Learning from Observations

CPSC 470 – Artificial Intelligence Brian Scassellati

Problem Solving via Search

Knowledge Representation and Logical Reasoning

Planning

Making Decisions under Uncertainty

A conditional probability table gives the likelihood of a particular combination of values

Solving Problems

- How to *Do the Right Thing*™
 - Try all possibilities (search)
 - Build a Knowledge Base and Apply logical rules (inference)
- Dealing with the difficulties of the world
 - Dealing with uncertainty
 - Attempting to perform a plan
- What do you do when
 - You don't know what the right answer really is
 - There are too many choices for search
 - Attempt to automatically learn the correct function

Parts of Learning Agents

Performance standard

- Performance element
 - Maps sensory states to actions (may use internal state, etc.)
- Learning element
 - Uses feedback to modify the performance element in order to improve future action selection
- Critic
 - Maps percepts to performance measures to provide feedback (optional)
- Problem generator
 - Suggests actions that will allow for better learning (optional)

Questions when Designing a Learning Agent

- Taxi-Driver Agent example
- Which components of the performance element are to be improved?
 - Steering angle, acceleration rules
 - Knowledge of road conditions
 - Navigation
- What representation is used for those components?
 Polynomial function? Logical format? Search tree?
- What feedback is available?
 - Instructor? Honking horns? Crashes?
- What prior information is available?
 - First time behind the wheel, drove three years ago or drove yesterday?
 - Did we have a driving course or read a manual?

The Machine Learning Toolbox

Feedback is Critical

- Supervised learning: when an error occurs, agent receives the correct output
- Reinforcement learning: when an error occurs, agent receives an evaluation of its output, but is not told the correct output
- Unsupervised learning: no indication is given whether an output was correct or incorrect

Inductive Learning

- A form of supervised learning
- Output is some function of the input

y=f(x)

- Examples are samples of the function f
- Hypothesis (h) is an estimate of f
- Many hypotheses are possible
- Bias is a preference of one hypothesis over another

Decision Trees

- Represents a Boolean function (the goal predicate WillWaitForTable())
- Internal nodes are tests of a feature/property
- Leaves are Boolean values
- Represent a propositional logic statement
 - Each path could be a line in a truth table

Inducing Decision Trees from Examples

T											$ \rightarrow \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	
Example	Attributes										Goal	Gool Prodicato
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Туре	Est	WillWait	
X_1	Yes	No	No	Yes	Some	\$\$\$	No	Yes	French	0-10	Yes	(classification)
X_2	Yes	No	No	Yes	Full	\$	No	No	Thai	30-60	No	
X_3	No	Yes	No	No	Some	\$	No	No	Burger	0-10	Yes	
X_4	Yes	No	Yes	Yes	Full	\$	No	No	Thai	10-30	Yes	
X_5	Yes	No	Yes	No	Full	\$\$\$	No	Yes	French	>60	No	
X_6	No	Yes	No	Yes	Some	\$\$	Yes	Yes	Italian	0-10	Yes	
X_7	No	Yes	No	No	None	\$	Yes	No	Burger	0-10	No	
X_8	No	No	No	Yes	Some	\$\$	Yes	Yes	Thai	0-10	Yes	
X_9	No	Yes	Yes	No	Full	\$	Yes	No	Burger	>60	No	
X10	Yes	Yes	Yes	Yes	Full	\$\$\$	No	Yes	Italian	10-30	No	
X_{11}	No	No	No	No	None	\$	No	No	Thai	0-10	No	
X_{12}	Yes	Yes	Yes	Yes	Full	\$	No	No	Burger	30–60	Yes	

• A set of examples is a training set

- Positive examples (YES result) and negative examples (NO result)
- A trivial solution:
 - Build a tree that has one path for each example
- Ockham's Razor
 - The most likely hypothesis is the simplest one that is consistent with the data

Guidelines for Finding a Small Decision Tree

- Test the most important feature first
- If you have only one type of example, return a leaf
- Else, choose the next most important feature
- If you run out of examples, return a default value (no data)
- If you run out of features, you are in trouble (two examples have same description: noisy data)

Decision Tree Learning

- Following this algorithm, we generate the tree at left
- But the examples were generated by the agent acting on the original tree at right
- There is nothing wrong with the learning algorithm...
 - The algorithm generates a hypothesis that matches the examples, not necessarily the underlying function
 - May be considerably simpler
 - May uncover unexpected regularities

How do you Determine which Feature is Better?

- Information Theory!
- Information is measured in bits

$$I(P(v_1),...,P(v_n)) = \sum_{i=1}^n -P(v_i)\log_2 P(v_i)$$

- Flipping a fair coin gives one bit of information $I(\frac{1}{2}, \frac{1}{2}) = -\frac{1}{2}\log_2 \frac{1}{2} - \frac{1}{2}\log_2 \frac{1}{2} = \frac{1}{2} + \frac{1}{2} = 1 \text{ bit}$
- After we make a choice, we still need additional info to make the correct choice

Remainder(A) =
$$\sum_{i=1}^{v} \frac{p_i + n_i}{p + n} I(\frac{p_i}{p_i + n_i}, \frac{n_i}{p_i + n_i})$$

Example of Information Content

Practical Examples of Decision Trees

- Designing oil platform equipment
 - GASOIL (1986 BP)
 - Designing gas-oil separation systems for offshore platforms
 - 2500 rules
 - Would have taken 10 person-years to build by hand
 - Decision tree took 100 person-days to implement and train
- Learning to Fly
 - C4.5 (1992 Sammut et al.)
 - Cessna on a flight simulator
 - Observe 3 human pilots make 30 assigned flights
 - Create training example every time a control is touched
 - Flies better than the human instructors!
 - (allows generalization across errors)

Assessing the Performance of a Learning Algorithm

- Divide the examples into a training set and a test set
 - Determine the percentage of examples in each set
 - Randomly select examples for each
- Vary the percentage
- Plot this data as a learning curve

Limits of Decision Trees

- Propositional logic limits
 - Difficult to express existential quantifiers
 - But can be done by defining new operators
- May be exponentially large (i.e. Parity function)
 - Consider a function with n features/attributes
 - 2ⁿ rows in a truth table (can define a function with 2ⁿ bits)
 - 2^{2ⁿ} different functions
 - For example, with n=6 then $2^{2^n} = 2x10^{19}$
- Needed extensions
 - Missing data attributes (what if you don't know all the relevant features?)
 - Multi-valued attributes (if there are too many choices, the information content gives an irrelevant measure)
 - Continuous-valued attributes (height, weight)

Noise and Overfitting

- In the presence of noise, some feature vectors will have multiple examples with conflicting results
- If there are many possible hypotheses, you must be careful to avoid finding meaningless "regularity" in the data (overfitting)
 - Every time I flip a coin with my left hand it comes up heads
 - I always encounter less traffic on Mondays (but I'm always late on Mondays)
- There are techniques for dealing with overfitting, but they rely on domain information

Administrivia

- Coming up next:
 - Wednesday: Guest Lecture (Marynel Vazquez)
 - Friday
 - Supervised Learning: Neural Networks
 - Friday 3:30-4:30 in Davies
 - Q&A session. Email questions by Thursday at 9pm
 - Monday
 - Midterm exam

Midterm Exam

- Monday, during class.
 - CS470: Report to Davies
 - CS570: Report to ML 211
- 50 minute exam (10:30-11:20). Do not be late.
- No calculators, textbooks, notes, phones, or computers
- You MAY bring one 8.5x11in sheet of paper
- Coverage:
 - Lectures up to and including 2/22 (Uncertainty)
 - Problem sets #0-4 (inclusive)
 - Reading up to and including 2/22 (CH 14)
 - NOT including Motion planning or CH 25