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Neural Networks
• Inspired by early models 

of biological neurons
• Ignore all the 

comparisons with 
biological neurons in your 
textbook
– (They are misleading, and 

based on an outdated 
model of neural function)

• We will treat neural nets 
as a cool computational 
technique, but never as a 
model of biology



Simple Computing Elements
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• Each neuron has
– A set of inputs 
– A weight associated with 

each input
– A weighted sum of inputs
– An activation function
– An output that links to 

some number of other 
elements

• Output is the activation 
function applied to the 
weighted inputs



Activation Functions

• Thresholds can be added by using a constant 
input (positive or negative)
– Thus converting any step function to a sign function

• Sigmoid is most common activation function, as 
it avoids discontinuities (and has a useful 
derivative for gradient descent)



Representing Boolean 
Functions with Neurons

• Using step functions with the given thresholds
• If we can simulate any logic gate with these 

elements, we can build arbitrary computations 
from networks of these elements.



A Typical Network
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• Node types
– Input nodes
– Output nodes
– Hidden nodes

• Network connections
– Feed forward networks 

have no loops (they 
are directed acyclic 
graphs)

– Recurrent networks 
allow for feedback 
loops



Perceptrons
• Layered feed-forward 

networks 
– Output=Step(W*I)
– Assume threshold=0 without 

loss of generality
• Majority function (output 1 if 

at least half the inputs are 1)
– All weights are 1
– Threshold is –n/2 for n inputs 
– (would have required a 

decision tree with 2n nodes)
• Can we represent any 

Boolean function? 



Linear Separability of Perceptrons

• Output is 1 if and only if 
(W1I1+W2I2) > 0
I1 =  – (W2 / W1 ) I2

• Separation between output states and input states is a 
line (it is linearly separable)
– Adding a threshold will only allow for an offset of the line

• Some functions can be computed in this way (AND, OR)
• Some functions cannot (XOR)
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I2

W1

W2



Linear Separability in 3 Dimensions

• In three dimensions, linear separability is 
defined by a plane that separates positive from 
negative responses

• Example: Perceptron for computing the Minority 
function



Learning with Perceptrons

• At each time step, compute the error
Err = CorrectOutput – ActualOutput

• Update each weight according to the 
learning rule:
Wj ←Wj + α * Ij * Err
where α is the learning rate

• Guaranteed to learn any linearly separable 
function given sufficient training examples



Which are better, 
Perceptrons or Decision Trees?

11-input majority function

Perceptrons are better

WillWait restaurant example

Decision Trees are better



Multi-Layer Feed-Forward 
Networks

• Adding more layers 
(hidden units) allows 
us to compute more 
complex problems

• Can solve problems 
that are not linearly 
separable

• But how do we train 
these networks to do 
the right thing?



Back-propagation 

Run the network 
on an example

Compute the 
error between 
the expected 
and the actual 

output

For output nodes, add to the 
weight the quantity 

(learningRate * priorNode * error * 
GradientOfActivationFunction)

For internal node j, it is 
responsible for some fraction 

of the error at node i

Update the weights going into 
node j according to that 

fraction of the following error

j ik

Errors propagate back from the output



Back-Propagation is 
Gradient Descent

• Error surface for gradient descent in the weight space
• Back-prop provides a way of dividing the calculation of 

the gradient among the units, so the change in each 
weight can be calculated by the unit to which the weight 
is attached using only local information

Err

W1W0



Performance of Back-Propagation

• Performance on the WillWait Restaurant problem
• At left, a training curve showing the error over the number 

of epochs (iterations of back-prop)
• At right, the performance relative to decision trees
• How does this compare to the perceptron?

Perceptron



Example Applets

• https://playground.tensorflow.org/



Noise and Overfitting
• In the presence of noise, some feature vectors 

will have multiple examples with conflicting 
results

• If there are many possible hypotheses, you must 
be careful to avoid finding meaningless 
“regularity” in the data (overfitting)
– Every time I roll the dice with my left hand it comes up 

heads
– I always encounter less traffic on Mondays (but I’m 

always late on Mondays)
• There are techniques for dealing with overfitting, 

but they rely on domain information



Handling Noise

• PAC learning : probably 
approximately correct learning

• For a given hypothesis h of some 
function f

• Approximately correct if 
error(h) £ ε

Where 

error(h) = P(h(x) ≠ f(x) | example x)

(that is, the hypothesis is within some 
epsilon-ball of f)

• Probably Approximately correct if
P( error(h) £ ε ) ≥ ε2

(that is, the hypothesis is probably 
within some epsilon-ball of f)



Administrivia

• PS #5 out now, due next Monday


