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Decision Trees
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• Represents a 
Boolean function 
(the goal predicate 
WillWaitForTable())

• Leaves are Boolean 
values

• Internal nodes are 
tests of a 
feature/property

• Represent a 
propositional logic 
statement
– Each path could be a 

line in a truth table

Decision Tree for 
deciding whether to 
wait for a table



Learning a (Reasonable)
Decision Tree

• Test the most important feature first
• If you have only one type of example, return a leaf
• Else, choose the next most important feature
• If you run out of examples, return a default value (no data)
• If you run out of features, you are in trouble (two examples have 

same description: noisy data)
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Information Content
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Outline
• Decision Trees learn Boolean functions 

(basically, a predicate in propositional 
logic)

• Today, we look at two additional learning 
techniques
– Version spaces allow us to learn arbitrary 

propositional logical statements
– Neural Networks allow us to learn arbitrary 

functions mapping input features to output 
features



Version Spaces

(Learning arbitrary 
propositional logical statements)



First, a Few Definitions

• In Decision Trees, hypothesis is a predicate

– Such as WillWait for the restaurant example

• Example is a situation in which the predicate 

may or may not be true 

– Express an example as an arbitrary sentence

Alternate(X1) Ù Hungry(X1) Ù ¬Fri/Sat(X1) Ù …

• A hypothesis agrees with all the examples if and 

only if it is logically consistent with each example



Consistency of a Hypothesis

• (a) consistent
• (b) false negative
• (c) generalization includes the false negative example
• (d) false positive
• (e) specialization removes the false positive example
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Finding Consistent Hypotheses:
Current-Best-Hypothesis Search

• Start with a true example
H1 : "d Rainy(d) Û Hot(d)

• False Positives (negative examples) trigger 
specialization and add a clause
H2 : "d Rainy(d) Û Hot(d) Ù Windy(d)

• False Negatives (positive examples) trigger 
generalization and remove a clause
H3 : "d Rainy(d) Û Windy(d)

True

False

True

Rainy

H2=FalseTrueTrueFalse

H1=TrueFalseFalseTrue

TrueTrueTrue

PredictionArthritisWindyHot

Example truth table



Problems with 
Current-Best-Hypothesis Search

• Need to check all previous examples against 
any modification
– Can be very expensive 
– Must maintain all examples in memory

• Hard to find good heuristics of what to add or 
remove
– May need to backtrack if you make the wrong pick
– Unless you keep track of the various modifications 

that you have tried, your function may not terminate



Finding Consistent Hypotheses:
Least-Commitment Search

• Rather than pick a solution, consider the entire space of hypotheses
H1Ú H2 Ú H3 Ú H4 Ú H5 Ú …

• The right answer will be in there (somewhere)
• Remove hypotheses that are inconsistent with particular examples
• Makes no arbitrary choices… least commitment principle
• But how do we represent the space of all possible hypotheses?



Version Space Learning
• How does this work?

– Maintain boundaries 
on the limits of the 
valid positives (S set) 
and the valid 
negatives (G set)

– Adjust boundaries as 
new examples are 
generated



Version Space Learning
• Initialize G=True and S=False
• For each positive instance i+

– Remove members of G that don’t match i+
– Generalize members of S until they match 

i+, retaining only most general members 
that remain more specific than G.

• For each negative instance i-
– Remove members of S that match i-
– Specialize members of G until they don’t 

match i-, retaining only most specific 
members that remain more general than 
S.

• Continue until 
– Obtain one concept
– Space collapses (S or G becomes 

empty) … failure
– Run out of examples

Most general boundaries (G)

Most specific boundaries (S)



Problems with Version Spaces

• Noise

– If the domain contains noise or insufficient attributes 

for exact classification, the space will collapse

• May not tell us anything practical

– If we allow unlimited disjunctions in the hypothesis 

space

– Then the S-set will always contain the most-specific 

hypothesis (the disjunction of all the positive 

examples)

– And the G-set will contain the negation of the 

disjunction of the descriptions of the negative 

examples… 

– We have a rule that is just the listing of examples



Neural Nets

(Learning arbitrary functions 
mapping input features to 

output features)



Neural Networks
• Inspired by early models 

of biological neurons
• Ignore all the 

comparisons with 
biological neurons in your 
textbook
– (They are misleading, and 

based on an outdated 
model of neural function)

• We will treat neural nets 
as a cool computational 
technique, but never as a 
model of biology



Simple Computing Elements
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• Each neuron has
– A set of inputs 
– A weight associated with 

each input
– A weighted sum of inputs
– An activation function
– An output that links to 

some number of other 
elements

• Output is the activation 
function applied to the 
weighted inputs



Activation Functions

• Thresholds can be added by using a constant 
input (positive or negative)
– Thus converting any step function to a sign function

• Sigmoid is most common activation function, as 
it avoids discontinuities (and has a useful 
derivative for gradient descent)



Representing Boolean 
Functions with Neurons

• Using step functions with the given thresholds
• If we can simulate any logic gate with these 

elements, we can build arbitrary computations 
from networks of these elements.



A Typical Network
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• Node types
– Input nodes
– Output nodes
– Hidden nodes

• Network connections
– Feed forward networks 

have no loops (they 
are directed acyclic 
graphs)

– Recurrent networks 
allow for feedback 
loops



Perceptrons
• Layered feed-forward 

networks 
– Output=Step(W*I)
– Assume threshold=0 without 

loss of generality
• Majority function (output 1 if 

at least half the inputs are 1)
– All weights are 1
– Threshold is –n/2 for n inputs 
– (would have required a 

decision tree with 2n nodes)
• Can we represent any 

Boolean function? 



Linear Separability of Perceptrons

• Output is 1 if and only if 
(W1I1+W2I2) > 0
I1 =  – (W2 / W1 ) I2

• Separation between output states and input states is a 
line (it is linearly separable)
– Adding a threshold will only allow for an offset of the line

• Some functions can be computed in this way (AND, OR)
• Some functions cannot (XOR)

I1

I2

W1

W2



Linear Separability in 3 Dimensions

• In three dimensions, linear separability is 
defined by a plane that separates positive from 
negative responses

• Example: Perceptron for computing the Minority 
function



Learning with Perceptrons

• At each time step, compute the error
Err = CorrectOutput – ActualOutput

• Update each weight according to the 
learning rule:
Wj ←Wj + α * Ij * Err
where α is the learning rate

• Guaranteed to learn any linearly separable 
function given sufficient training examples



Which are better, 
Perceptrons or Decision Trees?

11-input majority function

Perceptrons are better

WillWait restaurant example

Decision Trees are better



Multi-Layer Feed-Forward 
Networks

• Adding more layers 
(hidden units) allows 
us to compute more 
complex problems

• Can solve problems 
that are not linearly 
separable

• But how do we train 
these networks to do 
the right thing?



Back-propagation 

Run the network 
on an example

Compute the 
error between 
the expected 
and the actual 

output

For output nodes, add to the 
weight the quantity 

(learningRate * priorNode * error * 
GradientOfActivationFunction)

For internal node j, it is 
responsible for some fraction 

of the error at node i

Update the weights going into 
node j according to that 

fraction of the following error

j ik

Errors propagate back from the output



Back-Propagation is 
Gradient Descent

• Error surface for gradient 
descent in the weight 
space

• Back-prop provides a way 
of dividing the calculation 
of the gradient among the 
units, so the change in 
each weight can be 
calculated by the unit to 
which the weight is 
attached using only local 
information



Performance of Back-Propagation

• Performance on the WillWait Restaurant problem
• At left, a training curve showing the error over the number 

of epochs (iterations of back-prop)
• At right, the performance relative to decision trees
• How does this compare to the perceptron?

Perceptron



Example Applets

• The examples shown in class are 
available from the Computational 
Intelligence group at the University of 
British Columbia
– http://www.aispace.org/

http://www.aispace.org/


Other Network Definitions

• Hopfield networks
– All nodes are input and output

• Symmetric bidirectional connections (Wij=Wji)
• Activation levels are +1 or -1
• Function is the sign function

– Associative memory
• Once trained on a set of inputs, a new presentation will settle 

to the trained input that most closely resembles the novel 
input

• Boltzmann machines
• Symmetric weights
• Some hidden nodes (neither input nor output)
• Stochastic activation function



Administrivia

• Midterm on Monday!
• Q&A session today, 3:30-4:30 here


