
Reinforcement Learning
Part 1

CPSC 470 – Artificial Intelligence
Brian Scassellati

From Supervised Learning
to Reinforcement Learning

• In supervised learning, when the agent
makes a mistake, it is immediately given
feedback in the form of the correct
response

• In reinforcement learning, when the agent
makes a mistake, it will later be given
feedback in the form of a punishment or
reward

Deterministic Agent,
Known Environment

+1

-1

START

• reward +1 at [4,3], -1 at [4,2]

Optimal Deterministic Policy,
Known Environment

+1

-1

START

• reward +1 at [4,3], -1 at [4,2]

+1

-1

Non-deterministic Agent,
Known Environment

+1

-1

START

• reward +1 at [4,3], -1 at [4,2]
• what is the strategy to achieve max reward?
• reward -0.04 for each step

actions: UP, DOWN, LEFT, RIGHT

UP

80% move UP
10% move LEFT
10% move RIGHT

Non-deterministic Agent,
Known Environment

+1

-1

START

• reward +1 at [4,3], -1 at [4,2]
• what is the strategy to achieve max reward?
• reward -0.04 for each step

+1

-1

+1

-1

+1

-1

Reward for each step: -0.1

Reward for each step: -0.04

+1

-1

Reward for each step: -0.01

Deterministic policy

+1

-1

Sample Environment for Today

• Reward function only
defined at terminal
states

Simplified Wumpus World

• Equal probability
transitions among
neighboring states

State Transitions

Passive Learning in
Known Environments

• Given a set of training sequences that end in a terminal
state (with a reward)
(1,1) à (2,1) à (3,1) à (3,2) à (3,3) à (4,3) à +1
(1,1) à (2,1) à (3,1) à (3,2) à (4,2) à -1
(1,1) à (1,2) à (1,3) à (2,3) à (3,3) à (4,3) à +1
(1,1) à (2,1) à (3,1) à (4,1) à (3,1) à (3,2) à (4,2) à -1

• Determine the expected utility U(i) associated with each
non-terminal state i

Actual
Utility
Values

Estimated
Utility
Values

-0.1 0.1 0.2

-0.4

-0.5 -0.70-0.3

-0.2

Passive Reinforcement
Learning Agent

• Maintain
– An estimate U(i) for all of the states i
– The number of times you have visited each

state
– Table of transition properties between states

• How do we update our estimate?
– Naïve updating: Least-Mean Squares
– Temporal Difference Learning
– Adaptive Dynamic Programming

Updating via Least Mean Squares

• (also known as Adaptive Control Theory)
• Define reward-to-go as the sum of the rewards from a

state until a terminal state is reached
• Expected utility is the expected reward-to-go
• Estimate utility in order to minimize the mean square

error among the observed sequence data

Updating via Least Mean Squares

Treats each utility measurement as independent… misses an important constraint!

LMS

Updating via Temporal Difference

• Try to get the best of both worlds
– Approximate the constraint equations between

neighboring states
– Provide a solution without computing all these

equations
• Suppose that we often see a transition from

U(i)=-0.5 and U(j)=+0.5
– then we should increase U(i) to reflect the fact that it

often leads to U(j)
• Update rule

• Parameterize the learning rate by the number of
times we have visited that state

)]()()())[(()()(iUjUiRiNiUiU -++¬ a

Updating via Temporal Difference

LMS

Temporal Difference

TD generates noisier values, but results in a lower RMS utility error

Do we need a Complete
Model of the World?

• What information is required about the world
state?
– LMS makes no use of connectivity between states …

it will work in an unknown environment
– Temporal Difference makes use of connectivity, but

only as much as is generated by the training
sequences… it will also work in an unknown
environment

• Look at an algorithm that does require a model
of the world: Adaptive Dynamic Programming

Updating via
Adaptive Dynamic Programming

• Key idea: use knowledge of
the structure of the
environment to aid future
decisions

• The actual utility of a state is
constrained to be the
probability-weighted average
of its successors’ utilities (plus
its own reward)

• ADP solves these utility
equations simultaneously
using dynamic programming
(equivalent to value
determination)

å+=
j

ij jUMiRiU)()()(

Updating via
Adaptive Dynamic Programming

LMS

Temporal Difference
Adaptive DP

Adaptive DP gives a very fast convergence at the expense of large compute costs
(can be intractable for large search spaces)

Can we do better if the agent can
actively explore the world?

• Need two changes to our existing
algorithms
– Environment model must incorporate the idea

that transition probabilities are dependent on
the action that we take

– Utility must be based on choosing the action
that maximizes the expected reward

å+¬
j

iaction
ijaction

jUMiRiU)(max)()()(

Active Learning in an
Unknown Environment

• Action has two kinds of outcomes
– It gains rewards on the current sequence
– It affects the percepts received and thus the ability of

the agent to learn (and receive future reward)
• Trade-off between immediate gains (rewards)

and long-term gains
• Range of learning approaches

– Act randomly: explore as much as possible
– Act greedy: always grab the immediate gain
– … and everything in between

Exploration
• Is there an optimal exploration policy?
• Is there a reasonable exploration policy?

– Main idea: give weight to actions that have not been
tried very often

– Example update rule:

– Exploration function

)),(,)((max)()(å ++ +¬
j

action
ijaction

iaNjUMfiRiU

Optimistic estimate
of utility

Exploration
function

Number of
Times visited

î
í
ì <

=
+

otherwise
Nn if

),(e

u
R

nuf

Optimistic estimate
of reward

Fixed parameter

Exploratory ADP Agent
(R+=2 and Ne=5)

LMS
Temporal Difference
Adaptive DP

Exploratory ADP

Exploratory ADP initially gives states an exploration bonus (high valued states
quickly reach their correct values). Low-valued states take longer to adapt

because they are seldom visited.

Administrivia

• Monday:
– end of reinforcement learning
– (Q-learning)

