learn the correct function



Parts of Learning Agents
• Performance element

– Maps sensory states to 
actions (may use internal 
state, etc.)

• Learning element
– Uses feedback to modify 

the performance element in 
order to improve future 
action selection

• Critic 
– Maps percepts to 

performance measures to 
provide feedback (optional)

• Problem generator
– Suggests actions that will 

allow for better learning 
(optional)
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Questions when Designing a 
Learning Agent

• Taxi-Driver Agent example
• Which components of the performance element are to be 

improved?
– Steering angle, acceleration rules
– Knowledge of road conditions
– Navigation

• What representation is used for those components?
– Polynomial function?  Logical format?  Search tree?

• What feedback is available?
– Instructor?  Honking horns?  Crashes?

• What prior information is available?
– First time behind the wheel, drove three years ago or drove 

yesterday?
– Did we have a driving course or read a manual?



The Machine Learning Toolbox



Feedback is Critical

• Supervised learning: when an error 
occurs, agent receives the correct output

• Reinforcement learning: when an error 
occurs, agent receives an evaluation of its 
output, but is not told the correct output 

• Unsupervised learning: no indication is 
given whether an output was correct or 
incorrect



Inductive Learning
• A form of supervised learning
• Output is some function of the 

input
y=f(x)

• Examples are samples of the 
function f

• Hypothesis (h) is an estimate of f
• Many hypotheses are possible
• Bias is a preference of one 

hypothesis over another
x (input)

y=
f(x
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Decision Trees
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• Represents a 
Boolean function 
(the goal predicate 
WillWaitForTable())

• Internal nodes are 
tests of a 
feature/property

• Leaves are Boolean 
values

• Represent a 
propositional logic 
statement
– Each path could be a 

line in a truth table

Decision Tree for 
deciding whether to 
wait for a table



Inducing Decision Trees 
from Examples

• A set of examples is a training set
– Positive examples (YES result) and negative examples (NO result)

• A trivial solution:
– Build a tree that has one path for each example

• Ockham’s Razor 
– The most likely hypothesis is the simplest one that is consistent with the 

data

Goal Predicate
(classification)



Guidelines for Finding a Small 
Decision Tree

• Test the most important feature first
• If you have only one type of example, return a leaf
• Else, choose the next most important feature
• If you run out of examples, return a default value (no data)
• If you run out of features, you are in trouble (two examples have 

same description: noisy data)
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NEG: 2,5,7,9,10,11 

POS: 
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Decision Tree Learning

• Following this algorithm, we generate the tree at left
• But the examples were generated by the agent acting on 

the original tree at right
• There is nothing wrong with the learning algorithm… 

– The algorithm generates a hypothesis that matches the 
examples, not necessarily the underlying function

• May be considerably simpler
• May uncover unexpected regularities



How do you Determine 
which Feature is Better? 

• Information Theory!
• Information is measured in bits

• Flipping a fair coin gives one bit of information

• After we make a choice, we still need additional 
info to make the correct choice

å
=

-=
n

i
iin vPvPvPvPI

1
21 )(log)())(),...,((

bit 1loglog),( 2
1

2
1

2
1

22
1

2
1

22
1

2
1

2
1 =+=--=I

å
=

+++
+=

v

i
np

n
np
p

np
np

ii

i

ii

iii IARemainder
1

),()(



Example of Information Content
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Practical Examples of 
Decision Trees

• Designing oil platform equipment
– GASOIL (1986 – BP)
– Designing gas-oil separation systems for offshore platforms
– 2500 rules
– Would have taken 10 person-years to build by hand
– Decision tree took 100 person-days to implement and train

• Learning to Fly
– C4.5 (1992 - Sammut et al.)
– Cessna on a flight simulator
– Observe 3 human pilots make 30 assigned flights
– Create training example every time a control is touched
– Flies better than the human instructors!

• (allows generalization across errors)



Assessing the Performance 
of a Learning Algorithm

• Divide the examples 
into a training set and 
a test set
– Determine the 

percentage of 
examples in each set

– Randomly select 
examples for each

• Vary the percentage 
• Plot this data as a 

learning curve



Limits of Decision Trees

• Propositional logic limits
– Difficult to express existential quantifiers
– But can be done by defining new operators

• May be exponentially large (i.e. Parity function)
– Consider a function with n features/attributes

• 2n rows in a truth table (can define a function with 2n bits)
• 22n different functions
• For example, with n=6 then 22n =2x1019

• Needed extensions
– Missing data attributes (what if you don’t know all the 

relevant features?)
– Multi-valued attributes (if there are too many choices, 

the information content gives an irrelevant measure)
– Continuous-valued attributes (height, weight)



Noise and Overfitting
• In the presence of noise, some feature vectors 

will have multiple examples with conflicting 
results

• If there are many possible hypotheses, you must 
be careful to avoid finding meaningless 
“regularity” in the data (overfitting)
– Every time I flip a coin with my left hand it comes up 

heads
– I always encounter less traffic on Mondays (but I’m 

always late on Mondays)
• There are techniques for dealing with overfitting, 

but they rely on domain information



Administrivia

• Coming up next:
– Wednesday: Guest Lecture (Marynel Vazquez)
– Friday

• Supervised Learning: Neural Networks
– Friday 3:30-4:30 in Davies

• Q&A session.  Email questions by Thursday at 9pm
– Monday 

• Midterm exam



Midterm Exam

• Monday, during class.
– CS470: Report to Davies

– CS570: Report to ML 211

• 50 minute exam (10:30-11:20).  Do not be late.

• No calculators, textbooks, notes, phones, or computers

• You MAY bring one 8.5x11in sheet of paper

• Coverage:
– Lectures up to and including 2/22 (Uncertainty)

– Problem sets #0-4 (inclusive)

– Reading up to and including 2/22 (CH 14)

– NOT including Motion planning or CH 25


