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From Supervised Learning 
to Reinforcement Learning

• In supervised learning, when the agent 
makes a mistake, it is immediately given 
feedback in the form of the correct 
response

• In reinforcement learning, when the agent 
makes a mistake, it will later be given 
feedback in the form of a punishment or 
reward



Deterministic Agent, 
Known Environment
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• reward +1 at [4,3], -1 at [4,2]



Optimal Deterministic Policy,
Known Environment
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Non-deterministic Agent, 
Known Environment
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START

• reward +1 at [4,3], -1 at [4,2]
• what is the strategy to achieve max reward?
• reward -0.04 for each step

actions: UP, DOWN, LEFT, RIGHT

UP

80% move UP
10% move LEFT
10% move RIGHT



Non-deterministic Agent, 
Known Environment
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• what is the strategy to achieve max reward?
• reward -0.04 for each step
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Reward for each step: -0.1

Reward for each step: -0.04
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Reward for each step: -0.01

Deterministic policy
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Sample Environment for Today

• Reward function only 
defined at terminal 
states

Simplified Wumpus World

• Equal probability 
transitions among 
neighboring states

State Transitions



Passive Learning in
Known Environments

• Given a set of training sequences that end in a terminal 
state (with a reward)
(1,1) à (2,1) à (3,1) à (3,2) à (3,3) à (4,3) à +1
(1,1) à (2,1) à (3,1) à (3,2) à (4,2) à -1
(1,1) à (1,2) à (1,3) à (2,3) à (3,3) à (4,3) à +1
(1,1) à (2,1) à (3,1) à (4,1) à (3,1) à (3,2) à (4,2) à -1

• Determine the expected utility U(i) associated with each 
non-terminal state i

Actual 
Utility 
Values

Estimated
Utility 
Values

-0.1 0.1 0.2

-0.4

-0.5 -0.70-0.3

-0.2



Passive Reinforcement 
Learning Agent

• Maintain 
– An estimate U(i) for all of the states i
– The number of times you have visited each 

state
– Table of transition properties between states 

• How do we update our estimate?
– Naïve updating: Least-Mean Squares
– Temporal Difference Learning
– Adaptive Dynamic Programming



Updating via Least Mean Squares

• (also known as Adaptive Control Theory)
• Define reward-to-go as the sum of the rewards from a 

state until a terminal state is reached
• Expected utility is the expected reward-to-go
• Estimate utility in order to minimize the mean square 

error among the observed sequence data



Updating via Least Mean Squares

Treats each utility measurement as independent… misses an important constraint!

LMS



Updating via Temporal Difference

• Try to get the best of both worlds
– Approximate the constraint equations between 

neighboring states
– Provide a solution without computing all these 

equations
• Suppose that we often see a transition from 

U(i)=-0.5 and U(j)=+0.5
– then we should increase U(i) to reflect the fact that it 

often leads to U(j)
• Update rule

• Parameterize the learning rate by the number of 
times we have visited that state

)]()()())[(()()( iUjUiRiNiUiU -++¬ a



Updating via Temporal Difference

LMS

Temporal Difference

TD generates noisier values, but results in a lower RMS utility error



Do we need a Complete 
Model of the World?

• What information is required about the world 
state?
– LMS makes no use of connectivity between states … 

it will work in an unknown environment
– Temporal Difference makes use of connectivity, but 

only as much as is generated by the training 
sequences… it will also work in an unknown 
environment

• Look at an algorithm that does require a model 
of the world: Adaptive Dynamic Programming



Updating via 
Adaptive Dynamic Programming

• Key idea: use knowledge of 
the structure of the 
environment to aid future 
decisions

• The actual utility of a state is 
constrained to be the 
probability-weighted average 
of its successors’ utilities (plus 
its own reward)

• ADP solves these utility 
equations simultaneously 
using dynamic programming 
(equivalent to value 
determination)
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Updating via 
Adaptive Dynamic Programming

LMS

Temporal Difference
Adaptive DP

Adaptive DP gives a very fast convergence at the expense of large compute costs
(can be intractable for large search spaces) 



Can we do better if the agent can 
actively explore the world?

• Need two changes to our existing 
algorithms
– Environment model must incorporate the idea 

that transition probabilities are dependent on 
the action that we take

– Utility must be based on choosing the action 
that maximizes the expected reward
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Active Learning in an 
Unknown Environment

• Action has two kinds of outcomes
– It gains rewards on the current sequence
– It affects the percepts received and thus the ability of 

the agent to learn (and receive future reward)
• Trade-off between immediate gains (rewards) 

and long-term gains 
• Range of learning approaches

– Act randomly: explore as much as possible
– Act greedy: always grab the immediate gain
– … and everything in between



Exploration
• Is there an optimal exploration policy?
• Is there a reasonable exploration policy?

– Main idea: give weight to actions that have not been 
tried very often

– Example update rule:

– Exploration function
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Exploratory ADP Agent
(R+=2 and Ne=5)

LMS
Temporal Difference
Adaptive DP

Exploratory ADP

Exploratory ADP initially gives states an exploration bonus (high valued states 
quickly reach their correct values).  Low-valued states take longer to adapt 

because they are seldom visited.



Administrivia

• Monday:
– end of reinforcement learning 
– (Q-learning)


