
Evolutionary Algorithms

CPSC 472/572 – Intelligent Robotics
Brian Scassellati



The Problem

• How do we design a system when we 
have little idea of where to start? 

• How can we do as little work as possible?



Random Selection
• A random sequence is 

selected at each 
instance

• Partial solutions are 
possible

• But will disappear in the 
next iteration

• Eventually something 
useful will result

• 2720 ≈ 4x1028 possible 
strings in even this 
simple example

• At one sample per 
second, that’s >1021

years

q p o i u h g f d s a c v b b n m t r ed x u n u y t r e w n b v c x z k jF o u r q a s d f g h w e t y u v m na x a d x q f p e s a x d s z v h mF o u r s c o r e a n d s e v e n



The Solution?
• Inspired by evolution
• Start with a set of 

solutions (represented by 
chromosomes) called a 
population. 

• Select new solutions 
(offspring) based on their 
fitness. 

• Repeat until satisfied.



1.[Start]
2.[Fitness]
3.[New population]

A.[Selection]
B.[Crossover]
C.[Mutation]
D.[Accepting]

4.[Replace]
5.[Test]
6.[Loop] Go to step 2 

Overview of the Process

Genotype

Phenotype

“New” Population

Development

Selection

Reproduction

Interaction with
environment

Interaction with
environment +

competition

En
vi

ro
nm

en
t



Outline of the Basic Genetic Algorithm
1.[Start] Generate random population of n chromosomes. 
2.[Fitness] Evaluate the fitness of each chromosome. 
3.[New population] Create a new population by repeating:

A.[Selection] Select two parent chromosomes based on 
their fitness. 
B.[Crossover] With a crossover probability cross over the 
parents to form new offspring (children). If no crossover 
was performed, offspring is an exact copy of parents. 
C.[Mutation] With a mutation probability mutate new 
offspring at each locus (position in chromosome). 
D.[Accepting] Place new offspring in a new population. 

4.[Replace] Use new generated population for a further run 
of algorithm. 

5.[Test] If the end condition is satisfied, stop, and return 
the best solution in current population. 

6.[Loop] Go to step 2 



Parameters of a GA

• Population size
• Encoding choices
• Crossover probability 
• Mutation probability
• Replacement strategies
• (and of course, the fitness function)



Encoding of a Chromosome
• The chromosome should in some way 

contain information about the solution 
which it represents

• Popular methods include
– Binary encoding
– Permutation encoding
– Value encoding
– Tree encoding



Encoding of a Chromosome:
Binary Encoding 

• Each chromosome has one binary string. 
• Meaning of the string can vary

– Each bit can represent some characteristic of the solution.
– The whole string can represent a number.

• Example: Knapsack problem
– There is a set of items, each with a given value and size. 
– The knapsack has given capacity.
– Task: Select things to maximize the value of items in knapsack, 

but do not exceed capacity.
– Encoding: Each bit says if the corresponding item is in knapsack.

1 1 0 0 1 1 0 1 0 1 0 0 0 1

0 1 1 0 1 0 1 0 1 1 1 1 0 1



Encoding of a Chromosome:
Permutation Encoding 

• Every chromosome is a string of numbers, which 
represent numbers in a sequence. 

• Useful for ordering problems. 
• Example: Traveling salesman problem (TSP)

– There is a set of cities with given distances between them.
– Traveling salesman must visit all cities
– Task: Find a sequence of cities to minimize the distance 

travelled.
– Encoding: Chromosome gives order of cities to visit

1 5 3 2 6 4 7 9 8

1 5 326 47 98



Encoding of a Chromosome:
Value Encoding 

• Every chromosome is a string of values. 
• Values can be anything connected to the 

problem.
• Example: Finding weights for a neural network

– Given a neural network with a specific architecture
– Task: Find weights to train the network to a desired 

output.
– Encoding: Real values in chromosomes represent 

corresponding weights for inputs.

A G W V J U K R B

↓ ← ↑←↓ ←← ↑→

9.6 2.21 6.227.031.31 2.27



Encoding of a Chromosome:
Tree Encoding 

• Every chromosome is a tree of objects, such as 
functions or commands in a programming language. 

• Useful mainly for evolving programs or expressions
• Example: Finding a function from given values

– Some input and output values are given
– Task: Find a function that will give the best (closest to 

desired) output to all inputs.
– Encoding: Chromosome are functions represented in 

a tree.

+

*

3 x

y (+ (* 3 x) y)



1.[Start]
2.[Fitness]
3.[New population]

A.[Selection]
B.[Crossover]
C.[Mutation]
D.[Accepting]

4.[Replace]
5.[Test]
6.[Loop] Go to step 2 

Overview of the Process

Genotype

Phenotype

“New” Population

Development

Selection

Reproduction

Interaction with
environment

Interaction with
environment +

competition

En
vi

ro
nm

en
t



Defining a Fitness Function

• If the correct answer is known, the fitness is 
some distance metric toward the correct answer.

• If the correct answer is unknown, fitness must be 
an estimator of the value of the solution. 

• Combinations of multiple goals into a single 
numeric function can be difficult.

• Evolution can only be as good as the fitness 
function.



1.[Start]
2.[Fitness]
3.[New population]

A.[Selection]
B.[Crossover]
C.[Mutation]
D.[Accepting]

4.[Replace]
5.[Test]
6.[Loop] Go to step 2 

Overview of the Process

Genotype

Phenotype

“New” Population

Development

Selection

Reproduction

Interaction with
environment

Interaction with
environment +

competition

En
vi

ro
nm

en
t



Selection Strategies
• Select a mating population from the 

current generation
• Popular methods include 

– Greedy selection
– Roulette wheel selection
– Rank selection
– Elitism



Greedy Selection

• The easy way: 
– Take the n most-fit individuals

• Why the easy way fails…
– Loss of diversity
– Stuck in local maxima

Population size: 7, n=3



Roulette Wheel Selection

• Parents are allocated space on the wheel in proportion 
to their fitness.

• A marble is thrown and selects the chromosome.
– Repeat n spins.

• Chromosomes with larger fitness values will be selected 
more times.

31%

5%

38%

12% 14%



Rank Selection

• Roulette selection has problems when the fitness values differ very much. 
– For example, if the best chromosome fitness is 90% of all the roulette wheel 

then the other chromosomes will have very few chances to be selected. 
• Rank selection 

– Every chromosome receives fitness from its ranking.
– The worst will have fitness 1.
– The best will have fitness n (number of chromosomes in population). 

• Can lead to slower convergence, because the best chromosomes do not 
differ very much from other ones. 

Roulette Selection

Rank Selection

Rank 1
Rank 2

Rank 3

Rank 4



Elitism
• When creating a new population by crossover 

and mutation, there is a good chance that the 
best chromosome will be lost.

• Elitism copies the best chromosome (or a few 
best chromosomes) from the previous 
generation into the new population.

• Selection proceeds according to any other 
selection method.

• Elitism can very rapidly increase performance of 
GA, because it prevents losing the best found 
solution.



1.[Start]
2.[Fitness]
3.[New population]

A.[Selection]
B.[Crossover]
C.[Mutation]
D.[Accepting]

4.[Replace]
5.[Test]
6.[Loop] Go to step 2 

Overview of the Process

Genotype

Phenotype

“New” Population

Development

Selection

Reproduction

Interaction with
environment

Interaction with
environment +

competition

E
nv

iro
nm

en
t



Reproduction: Crossover

• Single point crossover :
11001011 + 11011111 à 11001111 + 11011011

• Two point crossover : 
11001011 + 11011111 à 11011111 + 11001011

• Uniform crossover :
11001011 + 11011101 à 11011111 + 11001001

• Arithmetic crossover : some arithmetic operation is 
performed to make a new offspring 

11001011 + 11011111 à 11001001 (AND) 

Pare
nt 

A
Offspring 1

Pare
nt 

B Offspring 2



Reproduction: Mutation

• In general, mutation depends on the 
encoding as well as the crossover.

• For binary encoding, mutation is simply bit 
inversion:

11001001 à 10001001

• Mutation can prevent problems with local 
optima!

Orig
ina

l

Offs
pri

ng
 1 Mutated

Offspring 1



Crossover and Mutation with
Permutation Encoding

• Single point crossover
– One crossover point is selected
– Copy sequence before crossover from first parent
– Scan second parent for sequence of remaining 
(1 2 3 4 5 6 7 8) + (4 5 3 6 8 2 7 1) à (1 2 3 4 5 6 8 7) 

• Mutation
– Order changing : two numbers are selected and 

exchanged 
• (1 2 3 4 5 6 8 9 7) à (1 8 3 4 5 6 2 9 7) 



• Crossover
– All crossovers from binary encoding can be used 

• Mutation
– Real numbers : add/subtract a small value

(1.29 5.68 2.86 4.11) à (1.29 5.68 2.73 4.22)
– Alphabet symbols : advance one place

(A F D E H) à (A G D E H)
– Directions : rotate clockwise

à

Crossover and Mutation with
Value Encoding

↓ ← ↑←↓ ←← ↑→ ← ← ↑←↓ ←← ↑→



Crossover and Mutation with
Tree Encoding

• Crossover 

• Mutation 

*

3 x

-

3

9

/

+

yz

-

3

9 z

/

+

*

3 x

y + +

+

*

3 x

y

+

*

3 x

9

Note : We may need 
to distinguish between 
nodes based on the 
number of children to 
maintain a valid tree

Parents Children



1.[Start]
2.[Fitness]
3.[New population]

A.[Selection]
B.[Crossover]
C.[Mutation]
D.[Accepting]

4.[Replace]
5.[Test]
6.[Loop] Go to step 2 

Overview of the Process

Genotype

Phenotype

“New” Population

Development

Selection

Reproduction

Interaction with
environment

Interaction with
environment +

competition

E
nv

iro
nm

en
t



Replacement Strategies
• Generational Selection

– All population members are removed on each 
generation.

• Overlapping Selection 
– In every generation, select a few high fitness 

chromosomes for creating new offspring.
– Remove some low fitness chromosomes.
– Replace these with new offspring. 
– Remainder of population remains

• Replace {worst, best, parent, random, 
most similar}



1.[Start]
2.[Fitness]
3.[New population]

A.[Selection]
B.[Crossover]
C.[Mutation]
D.[Accepting]

4.[Replace]
5.[Test]
6.[Loop] Go to step 2 

Overview of the Process

Genotype

Phenotype

“New” Population

Development

Selection

Reproduction

Interaction with
environment

Interaction with
environment +

competition

E
nv

iro
nm

en
t



Advantages of GAs
• Parallelism
• Less likely to get stuck in local extrema 

than other optimization methods 
• Relatively easy to implement

– But choosing an encoding and fitness function 
can be difficult

• Disadvantages
– Computational time
– No guarantee on a solution
– Strong dependence on parameters



Competitive Evolution in Simulation

• Karl Sims
– MIT Media Lab
– Thinking Machines
– GenArts, Inc.

• “Evolving 3D 
Morphology and 
Behavior by 
Competition” (1994)

• 2 big ideas



Great Idea #1: 
Evolving Morphology with Control

• Evolve both the 
– Body structure (morphology)
– Brain structure (control)



Physical Morphology Encoding: 
Genotypes and Phenotypes

• Genotype is composed 
of a directed graph 
structure where each 
node contains
– Dimensions for a rigid part
– Attachment points
– Joint types at those points
– Maximum recursion depth

• Phenotype is a hierarchy 
of 3-D parts in a physics-
rich simulation

d=4

db=3

dl=3

dl=2



Control Structure Encoding (Genotype)

• Nested graphs genotype 
– Outer graph is morphology
– Inner graph is neural circuitry

• Sensors for 
– Contact (C)
– Photocells (P)
– Joint angle sensors (Q)

• Computation elements (multiply and threshold sum)
• Effector outputs (E)



Fitness Functions for the 
Development of Locomotion

• Land and water environments
• Locomotion fitness function = 

speed
– Distance traveled by the center 

of mass per unit time
– Ignore the vertical component 

when on land!
• Jumping fitness function

– Maximum height achieved by 
the lowest point in the creature



Creatures Evolved for Locomotion

Swimming

Walking

Jumping



Demonstrations of Locomotion

• 100 generations of 300 individuals
• 3 hours on a 32-processor CM-5



Great Idea #2:
Evolution at times involves more 

than competition with the 
environment



Competition Arena

• Competition between two creatures
• Must start behind the line (and below a 45 

degree ceiling)
• Objective is to get the cube for yourself (and 

thus keep the cube from your opponent)



Fitness Function
• Let d1 and d2 be the final shortest 

distances of each creature to the cube
• Fitness for each creature:

• All fitness values in the range [0.0, 2.0]
• Scores always average to one 
• Ties are permitted (f1 = f2 = 1)



Pair-wise Competition Patterns

Empirically chosen
to give the most
interesting results



Evolved via Competition



Examples of Co-evolved Creatures



What are evolutionary 
algorithms good for?



Applications of GAs:

Mechanical Design
• General Electric’s custom 

GA EnGEneous used to 
design the Boeing 777's 
jet engines.

• GE had a viable six-stage 
compressor design in 
less than a week.

• The compressor solution 
yielded additional 
efficiencies on top of the 
design criteria. 
– required less metal

– less weight 

– greater-than-anticipated 
decrease in fuel 
consumption



Applications of GAs:
Game-Playing Systems

• Evolution of Master-level checkers player (David 
Fogel)

• But still unable to compete against Chinook, a 
hand-coded checkers player that can beat any 
human player



But is it really useful?

• “Neural networks are the second best way 
of doing just about anything…”

• “… and genetic algorithms are the third.”
– Attributed to John Denker



Administrivia

• No class meeting on Friday… have a great 
break!

• Midterm exam scores released this week
• PS 5 is coming soon!


