
Neural Networks

CPSC 470 – Artificial Intelligence
Brian Scassellati

Neural Networks
• Inspired by early models

of biological neurons
• Ignore all the

comparisons with
biological neurons in your
textbook
– (They are misleading, and

based on an outdated
model of neural function)

• We will treat neural nets
as a cool computational
technique, but never as a
model of biology

Simple Computing Elements

)(

j inputs allfor

:i neuronFor

,

ii

j
jiji

inga

aWin

=

=å

• Each neuron has
– A set of inputs
– A weight associated with

each input
– A weighted sum of inputs
– An activation function
– An output that links to

some number of other
elements

• Output is the activation
function applied to the
weighted inputs

Activation Functions

• Thresholds can be added by using a constant
input (positive or negative)
– Thus converting any step function to a sign function

• Sigmoid is most common activation function, as
it avoids discontinuities (and has a useful
derivative for gradient descent)

Representing Boolean
Functions with Neurons

• Using step functions with the given thresholds
• If we can simulate any logic gate with these

elements, we can build arbitrary computations
from networks of these elements.

A Typical Network

))(
)((

)(

24,214,15,4

23,213,15,35

45,435,35

aWaWgW
aWaWgWga

aWaWga

+
++=

+=

• Node types
– Input nodes
– Output nodes
– Hidden nodes

• Network connections
– Feed forward networks

have no loops (they
are directed acyclic
graphs)

– Recurrent networks
allow for feedback
loops

Perceptrons
• Layered feed-forward

networks
– Output=Step(W*I)
– Assume threshold=0 without

loss of generality
• Majority function (output 1 if

at least half the inputs are 1)
– All weights are 1
– Threshold is –n/2 for n inputs
– (would have required a

decision tree with 2n nodes)
• Can we represent any

Boolean function?

Linear Separability of Perceptrons

• Output is 1 if and only if
(W1I1+W2I2) > 0
I1 = – (W2 / W1) I2

• Separation between output states and input states is a
line (it is linearly separable)
– Adding a threshold will only allow for an offset of the line

• Some functions can be computed in this way (AND, OR)
• Some functions cannot (XOR)

I1

I2

W1

W2

Linear Separability in 3 Dimensions

• In three dimensions, linear separability is
defined by a plane that separates positive from
negative responses

• Example: Perceptron for computing the Minority
function

Learning with Perceptrons

• At each time step, compute the error
Err = CorrectOutput – ActualOutput

• Update each weight according to the
learning rule:
Wj ←Wj + α * Ij * Err
where α is the learning rate

• Guaranteed to learn any linearly separable
function given sufficient training examples

Which are better,
Perceptrons or Decision Trees?

11-input majority function

Perceptrons are better

WillWait restaurant example

Decision Trees are better

Multi-Layer Feed-Forward
Networks

• Adding more layers
(hidden units) allows
us to compute more
complex problems

• Can solve problems
that are not linearly
separable

• But how do we train
these networks to do
the right thing?

Back-propagation

Run the network
on an example

Compute the
error between
the expected
and the actual

output

For output nodes, add to the
weight the quantity

(learningRate * priorNode * error *
GradientOfActivationFunction)

For internal node j, it is
responsible for some fraction

of the error at node i

Update the weights going into
node j according to that

fraction of the following error

j ik

Errors propagate back from the output

Back-Propagation is
Gradient Descent

• Error surface for gradient descent in the weight space
• Back-prop provides a way of dividing the calculation of

the gradient among the units, so the change in each
weight can be calculated by the unit to which the weight
is attached using only local information

Err

W1W0

Performance of Back-Propagation

• Performance on the WillWait Restaurant problem
• At left, a training curve showing the error over the number

of epochs (iterations of back-prop)
• At right, the performance relative to decision trees
• How does this compare to the perceptron?

Perceptron

Example Applets

• https://playground.tensorflow.org/

Noise and Overfitting
• In the presence of noise, some feature vectors

will have multiple examples with conflicting
results

• If there are many possible hypotheses, you must
be careful to avoid finding meaningless
“regularity” in the data (overfitting)
– Every time I roll the dice with my left hand it comes up

heads
– I always encounter less traffic on Mondays (but I’m

always late on Mondays)
• There are techniques for dealing with overfitting,

but they rely on domain information

Handling Noise

• PAC learning : probably
approximately correct learning

• For a given hypothesis h of some
function f

• Approximately correct if
error(h) £ ε

Where

error(h) = P(h(x) ≠ f(x) | example x)

(that is, the hypothesis is within some
epsilon-ball of f)

• Probably Approximately correct if
P(error(h) £ ε) ≥ ε2

(that is, the hypothesis is probably
within some epsilon-ball of f)

Administrivia

• PS #5 out now, due next Monday

