
Supervised Learning

CPSC 470 – Artificial Intelligence
Brian Scassellati

Decision Trees

Patrons?

No Yes

WaitEstimate?

Alternate?

Reservation?

Bar?

Fri/Sat? Alternate?

Raining?

Hungry?

No Yes

Yes

Yes

No Yes

YesNoYes

No Yes

None Some Full

>60 30-60 10-30 0-10

No Yes

No YesNoYes

No Yes No Yes

NoYes

No Yes

• Represents a
Boolean function
(the goal predicate
WillWaitForTable())

• Leaves are Boolean
values

• Internal nodes are
tests of a
feature/property

• Represent a
propositional logic
statement
– Each path could be a

line in a truth table

Decision Tree for
deciding whether to
wait for a table

Learning a (Reasonable)
Decision Tree

• Test the most important feature first
• If you have only one type of example, return a leaf
• Else, choose the next most important feature
• If you run out of examples, return a default value (no data)
• If you run out of features, you are in trouble (two examples have

same description: noisy data)

POS: 1,3,4,6,8,12

NEG: 2,5,7,9,10,11

POS:

NEG: 7,11

POS: 1,3,6,8

NEG:

POS: 4,12

NEG: 2,5,9,10

Patrons?

POS: 1,3,4,6,8,12

NEG: 2,5,7,9,10,11

POS: 1

NEG: 5

POS: 4,8

NEG: 2,11

POS: 3,12

NEG: 7,9

Type?

POS: 6

NEG: 10

Hungry?

POS: 4,12

NEG: 2,10
POS:

NEG: 5,9

No Yes

None Some Full

NoYes

French
Italian Thai Burger

Information Content
POS: 1,3,4,6,8,12

NEG: 2,5,7,9,10,11

POS:

NEG: 7,11

POS: 1,3,6,8

NEG:

POS: 4,12

NEG: 2,5,9,10

Patrons?

POS: 1,3,4,6,8,12

NEG: 2,5,7,9,10,11

POS: 1

NEG: 5

POS: 4,8

NEG: 2,11

POS: 3,12

NEG: 7,9

Type?

POS: 6

NEG: 10

None Some Full French
Italian Thai Burger

bits 459.0)(
)loglog(00)(

),()0,1()1,0()(

),()(

6
4

6
4

6
2

6
2

12
6

6
4

6
2

12
6

12
4

12
2

1

»

--++»

++=

=å
=

+++
+

PatronsRemainder
PatronsRemainder

IIIPatronsRemainder

IARemainder
v

i
np

n
np
p

np
np

ii

i

ii

iii

1)(
)1()1()1()1()(

),(),(),(),()(

12
4

12
4

12
2

12
2

4
2

4
2

12
4

4
2

4
2

12
4

2
1

2
1

12
2

2
1

2
1

12
2

=

+++=

+++=

TypeRemainder
TypeRemainder

IIIITypeRemainder
Needs less info to make a perfect choice

Outline
• Decision Trees learn Boolean functions

(basically, a predicate in propositional
logic)

• Today, we look at two additional learning
techniques
– Version spaces allow us to learn arbitrary

propositional logical statements
– Neural Networks allow us to learn arbitrary

functions mapping input features to output
features

Version Spaces

(Learning arbitrary
propositional logical statements)

First, a Few Definitions

• In Decision Trees, hypothesis is a predicate

– Such as WillWait for the restaurant example

• Example is a situation in which the predicate

may or may not be true

– Express an example as an arbitrary sentence

Alternate(X1) Ù Hungry(X1) Ù ¬Fri/Sat(X1) Ù …

• A hypothesis agrees with all the examples if and

only if it is logically consistent with each example

Consistency of a Hypothesis

• (a) consistent
• (b) false negative
• (c) generalization includes the false negative example
• (d) false positive
• (e) specialization removes the false positive example

predict negative predict positive

+
–– – –

–

–

– –

–+++
+

+
+

(a)

–

+
–– – –

–

– –

–+++
+

+
+

+

(b)

+
–– – –

–

– –

–+++
+

+
+

+

(c)

+
–– – –

–

– –

–+++
+

+
+

+

–

(d)

+
–– – –

–

– –

–+++
+

+
+

+

–

(e)

Finding Consistent Hypotheses:
Current-Best-Hypothesis Search

• Start with a true example
H1 : "d Rainy(d) Û Hot(d)

• False Positives (negative examples) trigger
specialization and add a clause
H2 : "d Rainy(d) Û Hot(d) Ù Windy(d)

• False Negatives (positive examples) trigger
generalization and remove a clause
H3 : "d Rainy(d) Û Windy(d)

True

False

True

Rainy

H2=FalseTrueTrueFalse

H1=TrueFalseFalseTrue

TrueTrueTrue

PredictionArthritisWindyHot

Example truth table

Problems with
Current-Best-Hypothesis Search

• Need to check all previous examples against
any modification
– Can be very expensive
– Must maintain all examples in memory

• Hard to find good heuristics of what to add or
remove
– May need to backtrack if you make the wrong pick
– Unless you keep track of the various modifications

that you have tried, your function may not terminate

Finding Consistent Hypotheses:
Least-Commitment Search

• Rather than pick a solution, consider the entire space of hypotheses
H1Ú H2 Ú H3 Ú H4 Ú H5 Ú …

• The right answer will be in there (somewhere)
• Remove hypotheses that are inconsistent with particular examples
• Makes no arbitrary choices… least commitment principle
• But how do we represent the space of all possible hypotheses?

Version Space Learning
• How does this work?

– Maintain boundaries
on the limits of the
valid positives (S set)
and the valid
negatives (G set)

– Adjust boundaries as
new examples are
generated

Version Space Learning
• Initialize G=True and S=False
• For each positive instance i+

– Remove members of G that don’t match i+
– Generalize members of S until they match

i+, retaining only most general members
that remain more specific than G.

• For each negative instance i-
– Remove members of S that match i-
– Specialize members of G until they don’t

match i-, retaining only most specific
members that remain more general than
S.

• Continue until
– Obtain one concept
– Space collapses (S or G becomes

empty) … failure
– Run out of examples

Most general boundaries (G)

Most specific boundaries (S)

Problems with Version Spaces

• Noise

– If the domain contains noise or insufficient attributes

for exact classification, the space will collapse

• May not tell us anything practical

– If we allow unlimited disjunctions in the hypothesis

space

– Then the S-set will always contain the most-specific

hypothesis (the disjunction of all the positive

examples)

– And the G-set will contain the negation of the

disjunction of the descriptions of the negative

examples…

– We have a rule that is just the listing of examples

Neural Nets

(Learning arbitrary functions
mapping input features to

output features)

Neural Networks
• Inspired by early models

of biological neurons
• Ignore all the

comparisons with
biological neurons in your
textbook
– (They are misleading, and

based on an outdated
model of neural function)

• We will treat neural nets
as a cool computational
technique, but never as a
model of biology

Simple Computing Elements

)(

j inputs allfor

:i neuronFor

,

ii

j
jiji

inga

aWin

=

=å

• Each neuron has
– A set of inputs
– A weight associated with

each input
– A weighted sum of inputs
– An activation function
– An output that links to

some number of other
elements

• Output is the activation
function applied to the
weighted inputs

Activation Functions

• Thresholds can be added by using a constant
input (positive or negative)
– Thus converting any step function to a sign function

• Sigmoid is most common activation function, as
it avoids discontinuities (and has a useful
derivative for gradient descent)

Representing Boolean
Functions with Neurons

• Using step functions with the given thresholds
• If we can simulate any logic gate with these

elements, we can build arbitrary computations
from networks of these elements.

A Typical Network

))(
)((

)(

24,214,15,4

23,213,15,35

45,435,35

aWaWgW
aWaWgWga

aWaWga

+
++=

+=

• Node types
– Input nodes
– Output nodes
– Hidden nodes

• Network connections
– Feed forward networks

have no loops (they
are directed acyclic
graphs)

– Recurrent networks
allow for feedback
loops

Perceptrons
• Layered feed-forward

networks
– Output=Step(W*I)
– Assume threshold=0 without

loss of generality
• Majority function (output 1 if

at least half the inputs are 1)
– All weights are 1
– Threshold is –n/2 for n inputs
– (would have required a

decision tree with 2n nodes)
• Can we represent any

Boolean function?

Linear Separability of Perceptrons

• Output is 1 if and only if
(W1I1+W2I2) > 0
I1 = – (W2 / W1) I2

• Separation between output states and input states is a
line (it is linearly separable)
– Adding a threshold will only allow for an offset of the line

• Some functions can be computed in this way (AND, OR)
• Some functions cannot (XOR)

I1

I2

W1

W2

Linear Separability in 3 Dimensions

• In three dimensions, linear separability is
defined by a plane that separates positive from
negative responses

• Example: Perceptron for computing the Minority
function

Learning with Perceptrons

• At each time step, compute the error
Err = CorrectOutput – ActualOutput

• Update each weight according to the
learning rule:
Wj ←Wj + α * Ij * Err
where α is the learning rate

• Guaranteed to learn any linearly separable
function given sufficient training examples

Which are better,
Perceptrons or Decision Trees?

11-input majority function

Perceptrons are better

WillWait restaurant example

Decision Trees are better

Multi-Layer Feed-Forward
Networks

• Adding more layers
(hidden units) allows
us to compute more
complex problems

• Can solve problems
that are not linearly
separable

• But how do we train
these networks to do
the right thing?

Back-propagation

Run the network
on an example

Compute the
error between
the expected
and the actual

output

For output nodes, add to the
weight the quantity

(learningRate * priorNode * error *
GradientOfActivationFunction)

For internal node j, it is
responsible for some fraction

of the error at node i

Update the weights going into
node j according to that

fraction of the following error

j ik

Errors propagate back from the output

Back-Propagation is
Gradient Descent

• Error surface for gradient
descent in the weight
space

• Back-prop provides a way
of dividing the calculation
of the gradient among the
units, so the change in
each weight can be
calculated by the unit to
which the weight is
attached using only local
information

Performance of Back-Propagation

• Performance on the WillWait Restaurant problem
• At left, a training curve showing the error over the number

of epochs (iterations of back-prop)
• At right, the performance relative to decision trees
• How does this compare to the perceptron?

Perceptron

Example Applets

• The examples shown in class are
available from the Computational
Intelligence group at the University of
British Columbia
– http://www.aispace.org/

http://www.aispace.org/

Other Network Definitions

• Hopfield networks
– All nodes are input and output

• Symmetric bidirectional connections (Wij=Wji)
• Activation levels are +1 or -1
• Function is the sign function

– Associative memory
• Once trained on a set of inputs, a new presentation will settle

to the trained input that most closely resembles the novel
input

• Boltzmann machines
• Symmetric weights
• Some hidden nodes (neither input nor output)
• Stochastic activation function

Administrivia

• Midterm on Monday!
• Q&A session today, 3:30-4:30 here

