Reinforcement Learning

CPSC 470 – Artificial Intelligence Brian Scassellati

From Supervised Learning to Reinforcement Learning

- In supervised learning, when the agent makes a mistake, it is immediately given feedback in the form of the correct response
- In reinforcement learning, when the agent makes a mistake, it will later be given feedback in the form of a punishment or reward

Passive Learning in Known Environments

 Given a set of training sequences that end in a terminal state (with a reward)

 $\begin{array}{c} (1,1) \rightarrow (2,1) \rightarrow (3,1) \rightarrow (3,2) \rightarrow (3,3) \rightarrow (4,3) \rightarrow \mathbf{+1} \\ (1,1) \rightarrow (2,1) \rightarrow (3,1) \rightarrow (3,2) \rightarrow (4,2) \rightarrow \mathbf{-1} \\ (1,1) \rightarrow (1,2) \rightarrow (1,3) \rightarrow (2,3) \rightarrow (3,3) \rightarrow (4,3) \rightarrow \mathbf{+1} \\ (1,1) \rightarrow (2,1) \rightarrow (3,1) \rightarrow (4,1) \rightarrow (3,1) \rightarrow (3,2) \rightarrow (4,2) \rightarrow \mathbf{-1} \end{array}$

 Determine the expected utility U(i) associated with each non-terminal state i

Comparison of Reinforcement Learning (Utility) Techniques

What if we have no good model of the environment?

Two Basic Types of Reinforcement Learning

Utility Learning

- Learn a utility function that maps states to utilities and select an action by maximizing the expected value
- Needs a model of the environment (needs to know which state an action will result in)
- Predictive

Action-Value Learning

- Learn an action-value function that gives the expected utility of taking a given action in a given state
- No need for an environment model
- Do not know where actions lead, so it cannot look ahead

States and Actions

Environment = states

Actions = transitions $\delta(s, a, s')$

Rewards

R(s,a) = reward at state **s**

for doing action a

Trajectories

Markov Decision Process (MDP)

- set of states S, set of actions A, initial state S₀
- transition model P(s'|s,a)
 Markov assumption
- Reward function R(s,a)
- policy: mapping from S to A
 - $\pi(s)$ or $\pi(s,a)$

Agent Learns a Policy

Policy at step t, π_t :

a mapping from states to action probabilities $\pi_t(s, a) =$ probability that $a_t = a$ when $s_t = s$

- Reinforcement learning methods specify how the agent changes its policy as a result of experience.
- Roughly, the agent's goal is to get as much reward as it can over the long run.

Goals and Rewards

- Is a scalar reward signal an adequate notion of a goal?
 - Maybe not, but it is surprisingly flexible.
- A goal should specify what we want to achieve, not how we want to achieve it.
- A goal must be outside the agent's direct control—thus outside the agent.
- The agent must be able to measure success:
 explicitly;
 - frequently during its lifespan.

Returns

Suppose the sequence of rewards after step t is :

 $r_{t+1}, r_{t+2}, r_{t+3}, \dots$

What do we want to maximize?

In general,

we want to maximize the **expected return**, $E\{R_t\}$, for each step t.

Episodic tasks: interaction breaks naturally into episodes, e.g., plays of a game, trips through a maze.

$$R_t = r_{t+1} + r_{t+2} + \dots + r_T,$$

where T is a final time step at which a **terminal state** is reached, ending an episode.

Returns for Continuing Tasks

Continuing tasks: interaction does not have natural episodes.

Discounted return:

$$R_t = r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \dots = \sum_{k=0}^{\infty} \gamma^k r_{t+k+1},$$

where $\gamma, 0 \le \gamma \le 1$, is the **discount rate**.

shortsighted $0 \leftarrow \gamma \rightarrow 1$ farsighted

Q-LEARNING

(Learning sequences of actions that generate rewards)

Learning Sequences

- Q-Learning allows an agent to learn chains of actions.
- Even though the agent lives only in the present, it acts as if it can see into the future

- Cannot even predict the next state

 Propagation of credit from the consummatory behavior back through the chain of appetitive behaviors

Temporal Assignment Problem

- How do you determine which actions successfully produced the goal state?
- Q-learning solves this problem without needing to explicitly remember the sequence of states that lead to a reward.
- The price you pay is that it depends upon repeated visits to each state/action combination.

Q-Values

- Big idea:
 - Compute the quality value (or Q-value)
 for each possible action a in state x
 - Choose actions stochastically on the Qvalues

Q-Learning Approach

Update the Q-values according to the following rule:

$$Q(x,a) \equiv (1-\alpha)Q(x,a) + \alpha(r+\gamma \max_{b \in A} Q(y,b))$$

Discounted prior Q value

Updated with new Q value

• For a given learning rate α and a discount rate of γ

How Q-Learning Works

How Q-Learning Works

How Q-Learning Works

How Q-Learning Works Large Q-value b R a С e Increased Q-value, Waterhole state discounted by γ (high reward) Increased Q-value, discounted by γ^2

How to Change the Learning Rate

 What happens in the standard update rule if we just gradually drop the learning rate over time?

 $Q(x,a) \equiv (1-\alpha)Q(x,a) + \alpha(r + \gamma \max_{b \in A} Q(y,b))$

How to Change the Learning Rate

 What happens in the standard update rule if we just gradually drop the learning rate over time?

$$Q(x,a) \equiv (1-\alpha)Q(x,a) + \alpha(r + \gamma \max_{b \in A} Q(y,b))$$

 Solution: Make a different learning rate for each state/action combination based on the number of times visited:

$$\alpha(x,a) = \frac{1}{n(x,a)}$$

Problems with RL

- Clearly defined states and actions
- Infinite visits to each state
- No look-ahead
 - States with no exit

Reinforcement Learning for Classic Arcade Games

- 2014 Nature paper from Google's Deep Mind project
- Input: Pixels & score (reward)
- Output: joystick controls & button press

Why does RL fail on Montezuma's Revenge?

Starcraft II

- Real-time, imperfect information, long-term planning and reward, ~100 decisions per second
- Beat 4 top human players in Dec 2018, 10 to 1
- Trained with RL and Deep networks

Relative Complexity

Game	Board Size	State-Space Complexity	Year defeated
Tic Tac Toe	9	10 ³	1952*
Connect 4	42	1013	1995*
Backgammon	28	10 ²⁰	1979
Chess	64	1047	1997
Go (19x19)	361	10170	2015
Heads up NL Holdem	N/A	10180	2017
StarCraft II	N/A	101685	???

Administrivia

- PS 5 due tonight
- PS 6 out today/tomorrow
- This week: Unsupervised Learning and Natural Language Processing