Evolutionary Algorithms

CPSC 472/572 — Intelligent Robotics
Brian Scassellati

The Problem

 How do we design a system when we
have little idea of where to start?

 How can we do as little work as possible?

Random Selection

A random sequence is
selected at each
] Instance

 Partial solutions are
possible

« But will disappear in the
next iteration

» Eventually something
useful will result

« 2720=4x1028 possible
strings in even this
simple example

* At one sample per
second, that's >102
years

The Solution?

* Inspired by evolution

« Start with a set of
solutions (represented by
chromosomes) called a
population.

 Select new solutions
(offspring) based on their
fitness.

* Repeat until satisfied.

Overview of the Process

1.[Start]
2.[Fitness]
3.[New population]

A.

B

D.
[Replace]
JTest]
[Loop] Go to step 2

o O~

[Selection]

[Crossover]
C.

[Mutation]

[Accepting]

Environment

- Genotype

Interact;'lon with -
environment

¥

Phenotype

Interaction with
environment +
competition
A 4

“New” Population

Outline of the Basic Genetic Algorithm

1.[Start] Generate random population of n chromosomes.
2.[Fitness] Evaluate the fitness of each chromosome.

3.[New population] Create a new population by repeating:

A.[Selection] Select two parent chromosomes based on
their fitness.

B.[Crossover] With a crossover probability cross over the
parents to form new offspring (children). If no crossover
was performed, offspring is an exact copy of parents.

C.[Mutation] With a mutation probability mutate new
offspring at each locus (position in chromosome).

D.[Accepting] Place new offspring in a new population.

[Replace] Use new generated population for a further run
of algorithm.

[Test] If the end condition is satisfied, stop, and return
the best solution in current population.

[Loop] Go to step 2

Parameters of a GA

Population size

Encoding choices

Crossover probability

Mutation probability

Replacement strategies

(and of course, the fitness function)

Encoding of a Chromosome

* The chromosome should in some way
contain information about the solution
which it represents

* Popular methods include
— Binary encoding
— Permutation encoding

— Value encoding
— Tree encoding

Encoding of a Chromosome:
Binary Encoding

111{0{0(111]0{1{0(1]0]0|0|1

O[(1{1(0|1{0{1({0(1|1{1]1({0[1

« Each chromosome has one binary string.

« Meaning of the string can vary
— Each bit can represent some characteristic of the solution.
— The whole string can represent a number.

« Example: Knapsack problem

— There is a set of items, each with a given value and size.
— The knapsack has given capacity.

— Task: Select things to maximize the value of items in knapsack,
but do not exceed capacity.

— Encoding: Each bit says if the corresponding item is in knapsack.

Encoding of a Chromosome:
Permutation Encoding

115(3(2(6|4|7|9|8

7(8(115|6|2]|9(4|3

Every chromosome is a string of numbers, which
represent numbers in a sequence.

Useful for ordering problems.

Example: Traveling salesman problem (TSP)
— There is a set of cities with given distances between them.
— Traveling salesman must visit all cities

— Task: Find a sequence of cities to minimize the distance
travelled.

— Encoding: Chromosome gives order of cities to visit

Encoding of a Chromosome:
Value Encoding

AIGIW|V|J|U|KIR|B

1.31(2.27| 9.6 (2.21|7.03(6.22

* Every chromosome is a string of values.

* Values can be anything connected to the
problem.

 Example: Finding weights for a neural network
— Given a neural network with a specific architecture

— Task: Find weights to train the network to a desired
output.

— Encoding: Real values in chromosomes represent
corresponding weights for inputs.

Encoding of a Chromosome:
Tree Encoding

©
(@ mE)y sy
(3

 Every chromosome is a tree of objects, such as
functions or commands in a programming language.

« Useful mainly for evolving programs or expressions
« Example: Finding a function from given values

— Some input and output values are given

— Task: Find a function that will give the best (closest to
desired) output to all inputs.

— Encoding: Chromosome are functions represented in
a tree.

Overview of the Process

1.[Start]

2.[Fithess]
3.[New population]

A.

B

D

o O~

[Selection]

[Crossover]
C.

[Mutation]

JAccepting]
[Replace]

JTest]

[Loop] Go to step 2

Environment

-1 (Genotype

Interact;'lon with -
environment

¥

Phenotype

Interaction with
environment +
competition
A 4

“New” Population

Defining a Fitness Function

If the correct answer is known, the fithess is
some distance metric toward the correct answer.

If the correct answer is unknown, fithess must be
an estimator of the value of the solution.

Combinations of multiple goals into a single
numeric function can be difficult.

Evolution can only be as good as the fithess
function.

Overview of the Process

1.[Start]

2.[Fitness]

3.[New population]
A.[Selection]

B

D.

O')U'I-h

[Crossover]
C.

[Mutation]
[Accepting]

[Replace]
JTest]
[Loop] Go to step 2

Environment

-1 (Genotype

Interaction with
environment

¥

Phenotype

Interaction with
environment +
competition
A 4

“New” Population

Selection Strategies

» Select a mating population from the
current generation

* Popular methods include
— Greedy selection
— Roulette wheel selection
— Rank selection
— Elitism

Greedy Selection

* The easy way:
— Take the n most-fit individuals
* Why the easy way falls...

— Loss of diversity
— Stuck in local maxima

M Population size: 7, n=3

Roulette Wheel Selection

aneel is rotate,,
=L

14%

12%

the roulette wheel .
S therouetiowheel

« Parents are allocated space on the wheel in proportion

to their fitness.
A marble is thrown and selects the chromosome.

— Repeat n spins.
« Chromosomes with larger fitness values will be selected

more times.

Rank Selection

@ Chromosome 1

| Chromosome 2
0O Chromosome 3

0 Chromosome 4 Roulette Selection

Rank 1 Rank 4
/

@ Chromosome 1
B Chromosome 2
O Chromosome 3

O Chromosome 4 Rank SeleCthn

Roulette selection has problems when the fitness values differ very much.

— For example, if the best chromosome fitness is 90% of all the roulette wheel
then the other chromosomes will have very few chances to be selected.

Rank selection

— Every chromosome receives fitness from its ranking.
— The worst will have fitness 1.
— The best will have fithess n (number of chromosomes in population).

Can lead to slower convergence, because the best chromosomes do not
differ very much from other ones.

Elitism

When creating a new population by crossover
and mutation, there is a good chance that the
best chromosome will be lost.

Elitism copies the best chromosome (or a few
best chromosomes) from the previous
generation into the new population.

Selection proceeds according to any other
selection method.

Elitism can very rapidly increase performance of
GA, because it prevents losing the best found
solution.

Overview of the Process

1.[Start]

2.[Fitness]

3.[New population]
A.[Selection]
B.[Crossover]
C.[Mutation]
D.[Accepting]

[Replace]

JTest]

[Loop] Go to step 2

o O~

Environment

-1 (Genotype

Interact;'lon with -
environment

¥

Phenotype

Interaction with
environment +
competition
A 4

“New” Population

NN NN
N N N
N N N
N N N
N N N
N N N
N N N
» »
. .
- -
- -
NN
N L
N L
N L
N L
N L
B
.
.

Single point crossover :

11001011 + 11011111 -> 11001111 + 11011011
Two point crossover

11001011 + 11011111 -> 11011111 + 11001011
Uniform crossover :

11001011 + 11011101 -> 11011111 + 11001001

Arithmetic crossover : some arithmetic operation is
performed to make a new offspring

11001011 + 11011111 - 11001001 (AND)

Reproduction: Mutation
N %

>
\Q)Q 0) O/;.& /é/

o ,&é?& %
B = [°,

* In general, mutation depends on the
encoding as well as the crossover.

* For binary encoding, mutation is simply bit

Inversion:
11001001 = 10001001

* Mutation can prevent problems with local
optima!

Crossover and Mutation with
Permutation Encoding

» Single point crossover
— One crossover point is selected
— Copy sequence before crossover from first parent

— Scan second parent for sequence of remaining
(12345678)+(45368271)>(12345687)

« Mutation

— Order changing : two numbers are selected and
exchanged

+ 123456897)>(183456297)

Crossover and Mutation with
Value Encoding

 Crossover
— All crossovers from binary encoding can be used

 Mutation
— Real numbers : add/subtract a small value
(1.29 5.68 2.86 4.11) 2> (1.29 5.68 2.7/3 4.22)
— Alphabet symbols : advance one place
(AFDEH)> (AGDEH)
— Directions : rotate clockwise

Crossover and Mutation with
Tree Encoding

e Crossover

Parents Children
(+) (-
A® - ﬂé%@ Ncyo
3 © OJO
3 ©
 Mutation

Note : We may need
° ° to distinguish between
() (y) ‘ () (9) nodes based on the
number of children to
9 ° 9 ° maintain a valid tree

N —

OV

C.

Overview of the Process

[Start]

[Fitness]

[New population]
A.[Selection]

B.[

[Crossover]
[Mutation]

D.[Accepting]
4.[Replace]
5.[Test]
6.[Loop] Go to step 2

Environment

-1 (Genotype

Interact;'lon with -
environment

¥

Phenotype

Interaction with
environment +
competition
A 4

“New” Population

Replacement Strategies

« Generational Selection

— All population members are removed on each
generation.

* Overlapping Selection

— In every generation, select a few high fitness
chromosomes for creating new offspring.

— Remove some low fithess chromosomes.
— Replace these with new offspring.
— Remainder of population remains

* Replace {worst, best, parent, random,
most similar}

N —

OV

B

Overview of the Process

[Start]

[Fitness]

[New population]
A.

[Selection]

[Crossover]
C.
D.

[Mutation]

[Accepting]

4.[Replace]
S5.[Tesft]
6.[Loop] Go to step 2

Environment

1 Genotype

Interact;'lon with -
environment

¥

Phenotype

Interaction with
environment +
competition
A 4

“New” Population

Advantages of GAs

Parallelism

Less likely to get stuck in local extrema
than other optimization methods
Relatively easy to implement

— But choosing an encoding and fitness function
can be difficult

Disadvantages

— Computational time

— No guarantee on a solution

— Strong dependence on parameters

Competitive Evolution in Simulation

« Karl Sims
— MIT Media Lab
— Thinking Machines
— GenArts, Inc.

* “Evolving 3D
Morphology and
Behavior by
Competition” (1994)

* 2 big ideas

Great |dea #1:
Evolving Morphology with Control

Control system Physical simulation

* Evolve both the
— Body structure (morphology)
— Brain structure (control)

Physical Morphology Encoding:
Genotypes and Phenotypes

Genotype: directed graph. Phenotype: hierarchy of 3D parts.

« Genotype is composed
of a directed graph
structure where each
node contains
— Dimensions for a rigid part
— Attachment points
— Joint types at those points
— Maximum recursion depth

| - Phenotype is a hierarchy
of 3-D parts in a physics-
rich simulation

Control Structure Encoding (Genotype)

Nested graphs genotype
— Outer graph is morphology
— Inner graph is neural circuitry

Sensors for

— Contact (C)

— Photocells (P)

— Joint angle sensors (Q)

Computation elements (multiply and threshold sum)
Effector outputs (E)

Fithess Functions for the
Development of Locomotion

« Land and water environments

 Locomotion fithess function =
speed

— Distance traveled by the center
of mass per unit time

— Ignore the vertical component
when on land!

« Jumping fitness function

— Maximum height achieved by
the lowest point in the creature

Creatures Evolved for Locomotion

Swimming

Walking

5 L0

Jumping

Demonstrations of Locomotion

* 100 generations of 300 individuals
* 3 hours on a 32-processor CM-5

Great |dea #2:
Evolution at times involves more
than competition with the
environment

Competition Arena

A A 4
N\ ' 4
\ Y4
\ V' 4
t | \ . * * , V4 t
tart \ cube P 4 L
- ¥y ¢ -

« Competition between two creatures
* Must start behind the line (and below a 45
degree ceiling)

* Objective is to get the cube for yourself (and
thus keep the cube from your opponent)

Fithess Function

Let d, and d, be the final shortest
distances of each creature to the cube

Fithess for each creature:
d2 —d |

d,—d
£, =1.0+—2

.= L0+
/i d,+d, °° d, +d,

All fitness values in the range [0.0, 2.0]
Scores always average to one
Ties are permitted (f;, =1, =1)

Pair-wise Competition Patterns

Empirically chosen
to give the most
interesting results

a. All vs. all, ¢. Tournament, e. All vs. all,
within species. within species. between species.

o
7

b. Random, d. Allvs. best, f. Random, g. Allvs. best,
within species. within species. between species. between species.

Evolved via Competition

Examples of Co-evolved Creatures

%l%

ol

N

Aal

==

@?

“

=

What are evolutionary
algorithms good for?

Applications of GAs:
Mechanlcal Design

a5 e

R C— 'Ln"wl

IR

...+ General Electric’s custom
GA EnGEneous used to
design the Boeing 777's
jet engines.

« GE had a viable six-stage
compressor design in
less than a week.

e The compressor solution
TOLULL U S St yielded additional

— ~ e efficiencies on top of the
design criteria.
— required less metal
— less weight

— greater-than-anticipated
decrease in fuel
consumption

Applications of GAs:
Game-Playing Systems

#® Checkers
Game View Brains Help

« Evolution of Master-level checkers player (David
Fogel)

« But still unable to compete against Chinook, a
hand-coded checkers player that can beat any
human player

But is it really useful?

* “Neural networks are the second best way
of doing just about anything...”

« ... and genetic algorithms are the third.”
— Attributed to John Denker

Administrivia

* No class meeting on Friday... have a great
break!

 Midterm exam scores released this week
* PS 5is coming soon!

