Reinforcement Learning
Part 1

CPSC 470 — Artificial Intelligence
Brian Scassellati



From Supervised Learning
to Reinforcement Learning

* In supervised learning, when the agent
makes a mistake, it is immediately given
feedback in the form of the correct
response

* In reinforcement learning, when the agent
makes a mistake, it will later be given
feedback in the form of a punishment or
reward



Deterministic Agent,
Known Environment
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 reward +1 at [4,3], -1 at [4,2]



Optimal Deterministic Policy,
Known Environment
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 reward +1 at [4,3], -1 at [4,2]




Non-deterministic Agent,
Known Environment

_|_1 actions: UP, DOWN, LEFT, RIGHT

UP
. - 1
80% move UP

10% move LEFT
START 10% move RIGHT

 reward +1 at [4,3], -1 at [4,2]
« what is the strategy to achieve max reward?
* reward -0.04 for each step



Non-deterministic Agent,
Known Environment

+1

START

-1

-
*

*

-
-

-

ot

-

 reward +1 at [4,3], -1 at [4,2]

« what is the strategy to achieve max reward?
* reward -0.04 for each step




+1

-1

-
_
-

-)
*
-

-

- = ]

-
_
-

-
*
*

-

Reward for each step: -0.04

Deterministic policy
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Reward for each step: -0.1

Reward for each step: -0.01




Sample Environment for Today

Simplified Wumpus World State Transitions
5 5 33 1.0
5 5 33 33
33 1.0
5 ; 5 33 : 33 .5:
5 5 33
1 START
5 33 5

1 2 3 4

 Reward functiononly < Equal probability
defined at terminal transitions among
states neighboring states



Passive Learning in
Known Environments

3 | -0.0380 | 0.0886 | 0.2152
Actual Estimated
Utility 2 |-0104 -0.4430 | [=T] | Utility
Values Values
1 | -0.2911 | —-0.0380 | -0.5443 | -0.7722 -0.7
1 2 3 4 1 2 3 4

« Given a set of training sequences that end in a terminal
state (with a reward)
(1,1) > (2,1) > (3,1) > (3,2
(1,1) > (2,1) > (3,1) > (3,2
(1,1)-> (1,2) > (1,3) =2 (2,3 3,3) 2 (4,3) 2> +1
(1,1) 2> (2,1) =2 (3,1) =2 (4,1 (3,1) 2 (3,2) 2 (4,2) = -1
« Determine the expected utility U(i) associated with each
non-terminal state i

(3,3) > (4,3) > +1
(4,2) > -1
(

VI



Passive Reinforcement
Learning Agent

* Maintain
— An estimate U(i) for all of the states i

— The number of times you have visited each
state

— Table of transition properties between states

 How do we update our estimate?
— Naive updating: Least-Mean Squares
— Temporal Difference Learning
— Adaptive Dynamic Programming



Updating via Least Mean Squares

function LMS-UPDATE(U, e, percepts, M, N) returns an updated U

if TERMINAL?[e] then reward-to-go + 0
for each ¢; in percepts (starting at end) do

rewurd-to-go 4 rewurd-to-go + REWARD[e;]

U[STATE[e;]] ¢~ RUNNING-AVERAGE(U[STATE[¢;]], rewurd-to-go, N[STATE[e;]])
end

« (also known as Adaptive Control Theory)

« Define reward-to-go as the sum of the rewards from a
state until a terminal state is reached

« Expected utility is the expected reward-to-go

« Estimate utility in order to minimize the mean square
error among the observed sequence data




Updating via Least Mean Squares
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Treats each utility measurement as independent... misses an important constraint!



Updating via Temporal Difference

Try to get the best of both worlds

— Approximate the constraint equations between
neighboring states

— Provide a solution without computing all these
equations

Suppose that we often see a transition from
U(i)=-0.5 and U(j)=+0.5

— then we should increase U(i) to reflect the fact that it
often leads to U(j)

Update rule
U@@) <~ U@)+a(NO)[RG+U()-U@{)]

Parameterize the learning rate by the number of
times we have visited that state



Updating via Temporal Difference
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TD generates noisier values, but results in a lower RMS utility error



Do we need a Complete
Model of the World?

« What information is required about the world
state?

— LMS makes no use of connectivity between states ...
it will work in an unknown environment

— Temporal Difference makes use of connectivity, but
only as much as is generated by the training
sequences... it will also work in an unknown
environment

* Look at an algorithm that does require a model
of the world: Adaptive Dynamic Programming



Updating via
Adaptive Dynamic Programming

« Key idea: use knowledge of
the structure of the
environment to aid future
decisions

« The actual utility of a state is
constrained to be the
probability-weighted average
of its successors’ utilities (plus
its own reward)

U(i) = R(@i) + ZM,.].U( 7)

« ADP solves these utility
equations simultaneously
using dynamic programming
(equivalent to value
determination)



Updating via
Adaptive Dynamic Programming
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Adaptive DP gives a very fast convergence at the expense of large compute costs
(can be intractable for large search spaces)



Can we do better if the agent can
actively explore the world?

* Need two changes to our existing
algorithms

— Environment model must incorporate the idea
that transition probabilities are dependent on
the action that we take

— Utility must be based on choosing the action
that maximizes the expected reward

U(i) < R(i) + M U(j)



Active Learning in an
Unknown Environment

 Action has two kinds of outcomes
— It gains rewards on the current sequence

— It affects the percepts received and thus the ability of
the agent to learn (and receive future reward)

« Trade-off between immediate gains (rewards)
and long-term gains
* Range of learning approaches

— Act randomly: explore as much as possible
— Act greedy: always grab the immediate gain
— ... and everything in between



Exploration

* |s there an optimal exploration policy?

 |s there a reasonable exploration policy?

— Main idea: give weight to actions that have not been
tried very often

— Example update rule:

U™ (i) < R(i)+max f(

Optimistic estimate
of utility

— Exploration

f(u,n)={

action T

Exploration
function

ZM;ctionUJr(j) , N(fl,l))

Number of
Times visited

function

Optimistic estimate

of reward

R ifn< Ne\

1y otherwise

Fixed parameter




Exploratory ADP Agent
(R*=2 and N_=5)
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Exploratory ADP initially gives states an exploration bonus (high valued states
quickly reach their correct values). Low-valued states take longer to adapt
because they are seldom visited.



Administrivia

* Monday:
— end of reinforcement learning
— (Q-learning)



