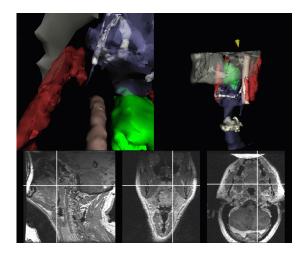
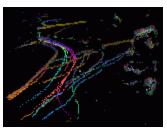

An Introduction to Visual Perception


CPSC 470 – Artificial Intelligence Brian Scassellati

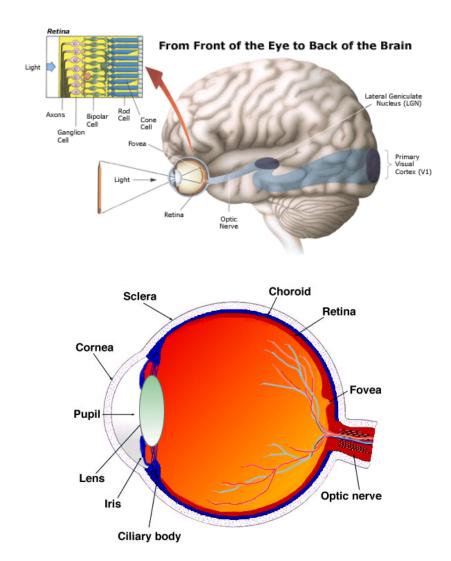
Applications of Machine Vision

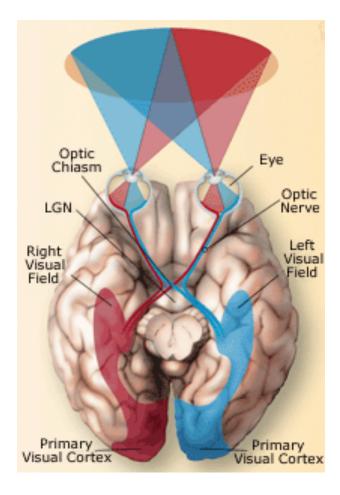
Industrial Inspection

Medical Imaging

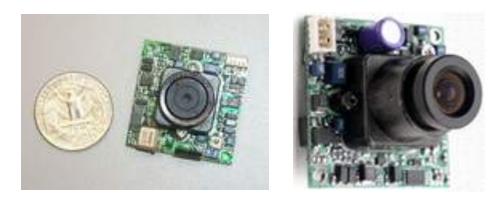

Robotics

Surveillance

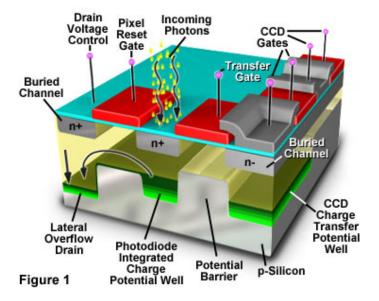


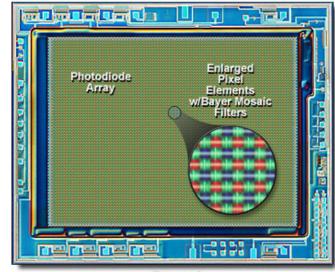

The Central Problem of Vision

						-	1				P
					/					+	-
				/							
		/									
	/										
L											
105		-		_							
195	209	221	235	249	251	254	255	250	241	247	248
195 210	209 236	221 249	235 254	249 255		254 225	255 226	250 212	241 204	247 236	248 211
			<u> </u>	255							
210	236	249	254	255	254 251	225	226	212	204	236	211
210 164	236 172	249 180	254 192	255 241	254 251 189	225 255	226 255 244	212 255	204 255 255	236 235	211 190 234
210 164 167	236 172 164	249 180 171	254 192 170	255 241 179	254 251 189	225 255 208	226 255 244	212 255 254	204 255 255	236 235 251	211 190 234
210 164 167 162	236 172 164 167	249 180 171 166	254 192 170 169	255 241 179 169	254 251 189 170 170	225 255 208 176	226 255 244 185	212 255 254 196	204 255 255 232	236 235 251 249	211 190 234 254
210 164 167 162 153	236 172 164 167 157	249 180 171 166 160	254 192 170 169 162	255 241 179 169 169	254 251 189 170 170	225 255 208 176 168	226 255 244 185 169	212 255 254 196 171	204 255 255 232 176	236 235 251 249 185	211 190 234 254 218
210 164 167 162 153 126	236 172 164 167 157 135	249 180 171 166 160 143	254 192 170 169 162 147	255 241 179 169 169 156	254 251 189 170 170 157 145	225 255 208 176 168 160	226 255 244 185 169 166	212 255 254 196 171 167	204 255 255 232 176 171	236 235 251 249 185 168	211 190 234 254 218 170
210 164 167 162 153 126 103	236 172 164 167 157 135 107	249 180 171 166 160 143 118	254 192 170 169 162 147 125	255 241 179 169 169 156 133	254 251 189 170 170 157 145 124	225 255 208 176 168 160 151	226 255 244 185 169 166 156	212 255 254 196 171 167 158	204 255 255 232 176 171 159	236 235 251 249 185 168 163	211 190 234 254 218 170 164
210 164 167 162 153 126 103 095	236 172 164 167 157 135 107 095	249 180 171 166 160 143 118 097	254 192 170 169 162 147 125 101	255 241 179 169 156 133 115	254 251 189 170 170 157 145 124 099	225 255 208 176 168 160 151 132	226 255 244 185 169 166 156 142	212 255 254 196 171 167 158 117	204 255 232 176 171 159 122	236 235 251 249 185 168 163 124	211 190 234 254 218 170 164 161

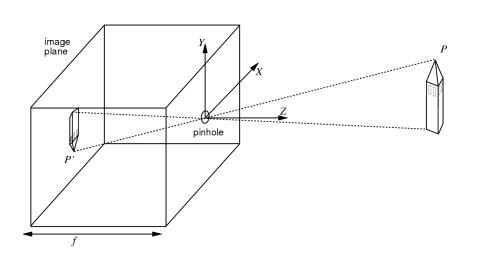

- Visual perception is something that we take for granted
- Extremely hard problems are often present, but difficult to identify
- Perception often does not match our intuitive notions of what we are doing (illusions)

Human Visual System




CCD Cameras

Anatomy of a Charge Coupled Device (CCD)


- Small
- Inexpensive (<\$100 to \$\$)
- Common
- Standardized

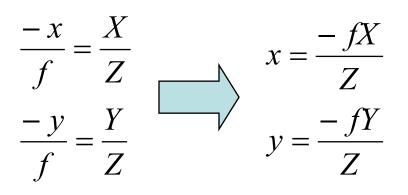

CCD Photodiode Array Integrated Circuit

Figure 2

Image Formation: Pinhole Cameras

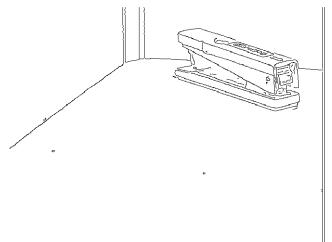
If P is a point in the scene with coordinates (X,Y,Z) then the projection on the image plane P' has coordinates (x,y,z)

Image Formation: Lens Systems

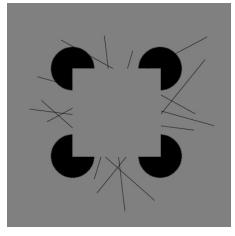
- Most real systems have a lens, which is much wider than a pinhole (and thus admits more light)
- Object at a distance Z from the lens is reproduced at a distance of Z'

$$\frac{1}{Z} + \frac{1}{Z'} = \frac{1}{f}$$

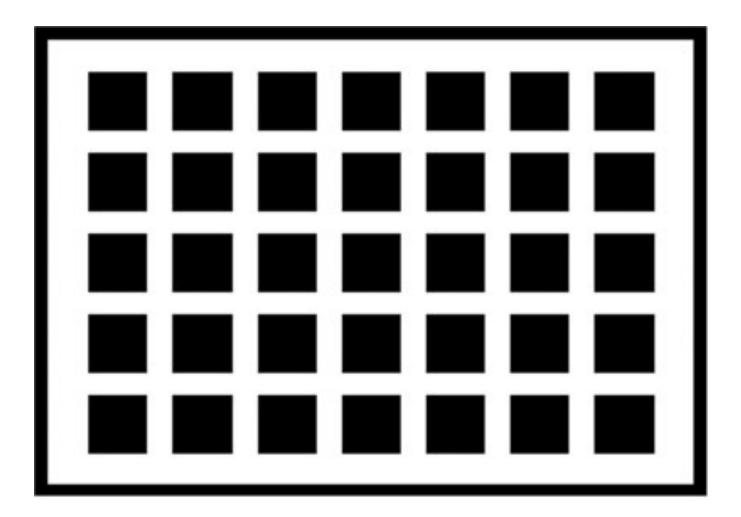
where f is the focal length of the lens

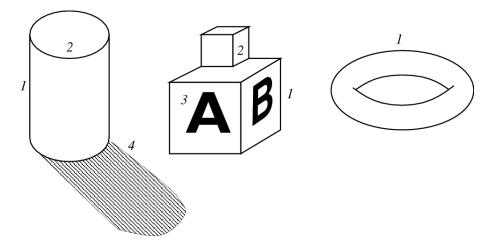

But because Z >> Z'

$$\frac{1}{Z} + \frac{1}{Z'} \approx \frac{1}{Z'} \Longrightarrow \frac{1}{Z'} \approx \frac{1}{f}$$


Therefore, we often use the pinhole projection as an approximation of image formation

Early Vision Operations: Edge Detection




- Want to find the boundaries of objects
- Initially seen as a lowlevel vision problem
- Real edges can be
 much more complex

Hermann Grid Illusion

Early Vision Operations: Different Kinds of Edges

- 1. Depth discontinuity
- 2. Surface orientation discontinuity
- 3. Reflectance discontinuity
- 4. Illumination discontinuity (shadows)

Mathematical Tools: Convolution

• The result of convolving two functions *f* and *g* is another function *h*

$$h(x) = \int_{-\infty}^{+\infty} f(u)g(x-u)du \qquad h(x) = \sum_{u=-\infty}^{+\infty} f(u)g(x-u)$$

This generalizes to two dimensions

$$h(x,y) = \int_{-\infty-\infty}^{+\infty+\infty} f(u,v)g(x-u,y-v) \, du \, dv$$
$$h(x,y) = \sum_{-\infty}^{+\infty} \sum_{-\infty}^{+\infty} f(u,v)g(x-u,y-v)$$

1-D Convolution Demo Applets

http://www.jhu.edu/~signals/

http://www.cs.brown.edu/exploratories/freeSoftware/catalogs/signal_processing.html

2D Convolution Example

Starting Image

Resulting Image

18	64	32	10	9	14	14	
10	20	40	60	20	40	10	
39	56	24	25	83	20	55	
23	57	85	94	39	5	60	(
23	64	46	83	7	24	73	
52	35	31	55	63	35	92	
48	56	83	65	93	20	11	

	Convolution Kernel							
	-1	0	+1					
()	-2	0	+2					
	-1	0	+1					

2D Convolution Example

Starting Image

Resulting Image

-						-	
18	64	32	10	9	14	14	
10	20	40	60	20	40	10	
39	56	24	25	83	20	55	
23	57	85	94	39	5	60	(
23	64	46	83	7	24	73	
52	35	31	55	63	35	92	
48	56	83	65	93	20	11	

 Convolution

 -1
 0
 +1

 -2
 0
 +2
 =

 -1
 0
 +1

5 9			

-1*18 + 0*64 + 1*32 -2*10 + 0*20 + 2*40 -1*39 + 0*56 + 1*24 = 59

2D Convolution Example

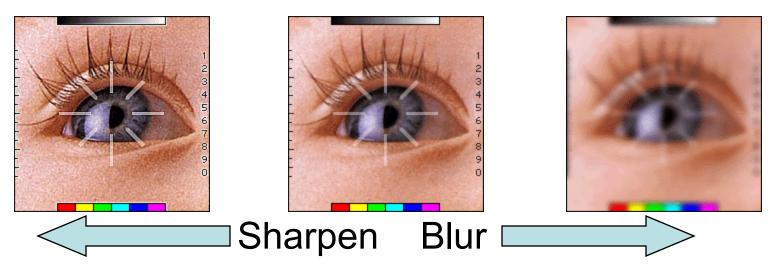
Starting Image

Resulting Image

-							-
18	64	32	10	9	14	14	
10	20	40	60	20	40	10	
39	56	24	25	83	20	55	
23	57	85	94	39	5	60	(
23	64	46	83	7	24	73	
52	35	31	55	63	35	92	
48	56	83	65	93	20	11	

 Convolution

 -1
 0
 +1


 -2
 0
 +2
 =

 -1
 0
 +1

5 9	-5		

-1*64 + 0*32 + 1*10 -2*20 + 0*40 + 2*60 -1*56 + 0*24 + 1*25 =

Applications of Convolution: Smoothing

 Convolving an image with a small rectangular or Gaussian filter can sharpen/blur the image

Simple Edge Detectors

Roberts Cross

Uses two 2x2
 convolution kernels

$$Gx = \begin{bmatrix} +1 & 0 \\ 0 & -1 \end{bmatrix} \quad Gy = \begin{bmatrix} 0 & +1 \\ -1 & 0 \end{bmatrix}$$

- Magnitude $|G| = \sqrt{Gx^2 + Gy^2}$
- Direction

$$\theta = \arctan\left(\frac{Gy}{Gx}\right) - \frac{3\pi}{4}$$

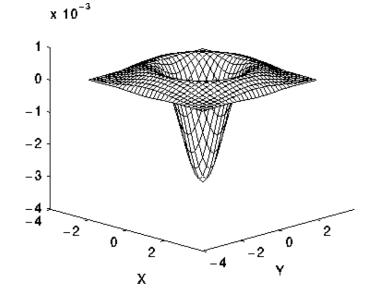
Sobel Operator

Uses two 3x3
 convolution kernels

$$Gx = \begin{bmatrix} -1 & 0 & +1 \\ -2 & 0 & +2 \\ -1 & 0 & +1 \end{bmatrix} \qquad Gy = \begin{bmatrix} +1 & +2 & +1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix}$$

- Magnitude $|G| = \sqrt{Gx^2 + Gy^2}$
- Direction

$$\theta = \arctan\left(\frac{Gy}{Gx}\right)$$

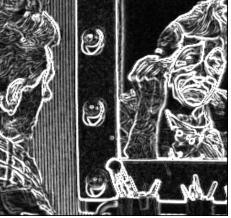

More Complex Edge Detectors

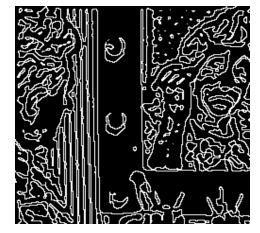
Canny Edge Detector

- Smooth (convolve with a Gaussian)
- Apply a 1st-derivative operator (similar to Roberts Cross).
- Keep all pixels where the gradient is a local maximum along the gradient direction are detected. This produces lines with a width of one pixel.
- Thresholding: Edges are traced starting at height T1 and stopping when the height drops below T2. This way weak edges are included if they are connected to strong edges.

Marr Edge Detector

- a.k.a. Zero crossing detector
- Finds the zero crossings of the second derivative.
- Smooth with a Gaussian
- Find 2nd derivatives with a Laplacian

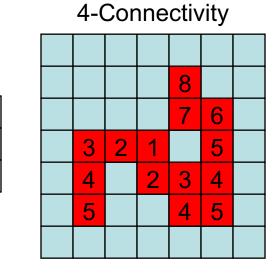

Comparison of Edge Detectors


Original image

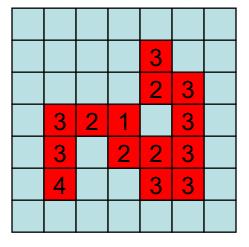
Results using Roberts Cross

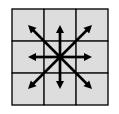
Results using Sobel

Zero crossings with σ = 2.0



Canny with $\sigma = 1.0$, T1 = 255, T2 = 1

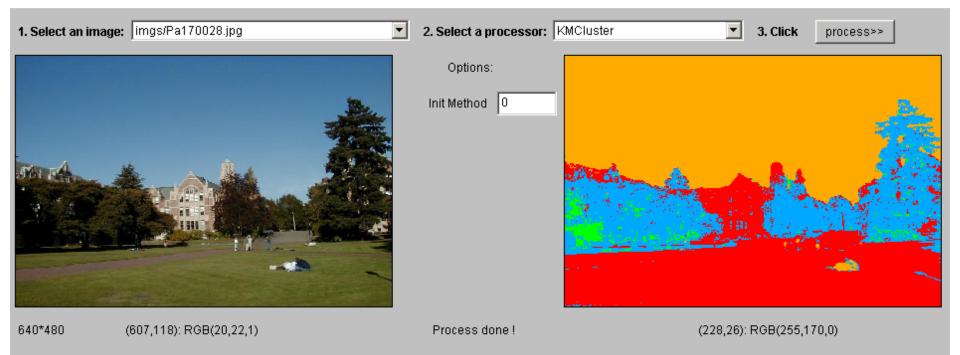



Canny with σ = 2.0, T1 = 128, T2 = 1

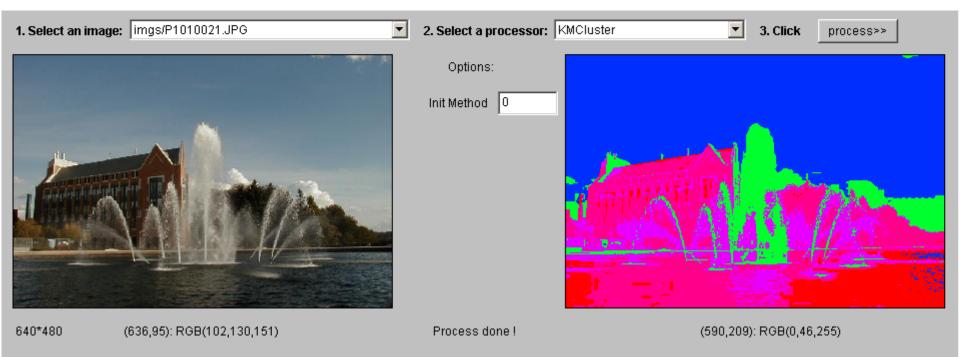
Segmentation via Region Growing

8-Connectivity

- Region growing techniques start with one pixel of a potential region and try to grow it by adding adjacent pixels until the pixels being compared are too dissimilar.
- The first pixel selected can be just the first unlabeled pixel in the image or a set of seed pixels can be chosen from the image.
 - Usually a statistical test is used to decide which pixels can be added to a region.


Overview: K-Means

- Clustering is the process of partitioning a group of data points into a small number of clusters.
- In general, we have *n* data points *x_i*, *i*=1...*n* to partition into *k* clusters.
- K-means aims to find the positions u_i, i=1...k that minimize the distance from the data points to the cluster, where c_i is the set of points belonging to to cluster i


$$\arg\min_{c} \sum_{i=1}^{k} \sum_{\mathbf{x} \in c_{i}} d(\mathbf{x}, u_{i}) = \arg\min_{c} \sum_{i=1}^{k} \sum_{\mathbf{x} \in c_{i}} \left\| \mathbf{x} - u_{i} \right\|_{2}^{2}$$

• This is NP hard; K-means hopes to find global minimum

K-Means Example 1

K-Means Example 2

Administrivia

- PS 6 due on Wednesday
 - PS 7 Reinforcement learning
 - PS 8 Vision and robotics