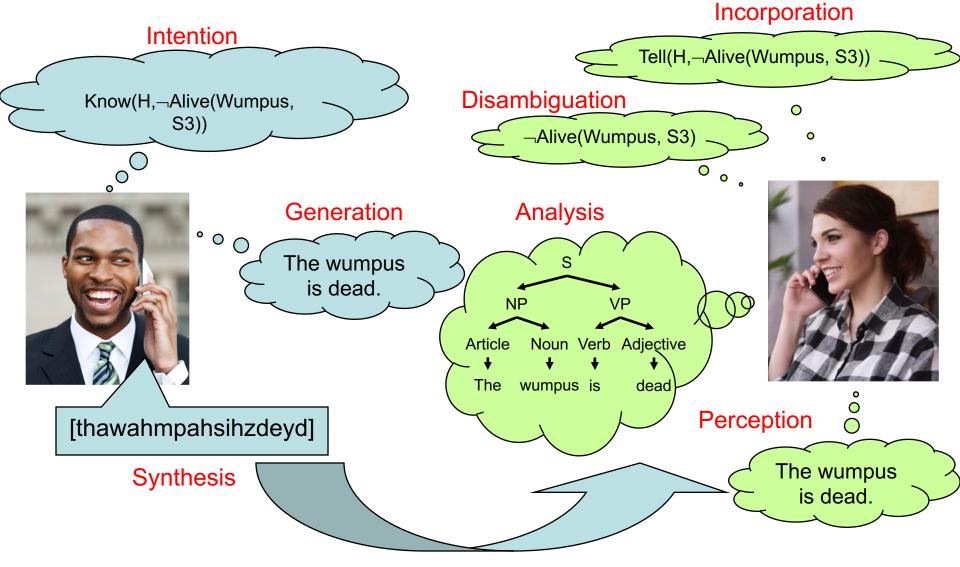
Communication II

CPSC 473 – Artificial Intelligence Brian Scassellati

Component Steps of Communication



Bottom-Up Parsing Example

S

S VP NP VP Verb Adjective Article Noun dead The wumpus İS

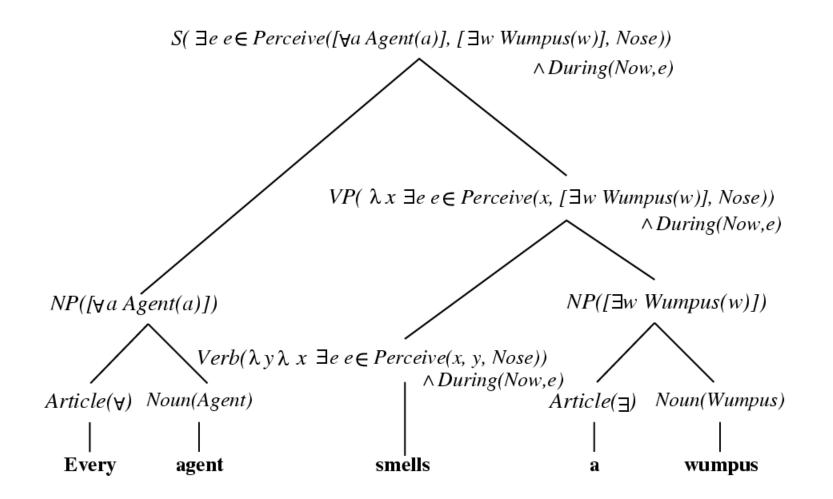
<u>Forest</u>

The wumpus is dead Article wumpus is dead Article Noun is dead NP is dead NP Verb dead NP Verb Adjective NP VP Adjective NP VP

Rule being applied

Article \rightarrow the Noun \rightarrow wumpus NP \rightarrow Article Noun Verb \rightarrow is Adjective \rightarrow dead VP \rightarrow Verb VP \rightarrow VP Adjective S \rightarrow NP VP

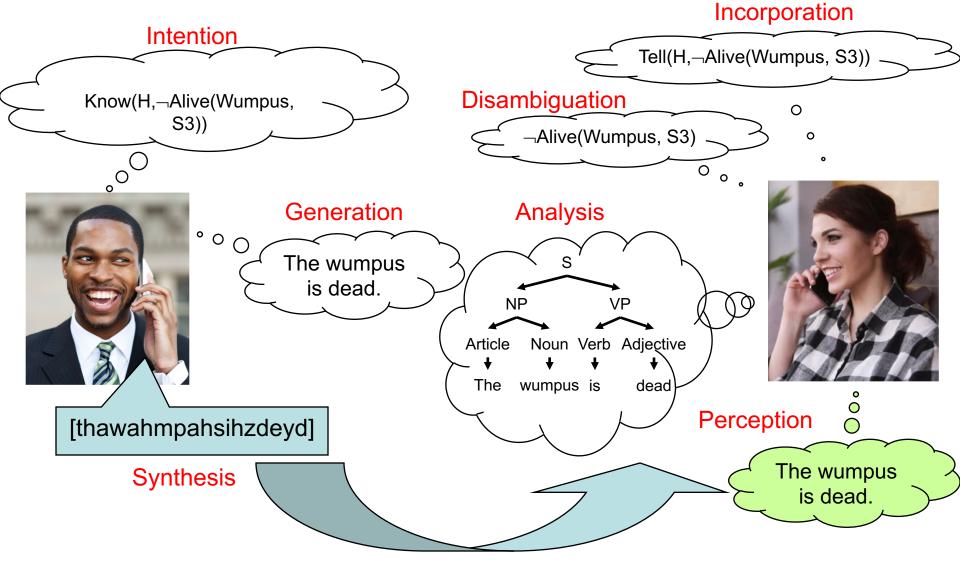
Parsing with Syntax and Semantics



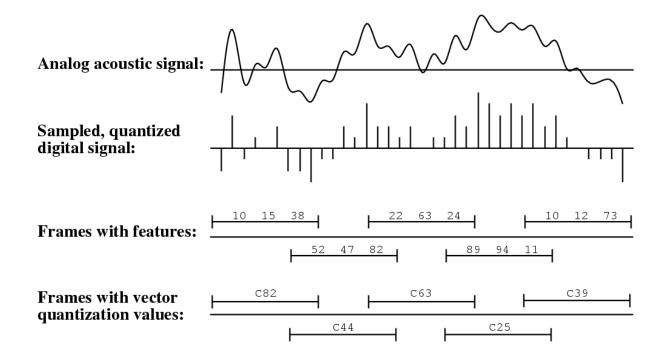
Ambiguity

- Ambiguous newspaper headlines
 - Squad helps dog bite victim.
 - Red-hot star to wed astronomer.
 - Helicopter powered by human flies.
 - American pushes bottle up Germans.
- Many places that ambiguity can arise
 - Lexical ambiguity (*star* has more than one meaning)
 - Syntactic ambiguity (is *dog* an adjective or a noun)
 - Semantic ambiguity (A coast road can either lead to the coast or run along the coast)
 - Pragmatic ambiguity (*I'll meet you next Friday…* is *Friday* two days or nine days away?)

Component Steps of Communication



From Analog Audio to Digital Features



- Analog signal is too noisy, contains too much data, and is not in a representation that is easy to manipulate
- Digitize and reduce the dimensionality using quantization

The Speech Recognition Problem

- Recover the words that produce a given acoustic signal
- Given a signal, identify the sequence of words that maximizes P(words | signal)

$$P(words \mid signal) = \frac{P(words)P(signal \mid words)}{P(signal)}$$

- P(words) is the language model
- P(signal | words) is the acoustic model
- P(signal) is a normalizing constant

The Language Model: P(words)

• How to get the probability of a sequence of words?

$$P(w_1...w_n) = P(w_1)P(w_2 | w_1)P(w_3 | w_1w_2)...P(w_n | w_1...w_{n-1})$$

= $\prod_{i=1}^n P(w_i | w_1...w_{i-1})$

- But this gets really, really complicated P(the rat ate cheese) = P(the) * P(rat|the) * P(ate|the rat) * P(cheese|the rat ate)
- Approximate with a bigram model that depends only on pairs of words

$$P(w_1...w_n) = P(w_1)P(w_2 | w_1)P(w_3 | w_2)...P(w_n | w_{n-1})$$

= $\prod_{i=1}^n P(w_i | w_{i-1})$

• Easier to compute values P(the rat ate cheese) = P(the) * P(rat|the) * P(ate|rat) * P(cheese|ate)

Building a bigram model

Word	Unigram	Previous words									
	count	OF	IN	IS	ON	TO	FROM	THAT	WITH	LINE	VISION
THE	367	179	143	44	44	65	35	30	17	0	0
ON	69	0	0	1	0	0	0	0	0	0	0
OF	281	0	0	2	0	1	0	3	0	4	0
TO	212	0	0	19	0	0	0	0	0	0	1
IS	175	0	0	0	0	0	0	13	0	1	3
A	153	36	36	33	23	21	14	3	15	0	0
THAT	124	0	3	18	0	1	0	0	0	0	0
WE	105	0	0	0	1	0	0	12	0	0	0
LINE	17	1	0	0	0	1	0	0	0	0	0
VISION	13	3	0	0	1	0	1	0	0	0	0

 Construct a bigram table just by counting word frequencies

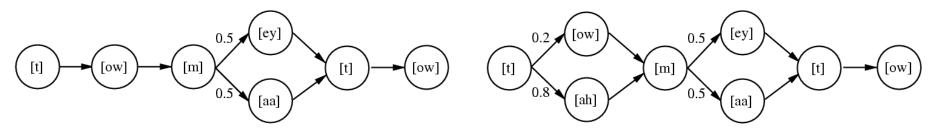
– This table is taken from chapter 24 in the text

Can also use higher-order models (trigram, etc.)
 – Distinguish "ate a banana" from "ate a bandana"

The Acoustic Model: P(signal | words)

Word model with dialect variation:

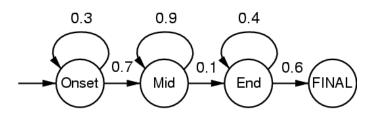
Word model with coarticulation and dialect variations:



- Markov models for generating a word from phones
 - States give a unique output symbol
 - Total output is a sequence of output symbols (or state names)
 - Links have a probability associated with them
 - Unlabelled links have a probability of 1
 - Markov property: history does not matter
 - Probability of a pronunciation is the product of the probabilities along the paths

The Acoustic Model: P(signal | words) Hidden Markov Models

Phone HMM for [m]:



Output probabilities for the phone HMM:

Onset:	Mid:	End:
C1: 0.5	C3: 0.2	C1: 0.1
C2: 0.2	C4: 0.7	C6: 0.5
C3: 0.3	C5: 0.1	C7: 0.4

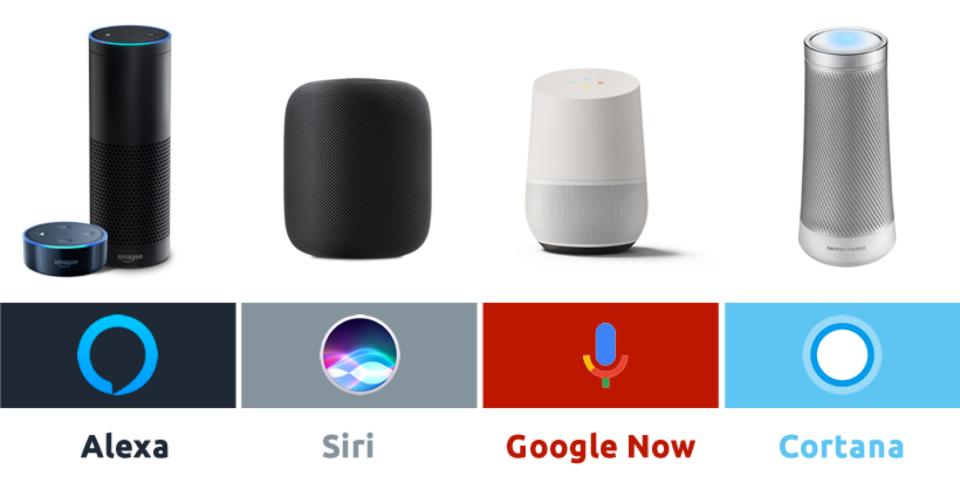
- Output of a state is determined by a probability distribution
- Multiple states can share the same output symbols
- True state of the system is "hidden" from the user

- Computes P(signal | phone)
- P([C1,C4,C6] | [m]) = prob. of going from O→M→E by the output probs.
 (0.7 x 0.1 x 0.6) x (0.5 x 0.7 x 0.5) = 0.0075
- $P([C1,C3,C4,C6] \mid [m]) = P(O \rightarrow O \rightarrow M \rightarrow E) + P(O \rightarrow M \rightarrow M \rightarrow E) =$ (0.3 x 0.7 x 0.1 x 0.6) x (0.5 x 0.3 x 0.7 x 0.5) + (0.7 x 0.9 x 0.1 x 0.6) x (0.5 x 0.2 x 0.7 x 0.5) = 0.0006615 + 0.001323 = 0.0019845

The Acoustic Model: P(signal | words) Putting it all together

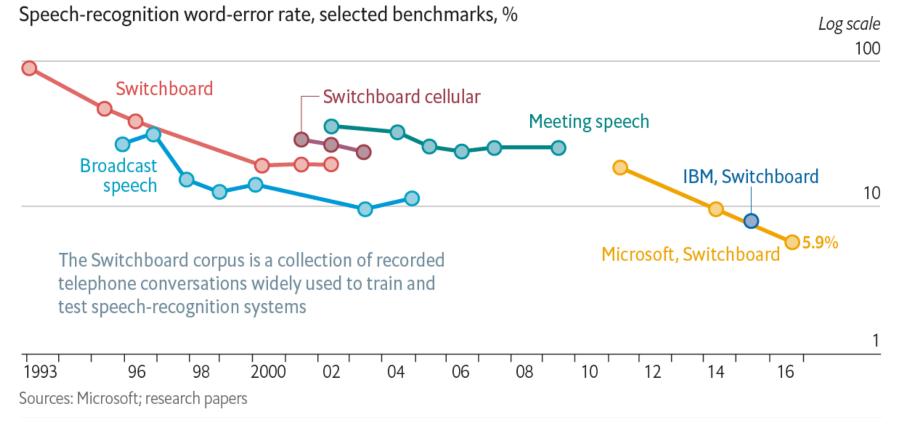
- Language bigram model gives us
 - $P(word_i | word_{i-1})$ -or- P(word | words)
 - Like an HMM in which each word is a state and each bigram probability is a transition between states
- Word pronunciation HMM gives us P(phones | word)
- Phone HMM gives us P(signal | phones)
- Put them all together into one big HMM
 P(signal | words) = P(signal | phones) *
 P(phones | word) * P(word | words)

Modern Voice Assistants



Word Recognition Error Rates

Loud and clear

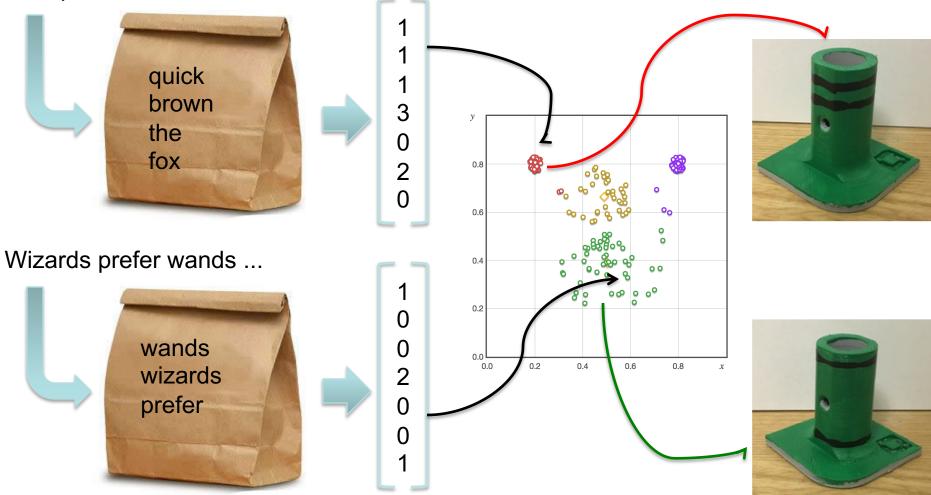


Source: https://www.economist.com/technology-quarterly/2017-05-01/language

Context-Free Approaches: Bag-of-Words Models

Context-Free Approaches: Bag-of-Words Models

The quick brown fox...



Feedback is Critical

- Unsupervised learning: no indication is given whether an output was correct or incorrect
- Supervised learning: when an error occurs, agent receives the correct output
- Reinforcement learning: when an error occurs, agent receives an evaluation of its output, but is not told the correct output

Goals of Unsupervised Learning

- To find useful representations of the data, for example:
 - finding clusters, e.g. *k*-means, ART
 - dimensionality reduction, e.g. PCA, Hebbian learning, multidimensional scaling (MDS)
 - building topographic maps, e.g. elastic networks, Kohonen maps
 - finding the hidden causes or sources of the data
 - modeling the data density

Practical Uses of Unsupervised Learning

- Data compression
- Outlier detection
- Classification
- Make other learning tasks easier
- Model human learning and perception

Overview: K-Means

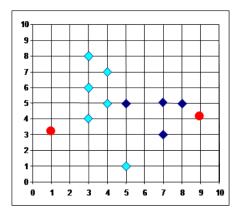
- Clustering is the process of partitioning a group of data points into a small number of clusters.
- In general, we have *n* data points *x_i*, *i*=1...*n* to partition into *k* clusters.
- K-means aims to find the positions u_i, i=1...k that minimize the distance from the data points to the cluster, where c_i is the set of points belonging to to cluster i

$$\arg\min_{c} \sum_{i=1}^{k} \sum_{\mathbf{x} \in c_{i}} d(\mathbf{x}, u_{i}) = \arg\min_{c} \sum_{i=1}^{k} \sum_{\mathbf{x} \in c_{i}} \left\| \mathbf{x} - u_{i} \right\|_{2}^{2}$$

• This is NP hard; K-means hopes to find global minimum

K-means example

.



Arbitrarily choose K object as initial cluster center

K-Means Algorithm (Lloyd's)

1. Initialize the center of the clusters $u_i = \text{some value}, i = 1, ..., k$

Since the algorithm stops in a local minimum, the initial position of the clusters is very important!

1. Attribute the closest cluster to each data point

$$\mathbf{c}_i = \left\{ j : d\left(\mathbf{x}_j, u_i\right) \le d\left(\mathbf{x}_j, u_l\right), \ l \neq i, \ j = 1, \dots, n \right\}$$

1. Set the position of each cluster to the mean of all data points belonging to that cluster

$$u_i = \frac{1}{|c_i|} \sum_{j \in c_i} x_j, \ \forall i \qquad \text{where } |c| = \# \text{ elements in } c$$

1. Repeat steps 2-3 until convergence.

K-Means: Example #1

- Arbitrarily choose K objects as the initial cluster centers
- Repeat until no change:

0.0

0.2

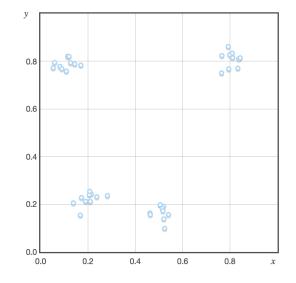
0.4

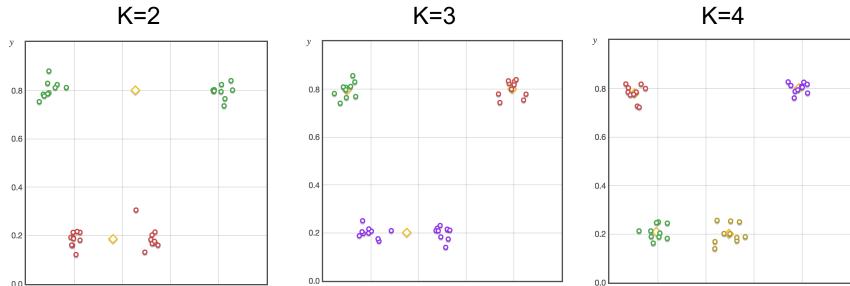
0.6

0.8

r

- Assign data points to closer cluster
- Calculate center of each cluster





0.4

0.6

0.8

r

0.2

0.4

0.0

0.6

0.8

x

0.0

0.2

K-Means: Example #2

- Arbitrarily choose K objects as the initial cluster centers
- Repeat until no change:

0.8

0.6

0.4

0.2

0.0

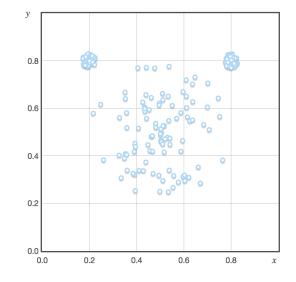
0.2

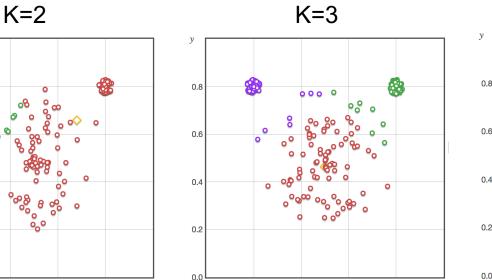
0.4

0.6

0.8

- Assign data points to closer cluster
- Calculate center of each cluster





0.2

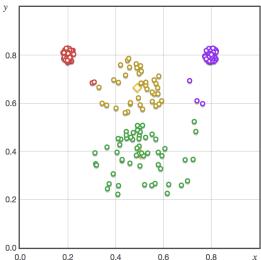
0.4

0.6

0.8

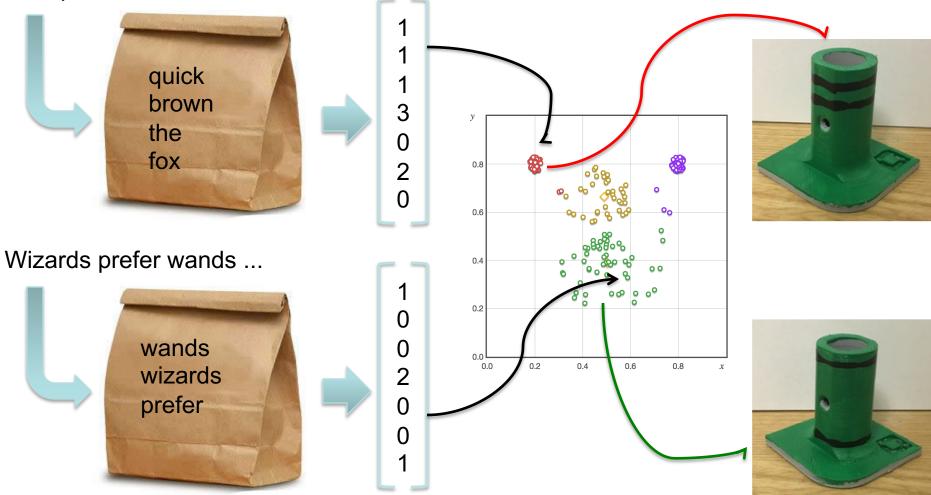
x

0.0



Context-Free Approaches: Bag-of-Words Models

The quick brown fox...



Bag-of-Words for Object Selection

(Brawer, Widder, Roncone, Mangin & Scassellati, ICRA 2018)

Administrivia

• Next week

- Perception (mostly vision)