Communication and Natural Language Processing

CPSC 470 – Artificial Intelligence Brian Scassellati

Time to switch gears...

- We started by talking about generalpurpose systems
 - Search
 - Logic
 - Planning
 - Machine Learning
- Now we are starting to focus on things that are much more special-purpose task domains

Communication

- Intentional exchange of information brought about by the production and perception of signs drawn from a shared system of conventional signs
- Formal languages: LISP, FOPC, C++
- Natural languages: Danish, German, ASL – Vervets, dolphins, bees, and humans

Component Steps of Communication

Communication as Perception and Action

- Agents that can share information from one KB to another
 - Difficulties of matching context and background knowledge
- Situated language model: Agents that can share information using formal languages

Telepathic Agents

Agents using a Formal Language

Where AI Traditionally Starts: Syntax and Grammars

- Terminal symbols
 - Could be words, phonemes, letters, etc
 - Traditionally lower-case letters
- Non-terminal symbols
 - Categories that stand for some expansion into terminal symbols
 - Noun phrase (NP), verb phrase (VP), sentence (S)
 - Traditionally upper-case letters
- Combine terminal and non-terminal symbols using rewrite (or production) rules $S \rightarrow NP VP$

A sample English-based grammar for the Wumpus world

- Backus-Naur Form
- Lexicon (list of vocabulary words)
 - Terminals

Noun \rightarrow stench | breeze | glitter | pit | wumpus | ... Verb \rightarrow is | see | smell | shoot | grab | turn | kill | ... Adjective \rightarrow right | left | east | south | back | smelly | ... Adverb \rightarrow here | there | nearby | ahead | east | south | ... Pronoun \rightarrow me | you | it | ... Article \rightarrow the | an | a Preposition \rightarrow to | in | on | over | under | ... Conjunction \rightarrow and | or | but | ...

A sample English-based grammar for the Wumpus world

- Categories (phrase structure)
- Non-terminals

Bottom-Up Parsing

function BOTTOM-UP-PARSE(words, grammar) returns a parse tree

```
forest ← words
loop do
    if LENGTH(forest) = 1 and CATEGORY(forest[1]) = START(grammar) then
        return forest[1]
    else
        i ← choose from {1...LENGTH(forest)}
        rule ← choose from RULES(grammar)
        n ← LENGTH(RULE-RHS(rule))
        subsequence ← SUBSEQUENCE(forest, i, i+n-1)
        if MATCH(subsequence, RULE-RHS(rule)) then
        forest[i...i+n-1] ← [MAKE-NODE(RULE-LHS(rule), subsequence)]
        else fail
end
```

- Treat the list of words as a parse forest (an ordered list of parse trees)
- Non-deterministically find some rule that matches a subsequence of words/symbols

Bottom-Up Parsing Example

S

S VP NP VP Verb Adjective Article Noun dead The wumpus İS

<u>Forest</u>

The wumpus is dead Article wumpus is dead Article Noun is dead NP is dead NP Verb dead NP Verb Adjective NP VP Adjective NP VP

Rule being applied

Article \rightarrow *the* Noun \rightarrow *wumpus* NP \rightarrow Article Noun Verb \rightarrow *is* Adjective \rightarrow *dead* VP \rightarrow Verb VP \rightarrow VP Adjective S \rightarrow NP VP

Generative Capacity of a Grammar

Recursively Enumerable

- No restrictions on the grammar
- $A B \rightarrow C$
- Sample language: Any

Context-Sensitive

- RHS must have at least as many symbols as LHS
- $A B \rightarrow B A$
- Sample language: aⁿbⁿcⁿ

Context-Free Grammars

- LHS consists of only a single non-terminal
- $S \rightarrow a \ S \ b$
- Sample language: aⁿbⁿ

Regular Grammars

- LHS is single nonterminal, RHS is terminal
 + optional non-terminal
- $S \rightarrow a S$
- Sample language: a^{*}b^{*}

Adding Meaning to a Syntax

- Backus-Naur form describes the syntax, but tells us nothing about the meaning
- Resort to a logic grammar for semantics

Backus-Naur Form	First-Order Logic	
$S \rightarrow NP VP$	$NP(s1) \land VP(s2) \Rightarrow S(Append(s1,s2))$	
Noun \rightarrow stench	$(s="stench" \lor) \Rightarrow Noun(s)$	

- Unrestricted logical inference is too expensive
- Definite Clause Grammar (DCG): every sentence is a Horn clause with one atom in the consequent
 A ∧ B ∧ C ∧ ... ⇒ X

Augmenting a Grammar

- Our current grammar overgenerates non-grammatical sentences
 - Me smells a stench
- Handling subjective and objective cases: create more non-terminals

 $S \to \mathsf{NP}_S \: \mathsf{VP}$

- $NP_S \rightarrow Pronoun_S \mid Noun \mid Article Noun$
- $NP_{O} \rightarrow Pronoun_{O}$ | Noun | Article Noun
- $VP \rightarrow VP NP_0 \mid \dots$
- $PP \rightarrow Preposition NP_O$
- $Pronouns_{S} \rightarrow I \mid you \mid he \mid she \mid ...$
- $Pronouns_{O} \rightarrow me \mid you \mid him \mid her \mid \dots$

Augmenting a Grammar

Verb	Subcats	Example Verb Phrase	
give	[<i>NP</i> , <i>PP</i>] [<i>NP</i> , <i>NP</i>]	give the gold in 3 3 to me give me the gold	
smell	[NP] [Adjective] [PP]	smell a wumpus smell awful smell like a wumpus	
is	[Adjective] [PP] [NP]	is smelly is in 2 2 is a pit	
died	[]	died	
believe	[<i>S</i>]	believe the smelly wumpus in 2 2 is dead	

- Subcategorization gives the types of structures that follows a symbol
- Example
 - Give is followed by a NP and a PP or a NP and a NP

Parsing using Subcategorizations

 Subcats restrict the selection of other symbols, but can just be seen as a specialization of a symbol
 VP([]) → VP([NP]) NP

Parsing with Semantics

Using lambda-notation, we define the semantic content as a type of subcat Verb(λx λy Loves(x,y)) → loves

Quasi-Logical Forms

- An intermediary between syntactic structure and first-order logic for semantics that allows parsing
- Includes
 - All of first-order logic notation
 - Lambda expressions
 - Quantified terms
 - Looks like a logical sentence, but treated like a term
 - "every agent" is quantified as [∀a Agent(a)]

Quasi-Logical form for the Wumpus Grammar

Category	Туре	Example	Quasi-Logical Form
S	Sentence	I sleep.	$\exists e \ e \in (Sleep, Speaker) \land During(Now, e)$
Adjective Adverb Article Conjunction Digit Noun Preposition Pronoun Verb	$object \rightarrow sentence$ $event \rightarrow sentence$ Quantifier $sentence^2 \rightarrow sentence$ Number $object \rightarrow sentence$ $object^2 \rightarrow sentence$ Object $object^n \rightarrow sentence$	smelly today the and 7 wumpus in I l eats	$\begin{array}{l} \lambda x \; Smelly(x) \\ \lambda e \; During(e, Today) \\ \exists ! \\ \lambda p, q \; (p \land q) \\ 7 \\ \lambda x \; Wumpus(x) \\ \lambda x \; \lambda y \; In(x, y) \\ Speaker \\ \lambda y \; \lambda x \; \exists \; e \; e \in Eats(x, y) \\ \land \; During(Now, e) \end{array}$
NP PP RelClause VP	Object $object^2 \rightarrow sentence$ $object \rightarrow sentence$ $object^n \rightarrow sentence$	a dog in [2,2] that sees me sees me	$\begin{bmatrix} \exists d \ Dog(d) \end{bmatrix} \\ \lambda x \ In(x, [2, 2]) \\ \lambda x \ \exists e \ e \in Sees(x, Speaker) \\ \land During(Now, e) \\ \lambda x \ \exists e \ e \in Sees(x, Speaker) \\ \land During(Now, e) \end{bmatrix}$

Parsing with Syntax and Semantics

Every

agent

a

wumpus

Pragmatics

- The study of language as it is used in a social context, including its effect on the agents involved
- Indexicals: refer directly to the current situation
 Pragmatics of "I am in Boston today."
- Anaphora: refer to something mentioned previously
 - Pragmatics of "John was hungry. He ate a carrot."

Ambiguity

- Ambiguous newspaper headlines
 - Squad helps dog bite victim.
 - Red-hot star to wed astronomer.
 - Helicopter powered by human flies.
 - American pushes bottle up Germans.
- Many places that ambiguity can arise
 - Lexical ambiguity (*star* has more than one meaning)
 - Syntactic ambiguity (is *dog* an adjective or a noun)
 - Semantic ambiguity (A coast road can either lead to the coast or run along the coast)
 - Pragmatic ambiguity (*I'll meet you next Wednesday…* is *Wednesday* two days or nine days away?)

Disambiguation

- Two approaches
- Model-based
 - Rely upon the contents of the knowledge base and a model of how the world works (most of the time) to disambiguate
- Statistical
 - Probabilistic context-free grammar

 $S \rightarrow NP VP (90\%)$

 $S \rightarrow S$ Conjunction S (10%)

• In general, we don't have a good way to do this

Current Systems

- Syntax
 - Not too hard
 - Requires large grammars for natural languages
- Semantics
 - Difficult, but possible
 - Works best in restricted domains
- Pragmatics
 - Somewhat ignored, very difficult

Google Duplex

May 8, 2018 – Sundar Pichai

https://www.youtube.com/watch?v=D5VN56jQMWM

Reasons to be Skeptical

- Lack of ambient background noise
- Odd conversation
 - The businesses *never* identify themselves
 - The humans picking up the phone never give their names
 - The reservation-takers never request information. No contact phone number. No name.
- California's 2-party consent laws
- No response from Google

Administrivia

- PS 6 out now
- Friday: HMMs and more!