{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "from notebook import *\n", "from search import *\n", "import warnings" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "from search import *\n", "from notebook import psource, heatmap, gaussian_kernel, show_map, final_path_colors, display_visual, plot_NQueens\n", "\n", "# Needed to hide warnings in the matplotlib sections\n", "import warnings\n", "warnings.filterwarnings(\"ignore\")" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "%matplotlib inline\n", "import networkx as nx\n", "import matplotlib.pyplot as plt\n", "from matplotlib import lines\n", "\n", "from ipywidgets import interact\n", "import ipywidgets as widgets\n", "from IPython.display import display\n", "import time" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Data for burning building" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "\n", "room_map = UndirectedGraph(dict(\n", " H10=dict(H11=5,S10=5),\n", " H11=dict(H10=5,R11=5,H12=5),\n", " H12=dict(H11=5,R12=5,H13=5),\n", " H13=dict(H12=5,R13=5,H14=5),\n", " H14=dict(H13=5,R14=5,H15=5),\n", " H15=dict(H14=5,H16=5),\n", " H16=dict(H15=5,R16=5,H17=5),\n", " H17=dict(H16=5,R17=5,H18=5),\n", " H18=dict(H17=5,R18=5,H19=5),\n", " H19=dict(H18=5,S19=5),\n", " S19=dict(H19=5,S29=10,EXIT=10),\n", "\n", " EXIT=dict(S19=10),\n", " S10=dict(H10=5,S20=10),\n", " R11=dict(H11=5),\n", " R12=dict(H12=5,R13=5),\n", " R13=dict(H13=5,R12=5),\n", " R14=dict(H14=5,R15=5),\n", " R15=dict(H15=5,R14=5,R16=5),\n", " R16=dict(H16=5,R15=5),\n", " R17=dict(H17=5),\n", " R18=dict(H18=5),\n", " R19=dict(H19=5),\n", "\n", " H20=dict(H21=5,S20=5),\n", " H21=dict(H20=5,R21=5,H22=5),\n", " H22=dict(H21=5,R22=5,H23=5),\n", " H23=dict(H22=5,R23=5,H24=5),\n", " H24=dict(H23=5,R24=5,H25=5),\n", " H25=dict(H24=5,H26=5),\n", " H26=dict(H25=5,R26=5,H27=5),\n", " H27=dict(H26=5,R27=5,H28=5),\n", " H28=dict(H27=5,R28=5,H29=5),\n", " H29=dict(H28=5,S29=5),\n", " S29=dict(H29=5,S19=10,S39=10),\n", "\n", " S20=dict(H20=5,S10=5,S30=10),\n", " R21=dict(H21=5),\n", " R22=dict(H22=5,R23=5),\n", " R23=dict(H23=5,R22=5),\n", " R24=dict(H24=5,R25=5),\n", " R25=dict(H25=5,R24=5,R26=5),\n", " R26=dict(H26=5,R25=5),\n", " R27=dict(H27=5),\n", " R28=dict(H28=5),\n", " R29=dict(H29=5),\n", "\n", " H30=dict(H31=5,S30=5),\n", " H31=dict(H30=5,R31=5,H32=5),\n", " H32=dict(H31=5,R32=5,H33=5),\n", " H33=dict(H32=5,R33=5,H34=5),\n", " H34=dict(H33=5,R34=5,H35=5),\n", " H35=dict(H34=5,H36=5),\n", " H36=dict(H35=5,R36=5,H37=5),\n", " H37=dict(H36=5,R37=5,H38=5),\n", " H38=dict(H37=5,R38=5,H39=5),\n", " H39=dict(H38=5,S39=5),\n", " S39=dict(H39=5,S29=10,S49=10),\n", "\n", " S30=dict(H30=5,S20=10),\n", " R31=dict(H31=5),\n", " R32=dict(H32=5,R33=5),\n", " R33=dict(H33=5,R32=5),\n", " R34=dict(H34=5,R35=5),\n", " R35=dict(H35=5,R34=5,R36=5),\n", " R36=dict(H36=5,R35=5),\n", " R37=dict(H37=5),\n", " R38=dict(H38=5),\n", " R39=dict(H39=5),\n", "\n", " H40=dict(H41=5,S40=5),\n", " H41=dict(H40=5,R41=5,H42=5),\n", " H42=dict(H41=5,R42=5,H43=5),\n", " H43=dict(H42=5,R43=5,H44=5),\n", " H44=dict(H43=5,R44=5,H45=5),\n", " H45=dict(H44=5,H46=5),\n", " H46=dict(H45=5,R46=5,H47=5),\n", " H47=dict(H46=5,R47=5,H48=5),\n", " H48=dict(H47=5,R48=5,H49=5),\n", " H49=dict(H48=5,S49=5),\n", " S49=dict(H49=5,S39=10),\n", "\n", " S40=dict(H40=5,S30=10),\n", " R41=dict(H41=5),\n", " R42=dict(H42=5,R43=5),\n", " R43=dict(H43=5,R42=5),\n", " R44=dict(H44=5,R45=5),\n", " R45=dict(H45=5,R44=5,R46=5),\n", " R46=dict(H46=5,R45=5),\n", " R47=dict(H47=5),\n", " R48=dict(H48=5),\n", " R49=dict(H49=5)\n", " \n", " ))\n" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "\n", "room_map.locations = dict(\n", " H10=(40,50),\n", " H11=(50,50),\n", " H12=(60,50),\n", " H13=(70,50),\n", " H14=(80,50),\n", " H15=(90,50),\n", " H16=(100,50),\n", " H17=(110,50),\n", " H18=(120,50),\n", " H19=(130,50),\n", "\n", " S10=(40,50),\n", " R11=(50,60),\n", " R12=(60,60),\n", " R13=(70,60),\n", " R14=(80,60),\n", " R15=(90,60),\n", " R16=(100,60),\n", " R17=(110,60),\n", " R18=(120,60),\n", " R19=(130,60),\n", " S19=(140,50),\n", " EXIT=(165,40),\n", "\n", "\n", " H20=(40,75),\n", " H21=(50,75),\n", " H22=(60,75),\n", " H23=(70,75),\n", " H24=(80,75),\n", " H25=(90,75),\n", " H26=(100,75),\n", " H27=(110,75),\n", " H28=(120,75),\n", " H29=(130,75),\n", "\n", " S20=(40,75),\n", " R21=(50,85),\n", " R22=(60,85),\n", " R23=(70,85),\n", " R24=(80,85),\n", " R25=(90,85),\n", " R26=(100,85),\n", " R27=(110,85),\n", " R28=(120,85),\n", " R29=(130,85),\n", " S29=(140,75),\n", "\n", " H30=(40,100),\n", " H31=(50,100),\n", " H32=(60,100),\n", " H33=(70,100),\n", " H34=(80,100),\n", " H35=(90,100),\n", " H36=(100,100),\n", " H37=(110,100),\n", " H38=(120,100),\n", " H39=(130,100),\n", "\n", " S30=(40,100),\n", " R31=(50,110),\n", " R32=(60,110),\n", " R33=(70,110),\n", " R34=(80,110),\n", " R35=(90,110),\n", " R36=(100,110),\n", " R37=(110,110),\n", " R38=(120,110),\n", " R39=(130,110),\n", " S39=(140,100),\n", "\n", " \n", " H40=(40,125),\n", " H41=(50,125),\n", " H42=(60,125),\n", " H43=(70,125),\n", " H44=(80,125),\n", " H45=(90,125),\n", " H46=(100,125),\n", " H47=(110,125),\n", " H48=(120,125),\n", " H49=(130,125),\n", "\n", " S40=(40,125),\n", " R41=(50,135),\n", " R42=(60,135),\n", " R43=(70,135),\n", " R44=(80,135),\n", " R45=(90,135),\n", " R46=(100,135),\n", " R47=(110,135),\n", " R48=(120,135),\n", " R49=(130,135),\n", " S49=(140,125)\n", "\n", " )\n" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "xnode_colors = {node: 'white' for node in room_map.locations.keys()}\n", "xnode_positions = room_map.locations\n", "xnode_label_pos = { k:[v[0],v[1]-2] for k,v in room_map.locations.items() }\n", "xedge_weights = {(k, k2) : v2 for k, v in room_map.graph_dict.items() for k2, v2 in v.items()}\n", "\n", "room_graph_data = { 'graph_dict' : room_map.graph_dict,\n", " 'node_colors': xnode_colors,\n", " 'node_positions': xnode_positions,\n", " 'node_label_positions': xnode_label_pos,\n", " 'edge_weights': xedge_weights\n", "}" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "{'H10': (40, 50), 'H11': (50, 50), 'H12': (60, 50), 'H13': (70, 50), 'H14': (80, 50), 'H15': (90, 50), 'H16': (100, 50), 'H17': (110, 50), 'H18': (120, 50), 'H19': (130, 50), 'S10': (40, 50), 'R11': (50, 60), 'R12': (60, 60), 'R13': (70, 60), 'R14': (80, 60), 'R15': (90, 60), 'R16': (100, 60), 'R17': (110, 60), 'R18': (120, 60), 'R19': (130, 60), 'S19': (140, 50), 'EXIT': (165, 40), 'H20': (40, 75), 'H21': (50, 75), 'H22': (60, 75), 'H23': (70, 75), 'H24': (80, 75), 'H25': (90, 75), 'H26': (100, 75), 'H27': (110, 75), 'H28': (120, 75), 'H29': (130, 75), 'S20': (40, 75), 'R21': (50, 85), 'R22': (60, 85), 'R23': (70, 85), 'R24': (80, 85), 'R25': (90, 85), 'R26': (100, 85), 'R27': (110, 85), 'R28': (120, 85), 'R29': (130, 85), 'S29': (140, 75), 'H30': (40, 100), 'H31': (50, 100), 'H32': (60, 100), 'H33': (70, 100), 'H34': (80, 100), 'H35': (90, 100), 'H36': (100, 100), 'H37': (110, 100), 'H38': (120, 100), 'H39': (130, 100), 'S30': (40, 100), 'R31': (50, 110), 'R32': (60, 110), 'R33': (70, 110), 'R34': (80, 110), 'R35': (90, 110), 'R36': (100, 110), 'R37': (110, 110), 'R38': (120, 110), 'R39': (130, 110), 'S39': (140, 100), 'H40': (40, 125), 'H41': (50, 125), 'H42': (60, 125), 'H43': (70, 125), 'H44': (80, 125), 'H45': (90, 125), 'H46': (100, 125), 'H47': (110, 125), 'H48': (120, 125), 'H49': (130, 125), 'S40': (40, 125), 'R41': (50, 135), 'R42': (60, 135), 'R43': (70, 135), 'R44': (80, 135), 'R45': (90, 135), 'R46': (100, 135), 'R47': (110, 135), 'R48': (120, 135), 'R49': (130, 135), 'S49': (140, 125)}\n" ] } ], "source": [ "room_locations = room_map.locations\n", "print(room_locations)" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "scrolled": true }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABR4AAAO2CAYAAACOwIv+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XlYE/fePv47EFYBUVBREQVFQdxoVRZRwA21qLWLVeupPl38HXv6tNbqsYut2h57arfj6Wn7tGqrllq11Yq4oQiigBsqihsuuAAKIqCCLGHJ/P7gS04pqElmkknC/bquXL1IZsZ73h2G5J35fEYhCIIAIiIiIiIiIiIiIglZyR2AiIiIiIiIiIiILA8bj0RERERERERERCQ5Nh6JiIiIiIiIiIhIcmw8EhERERERERERkeTYeCQiIiIiIiIiIiLJsfFIREREREREREREkmPjkYiIiIiIiIiIiCTHxiMRERERERERERFJjo1HIiIiIiIiIiIikhwbj0RERERERERERCQ5Nh6JiIiIiIiIiIhIcmw8EhERERERERERkeTYeCQiIiIiIiIiIiLJsfFIREREREREREREkmPjkYiIiIiIiIiIiCTHxiMRERERERERERFJjo1HIiIiIiIiIiIikhwbj0RERERERERERCQ5Nh6JiIiIiIiIiIhIcmw8EhERERERERERkeTYeCQiIiIiIiIiIiLJsfFIREREREREREREkmPjkYiIiIiIiIiIiCTHxiMRERERERERERFJjo1HIiIiIiIiIiIikhwbj0RERERERERERCQ5Nh6JiIiIiIiIiIhIcmw8EhERERERERERkeTYeCQiIiIiIiIiIiLJsfFIREREREREREREkmPjkYiIiIiIiIiIiCTHxiMRERERERERERFJjo1HIiIiIiIiIiIikhwbj0RERERERERERCQ5Nh6JiIiIiIiIiIhIcmw8EhERERERERERkeTYeCQiIiIiIiIiIiLJsfFIREREREREREREkmPjkYiIiIiIiIiIiCSnlDsAtUyZmZm4fv06BEGAQqFAQEAAfHx85I5l8fLy8nDy5Emo1WoAQKdOnfD4449DoVDInMyylZWVIS0tDdXV1VAoFHByckJYWBhsbGzkjmbRamtrkZaWhtLSUgiCAKVSidDQULi6usodzeKdPHkSubm5EAQBVlZW6NOnD7p16yZ3LIuXk5ODzMxMzTne09MTgYGBPMcb2L1793Dw4EHU1NQAAJydnXmON4La2lqkpqairKwMgiDAxsYGoaGhaN26tdzRLJogCJpzPABYWVmhb9++6Nq1q8zJiIjIVCkEQRDkDkEtQ2VlJRITE1FVVYX+/fujR48eUCgUUKvVOHnyJK5cuQJXV1dERkbC2tpa7rgWQ61WIzU1FYWFhfD09MTgwYNhZWUFQRCQk5OD9PR02NjYYMSIEXBycpI7rkU5e/Yszp8/DycnJ0RGRsLOzg5A/YfU5ORk1NTUIDg4GJ6enjIntSwFBQVITU2FtbU1wsPD0bZtWwBATU0N9u/fj7t376JHjx4YMGCAzEktS0VFBRITE6FSqRAYGAgfHx/NOf7EiRO4du0a2rZti/DwcJ7jJaRWq3HgwAEUFxejS5cuGDhwoOYcf/36dRw7dgw2NjYYOXIkWrVqJXdci3L69GlcuHABLi4uiIiIgK2tLQDg7t27SE5ORl1dHUJCQtCpUyeZk1qW/Px8pKWlQalUIjw8HG3atAEAVFdXY//+/SgtLYWvry/69esnc1LLUl5ejsTERFRXV+Pxxx9Ht27dNOf4Y8eOIScnB25ubggPD4eVFQfVERHRf7HxSEZx6dIlnDhxAhMmTICDg8MDlyspKUFcXByio6Ph7u5uxISWqbS0FL///jvGjRuH9u3bP3C56upqbN++Hb6+vujbt68RE1omtVqNjRs3ol+/fggICHjgcoIgICUlBVVVVRg9erQRE1quffv2Qa1WY/jw4Q+9yuvixYs4evQopk6dyiaYBLKyspCZmYkJEybA3t7+gcsVFxdj27ZtmDBhgqYhTPq7e/cutmzZgujoaLRr1+6By6lUKmzfvh1+fn4PPSeRdtRqNTZs2IDAwED4+/s/cDlBELB//37U1tZi5MiRRkxouRITE2FlZYWIiIiHnuOzsrJw4sQJTJkyhU0wCZw7dw7nzp3D+PHjNV+iNqeoqAjbtm3DpEmTOLqAiIg02Hgkg7t06RKuXr2qdWNFEARs2LABUVFR/GAqQnl5OTZt2oS//OUvWr/pTklJQevWrXmVgAiCIGDdunUYP3681sO9rl69ivPnz2PcuHEGTmfZ9u7diy5duqBXr15aLd/wO/LCCy9wKKoIWVlZyMvL07qx0vA7Eh0dzQ+mIpSVlSE2NhbTp0/X+vhNTk6Gu7s7+vTpY+B0lksQBMTExGDSpElwdnbWap3Lly/j8uXLGDNmjIHTWbbdu3fDx8cHvr6+Wi1///59bN68med4kc6ePYvCwkJERkZqtbwgCPj5558xceJEuLi4GDgdERGZA34FSAZVWVmJjIwMna7mUigUmDJlCrZv327AZJZvy5YtmD59uk7f9A8dOhTXr19HSUmJAZPpbvHixVAoFI0eHh4ecsdq1q5duxAVFaXTHFPe3t7o2rUrjh07ZsBkli0zMxNubm5aNx0BoFWrVnjyySexdetWAybTj7kc8+Xl5Thz5oxOV3MpFAo8//zziIuLM2Ay/ZhL3QEgNjYWzz//vE4NlYiICFy+fBn37t0zYDLLtmPHDkRHR2vddASAHj16oHPnzjhx4oQBk1m2jIwMeHh4aN10BAAnJyeMHz8e27ZtM2Ayy1ZaWoqLFy9q3XQE/nuOj42NNWAyIiIyJ2w8kkElJiZiwoQJOq+nUCgQFhbGN+l6ys7ORkBAgF5DSMeNG4f9+/cbIJU4vXr1Qn5+vuZx+vRpuSM1UVdXB5VK9dAhjw8SEBCA69evGyBVy3Dp0iUEBgbqvF7r1q1hbW0NlUplgFTimMMxn5SUpPc5PiQkBJmZmQZIJY451D0rKwuBgYF6DSGNjo7Gvn37DJDK8tXU1KCurk6v0Rh9+/bFtWvXpA/VQly5cgX9+/fXeb22bdtCEATNjX9IN0lJSRg/frzO61lZWWHgwIE4d+6cAVIREZG5YeORDEqlUj10vq+H8fHxwdWrVyVO1DKcPHlSryYMAFhbW0MQBM1dUU2FUqmEh4eH5qFPc8/QkpOTERERoff6Xl5ebD7qobCwUNTxMGLECCQmJkqYSBqmfsw3fJhvuKGGrnx9fXH58mWJU4ln6nUH6oc+6jtcWqlUoq6uDpxpR3fJyck6Xfn1Zx07dsTNmzclTNQy3Lx5Ex07dtR7/eHDhyMpKUnCRC2DIAioq6uDUqnUa/3evXvj/PnzEqciIiJzxMYjGczJkydF3zW2devWKC0tlShRy1BbWwsbGxtR2xg2bBhSU1MlSiSNK1euoHPnzvD29saUKVNw5coVuSM1ce/ePc3dNfUxcOBAHD9+XMJELcPBgwcRFham9/qOjo6oqqqSMJE0TP2YP378OAYNGiRqG61atUJ5eblEiaRh6nVXqVQPvbmDNoYMGYKDBw9KlKjluH//vqg564KDg3HkyBEJE7UMhw8fRkhIiN7rOzs7m9x5xhyIrTsA2Nvbm+TfVyIiMi42HslgcnNz0b17d1Hb8Pb2Rl5enkSJWobi4mLRc5K5u7ub1BxgQUFBWLNmDXbt2oWVK1eioKAAoaGhKC4uljtaI2IbvgqFQvQ2WiJra2vRdy01tbqbwzFfUFCALl26iNqGl5cX8vPzJUoknjnUvbCwEJ07dxa1DQ8PD5Oby9cc6HvlVwOe4/VjY2Mj+uYwrLvuioqK0KlTJ1Hb8PT0xK1btyRKRERE5oqNRzIYKYZxtWrVCvfv35cgTctx//59ODo6it7Ohx9+2OQmC4Z+fPPNN80O8R47diwmT56Mfv36YeTIkdi+fTvUajXWrl3bbHZBEIyeXaFQICMjQ3TdOfxRd1LU7MKFC7IcMw+a0kCXY14QBKxfv97o2d9++23RdXdyckJAQIDRs+fm5oquOwDcunXL6Nm9vLzQqlUr0bXnuUZ3UtSMddcd6y4PKWrm5OTE9/FERARxX90SPUJDA0hfpaWlooY1tUQuLi4oLCwUvZ0PPvhArwnFjaGhWXHp0qVmX1coFLJ8yJDizplifl9aKilq1rNnT5P+YPqwY16hUGDq1KmYOnWqUTNJcbyXlpbi/Pnz8PHxkSCR9B51runQoYPRj5sbN26goKDAqP8m1eP5WR5S1J3/73QnRc1KS0tNcp5cIiIyLl7xSAbj7+8v+m6gly9fRteuXSVK1DK0bdtW9LCW69evix6ubUhVVVXIysoSNdm8IVRXV4taX61Wo7a2VqI0LYcUdyw19TuemuIx36NHD9E3Drh27ZroYcOGZIp179Chg+gpSLKzs+Hl5SVRopZD7Hmirq4OdXV1EqVpOaSom6mf401R165dH/ili7Zyc3PRoUMHiRIREZG5YuORDMbX11f0G5bKyko4ODhIlKhlsLa2Fn3H0mPHjmHgwIESphJn3rx52L9/P65evYojR47gmWeeQXl5OWbMmCF3tEbE3rE0JSUFQ4cOlTBRyxAZGSnqjqUlJSWibgpkCOZwzPv7+4tuPEpxoxQpmUPdlUolamtrRZ3jpbj5W0vUrl07USMK9u/fj/DwcAkTtQwRERHYt2+f3usXFhbC3d1dwkQtQ79+/ZCZman3+g1fCnJ+TSIiYuORDMrFxUXvm5RkZmaib9++EidqGYYMGYK0tDS91lWpVLC1tTWpYUl5eXmYOnUqevXqhaeeegp2dnY4fPiwyV0NGxISgkOHDum9flFRET8c6cHZ2VnUHFKm2Awwl2NezDy8GRkZJtf8Mpe6BwUF4ejRo3qtW1lZCXt7e4kTtQxhYWF6/20FgLt375rclxzmwNXVVdQN71JTUxEWFiZhopbDwcEBFRUVeq2bnp6OQYMGSZyIiIjMERuPZFCRkZHYunWrzldm1NTU4NSpU+jZs6eBklk2Dw8P5OXl6fVmMTY2FsOHDzdAKv1t2LABN2/eRHV1NW7cuIHNmzejd+/ecsdqQqFQwN3dHdnZ2Tqve/DgQQQEBBggVcsQGBiI5ORkndfLzc2Fk5MTrK2tpQ8lgrkc85GRkdiyZYvO66lUKpw9e9bk5nY0l7p7enoiOzsbVVVVOq+7ZcsWkzvHmwuFQgFXV1dcvXpV53VTU1PRp08fA6RqGfr164eUlBSd17t27RpcXV1hZcWPPPoYPny4Xuf4qqoqXLp0iVM6EBERADYeycCUSiWioqLw66+/at18rKmpQUxMDCZPnmzgdJbtmWeewYYNG1BZWan1OnFxcQgKCpLkjqktVXh4OM6cOYOcnByt1zlx4gTUajX8/PwMmMyy+fj4wNHREYcPH9Z6nfz8fBw5cgSjRo0yYDLLZmtrixEjRuC3337T+hxfXV2NdevW8Rwv0rPPPotffvlFp+bjli1bMHToUE5hIkJkZCROnjz5wDujN+fYsWOwtrbml6ki+Pr6wsbGBunp6Vqvc+PGDZw4cYKNdhHs7e0RHh6O33//Xet1VCoVfvnlF57jiYhIQyGY8m08iYiIiIiIiIiIyCzxikciIiIiIiIiIiKSHBuPREREREREREREJDk2HomIiIiIiIiIiEhybDwSERERERERERGR5Nh4JCIiIiIiIiIiIsmx8UiSmjlzJhQKBRQKBZRKJby8vDB79mzcuXOnybKCIGDMmDFQKBTYtGlTo9eWLl2KIUOGoFWrVlAoFMaKb7akqPu1a9fw0ksvwcfHBw4ODvDx8cE777yDyspKY+6K2ZGi9mq1GhMmTICXlxfs7e3RsWNHTJ8+HTdu3DDmrpgVqc41DaqqqtC/f38oFAocO3bM0PHNllR179atm2Y7DY+3337bWLthdqQ83nfv3o2QkBA4OjrC1dUVI0aMMMYumCUp6p6cnNzkWG94/Pbbb8bcHbMi1TF/8eJFPPnkk3B3d4ezszOCg4MRHx9vrN0wO1LV/cSJExg1ahRcXV3h5uaGWbNm4f79+8baDSIiMjFsPJLkRo4cifz8fFy7dg2rVq3Ctm3b8OqrrzZZ7osvvoC1tXWz21CpVHjqqacwZ84cQ8e1GGLrnpWVhbq6Ovzf//0fzp49i//85z/46aef8MYbbxgjvlmT4pgfPnw4fv31V1y4cAGbN2/GlStXMGnSJENHN2tS1L3BvHnz4OnpaaioFkWqun/wwQfIz8/XPBYuXGjI2GZPirrHxsZiypQp+Mtf/oKMjAwcOnQIL774oqGjmzWxdQ8NDW10nOfn5+Odd96Bk5MTxo4da4xdMFtSHPPR0dGoqqpCYmIiMjIyEBYWhokTJyI7O9vQ8c2W2LrfvHkTI0eOhI+PD44cOYL4+HicPXsWM2fONEJ6IiIyRUq5A5DlsbOzg4eHBwDA09MTzz33HNasWdNomWPHjuHf//43jh8/jg4dOjTZxocffggAD7w6iZoSW/cxY8ZgzJgxmp99fHzw3nvv4f3338eKFSsMnt+cia29lZVVoyZ7165d8fbbb2PixImoqqqCvb29wffBHElxrgGArVu3Yt++fdi0aRN27txp6NhmT6q6Ozs7a7ZDjya27nV1dXj99dfx6aef4pVXXtE87+/vb/Ds5kxs3W1tbZsc55s3b8bUqVPh5ORk0OzmTmzti4qKcOnSJXz//ffo378/AOCTTz7Bv/71L2RkZKB79+5G2Q9zI7bu27dvh5WVFb799ltNY/K7775Dv379cPnyZfTo0cMo+0FERKaDVzySQV25cgXx8fGwsbHRPFdWVoapU6fi+++/R/v27WVMZ7mkqntpaSnatGljqJgWSYral5SUYN26dQgKCmLTUUv61j0vLw+zZ8/GunXr4ODgYKy4FkPM8f7555/Dzc0NAwYMwNKlS1FdXW2MyBZBn7ofP34cubm5sLOzw2OPPQYPDw+MHj0aGRkZxoxu1qQ4vycnJ+PixYuYNWuWIaNaHH1q7+bmBn9/f8TExOD+/fuoq6vDihUr4OzsjCFDhhgzvtnSp+4qlQo2NjaNroZs+Puamppq+NBERGRyeMUjSS4+Ph5OTk6oq6tDVVUVAODLL7/UvP7Xv/4VY8aMwbhx4+SKaJGkrntOTg4+//xzvPvuuwbJa0mkqv2CBQvw9ddfo6KiAsHBwdi+fbtBc5s7sXWvq6vD888/j7feegsDBgzAtWvXjBHb7ElxvL/++usIDAyEm5sbjh49irfffhtXr17FqlWrDJ7fXImt+5UrVwAA77//Pr744gt4e3vjm2++QXh4OLKystCpUyfD74QZkvpv64oVK9C/f38MHDjQIHktidjaKxQKJCQkYNKkSXBxcYGVlRXatm2LXbt2oWPHjkbZB3Mktu7Dhw/H3Llz8cknn2Du3LkoLy/XzOGbn59v+B0gIiKTw8YjSW7YsGFYsWIFKisrsXLlSmRnZ+P1118HAMTExODUqVO8eYMBSFn3W7duISoqCqNGjcKbb75pyNgWQaraz58/Hy+99BKuX7+OJUuWYPr06di1axdvsPQAYuv+8ccfw8bGBnPnzjVWZIsgxfH+x5r369cPLi4ueO6557Bs2TK4ubkZNL+5Elt3tVoNAHjvvffwzDPPAKhvgu3duxcxMTFYsGCB4XfCDEn5t7WkpAS///57oyYOPZjY2guCgFdffRVubm5ISUmBg4MDVq1ahaeffhrp6eno3LmzsXbFrIite0BAANauXYu5c+di4cKFsLa2xuuvv44OHTo8cr5lIiKyTBxqTZJzdHREjx490LdvX3z11VeoqKjARx99BABITEzEuXPn4OTkBKVSCaWyvvf93HPPISwsTM7YZk+quhcUFCAyMhJ9+vRBTEwMm15akKr27u7u6NmzJ0aNGoUNGzZg9+7dHJb0EGLrnpiYiH379sHGxgZKpVIz71RwcDCef/55eXbKDBjiHB8UFAQAuHz5suF3wEyJrXvDFV69e/fWbFOpVMLX1xc5OTlG3hvzIeXxvnbtWlhZWfH8oiWxtU9KSsK2bduwfv16DBkyBI899hi+/fZbtGrVCqtXr5Ztv0ydFMf8tGnTUFBQgBs3bqC4uBiLFy/G7du34e3tLcs+ERGRvHjFIxncokWLMHbsWMyaNQtLly7FvHnzGr3et29ffP7555g4caJMCS2TPnXPz89HZGQkAgICsH79es0bStKNFMd8w9VJKpXKoFktia51X716NcrLyzWv37x5E1FRUVi3bh3n/9KBFMf7yZMnAYDDH3Wga90ff/xx2NnZ4cKFC5oGgVqtRnZ2NqKiooye31yJOd5XrVqFyZMno3Xr1saKa1F0rX1FRQWA+hu4/ZGVlZXmbyw9mphjvuHGMz/++CPs7e0xatQoo2QmIiLTwq4CGVxERAQCAgLwj3/8A99++22zQ1u6dOkCHx8fzc85OTkoKSnRzLnW8KG0R48evAuklnSt+82bNxEREYFOnTph+fLlKCoq0izXrl07Do/Rga61P3ToEE6cOIGwsDC4uroiOzsb77//Prp168YrgXWga93/fOVFw7mle/fu8PT0NHxgC6HP8X748GFERkaidevWSE9Px5tvvokJEybAy8vL2PHNlq51d3FxwV//+lcsWrQInp6e6NatG77++mvcuXMH06dPN3Z8s6XPexqg/qYa586dw4oVK4wV1eLoWvuQkBC0bdsW//M//4MPPvgADg4OWLlyJa5cuYLo6Ghjxzdb+hzzX3/9NUJDQ+Hk5ISEhATMnz8fn3zyCVxdXY0ZnYiITASHWpNRzJ07Fz/88AOuX7+u1fIffPABAgMDMX/+fABAYGAgAgMDOTekjnSp+549e3Dp0iXs378fXl5e6Nixo+aRm5trhLSWRZfaOzg4YNOmTRg+fDh69uyJl156Cf369UNKSgrvaq0jXc81JA1d6m5nZ4eNGzciIiICvXv3xgcffIBXXnkF69evN0JSy6Lr8f7ZZ59h2rRpmDFjBgYNGoTTp09j3759vLGMjvQ5z6xcuRL+/v68mlokXWrv7u6O+Ph43L9/H8OHD8fAgQNx4MABxMbG4rHHHjNCWsuh6zF/9OhRjBo1Cn379sWKFSvw/fffa+aJJCKilkchCIIgdwgiIiIiIiIiIiKyLLzikYiIiIiIiIiIiCTHxiMRERERERERERFJjo1HIiIiIiIiIiIikhwbj0RERERERERERCQ5Nh6JiIiIiIiIiIhIcmw8kqwUCoXcEVos1l4erLs8WHd5sO7yYe3lwbrLg3WXB+tORETaYOORiIiIiIiIiIiIJMfGIxEREREREREREUmOjUciIiIiIiIiIiKSHBuPREREREREREREJDk2HomIiIiIiIiIiEhybDwSERERERERERGR5Nh4JFmp1Wq5I7RYrL08WHd5sO7yYN3lw9rLg3WXB+suD9adiIi0oRAEQZA7BBEREREREREREVkWXvFIREREREREREREkmPjkYiIiIiIiIiIiCTHxiMRERERERERERFJjo1HIiIiIiIiIiIikpxS7gDUMk2dOhWenp747LPPNM/t3r0bhw8fbrTcokWLjB3N4rH28mDd5cG6y4N1lw9rLw/WXR6suzxYdyIi0gXvak2y8PT0xC+//IJhw4Zpntu0aRNmzpwJHx8f1NbWIisrC2q1WsaUlom1lwfrLg/WXR6su3xYe3mw7vJg3eXBuhMRkS54xSPJoqioCF5eXo2e8/Pzg6urKzIzM3H79m106NBBpnSWjbWXB+suD9ZdHqy7fFh7ebDu8mDd5cG6ExGRLjjHI8miXbt2uHXrVqPnCgsLYWtrCwDghbiGw9rLg3WXB+suD9ZdPqy9PFh3ebDu8mDdiYhIF2w8kiyCg4Px0UcfoaqqCgBQXl6Ojz76CEFBQTIns3ysvTxYd3mw7vJg3eXD2suDdZcH6y4P1p2IiHTBOR5JFllZWQgODoajoyP8/Pxw9uxZWFlZ4eDBg/D29kZxcTH69u2Lmzdvyh3V4rD28mDd5cG6y4N1lw9rLw/WXR6suzxYdyIi0gUbjySb3NxcrF27Fvn5+fD19cWMGTPQpk0buWO1CKy9PFh3ebDu8mDd5cPay4N1lwfrLg/WnYiItMXGIxEREREREREREUmOczwSERERERERERGR5Nh4JCIiIiIiIiIiIsmx8UhERERERERERESSY+ORZKVWq+WO0GKx9vJg3eXBusuDdZcPay8P1l0erLs8WHciItIGG48kq6+++kruCC0Way8P1l0erLs8WHf5sPbyYN3lwbrLg3UnIiJt8K7WJCuFQgEegvJg7eXBusuDdZcH6y4f1l4erLs8WHd5sO5ERKQNXvFIREREREREREREkmPjkYiIiIiIiIiIiCTHxiMRERERERERERFJjo1HIiIiIiIiIiIikhwbj0RERERERERERCQ5Nh6JiIiIiIiIiIhIcmw8EhERERERERERkeTYeCQiIiIiIiIiIiLJsfFIREREREREREREkmPjkYiIiIiIiIiIiCTHxiMRERERERERERFJjo1HIiIiIiIiIiIikhwbj0RERERERERERCQ5Nh6JiIiIiIiIiIhIcmw8EhERERERERERkeTYeCQiIiIiIiIiIiLJKeUOQERERERERETmqbS0FIWFhaipqZE7CpFZs7GxQfv27eHi4iJ3FEmx8UhEREREREREOistLcWtW7fQuXNnODg4QKFQyB2JyCwJgoDKykrcuHEDACyq+cih1kRERERERESks8LCQnTu3BmOjo5sOhKJoFAo4OjoiM6dO6OwsFDuOJJi45GIiIiIiIiIdFZTUwMHBwe5YxBZDAcHB4ubtoCNRyIiIiIiIiLSC690JJKOJf4+sfFIREREREREREREkmPjkYiIiIiIiIiIiCTHxiMREREREREREYCZM2fC09Oz2deSk5OhUCiwd+9eI6eSTsM+JCcnyx1FY+bMmejWrZvcMchA2HgkIiIiIiIiIiIiySnlDiCXiooKfPfdd7C3t4eDgwMUCgVqampw+/ZtTJw4EQEBAXJHtEiCIODIkSO4efMmbGz7ZOixAAAgAElEQVRsMH/+fGzbtg01NTXw9/eHv7+/3BEtVnZ2Nk6ePAk7OzsIgoA33ngDW7Zsgbu7O8LCwixyEltTcOfOHSQnJ8Pa2hoKhQJz587F1q1boVQqMWLECNjb28sd0SJVV1cjKSkJKpUK1tbWeOuttxAXF4fa2loMHToU7dq1kzuiRRIEAYcPH0Z+fr7mHL99+3aoVCoEBATAz89P7ogW69KlSzh9+jRsbGwAAK+//jq2bNmCdu3aYciQITzHG0hxcTEOHDigOce/+eabiI2Nha2tLUaMGAE7Ozu5I1oklUrV7Dm+rq4Ow4YNg5ubm9wRLZIgCDh48CAKCwsbvY+vrq5G37590bNnT7kjWqwLFy7gzJkzmvfxDZ9dO3TogJCQEJ7jSTZ1dXUQBAFKZYttLZEWFIIgCHKHMKaKigosX74cXl5emDhxIpydnRu9rlarkZSUhMzMTAwaNAhDhw6VKanlSUxMxN27dzF48GB06dKlyevnzp3D+fPn4eXlhUGDBsmQ0DKdOnUKly9fho+PDwIDA5u8fuvWLaSlpcHBwQFjxozhGxeJ5OfnIzU1FW5ubggPD4e1tXWj1ysrK5GYmIjKykpER0fDwcFBpqSWpbq6GnFxcbC1tcXw4cPh5OTU6HW1Wo2UlBTcvn0bgwcPhpeXl0xJLU9CQgLKysoQFBSEzp07N3n9zJkzuHDhArp164bHH39choSWKSMjA1evXkWPHj3Qr1+/Jq8XFBTg4MGDcHR0RFRUFM/xErlx4wYOHTqkOcdbWTUeRFRRUYGkpCRUVVUhOjqaXzJJRKVSYdu2bbC3t0dkZCRatWrV6HW1Wo0DBw6gqKgIwcHBDxwqSboRBAF79uzB/fv3ERoaio4dOzZZJjMzE5cvX4a3t3ez7zdJP8ePH8e1a9fQs2dP9O3bt8nrN2/exOHDh+Hk5ITRo0fLkBA4f/68xV08MnPmTOzduxd5eXlNXktOTkZkZCQSEhIwcuRIdOvWDWFhYYiOjsaSJUuQk5MDf39/LF++HGFhYVr9eytXrsTXX3+NCxcuwMnJCRMnTsRnn32Gtm3bAgBWrVqFV155BVu2bMGTTz4JoL7hFxkZiRs3buDkyZNwdnbG4sWLsWTJEmRmZuL111/HkSNH0Lp1a7zyyitYvHix5m9Vwz7s27cPERERAOp/z5cvX47vvvsOV69ehZubG55++ml8/PHHcHFx0WRVKBR499134ezsjO+//x45OTk4duwYAgMDUVRUhPfffx9xcXEoKiqCt7c35s6di1mzZjXa38TERMyfPx/nzp1D586d8fe//x2HDh1CcnIyrl27puv/Lotkcb9XQguSn58vfPjhh0JVVZVWy//+++9CbGysgVNZPrVaLaxfv17Izc3VavnMzExh9+7dBk7VMiQnJwtHjx7Vatnbt28LP/30k1BXV2fgVJbvwoULwtatW7VatqamRli7dq1QXFxs4FSWr7S0VFi9erWgUqm0Wn7Xrl3CmTNnDJzK8qnVamHdunXCjRs3tFo+IyND2LNnj4FTtQxJSUnCsWPHtFq2oKBAiImJ4TleAufPnxe2bdum1bLV1dXCmjVrhDt37hg4leW7e/eusGbNGqG6ulqr5Xfs2CGcO3fOwKksn1qtFn7++WehoKBAq+WPHz8uJCYmGjhVy7B3714hIyNDq2Vv3rwp/Pzzz4JarTZwqqYs8fdsxowZQufOnZt9bd++fQIAISEhQRAEQejatavg5eUlDBw4UPjtt9+Ebdu2CQMGDBBat26t1bl/wYIFglKpFObOnSvs3r1b+PHHH4VOnToJgwcPFmprazXLPfvss4Kbm5uQl5cnCIIgLFq0SFAqlcLhw4c1yyxatEgAIPj4+Aj/+Mc/hN27dwtz584VAAiLFi1qsg/79u3TPPfOO+8IAIS//e1vQnx8vPDll18KrVq1EsLCwhq9dwAgdOrUSQgLCxM2bdok7Nq1SygoKBDu3bsn9OzZU+jSpYuwYsUKISEhQZg3b55gZWUlfPXVV5r1z507J9ja2gqhoaHCli1bhA0bNgh+fn6Cp6en0LVr10fWq6WwtN+rFtN4rKysFBYvXtzol1cbW7duFZKSkgyUSn8NJ5U/Pjp06CB3rGZt2rRJuH37tk7rnD9/XkhOTjZQIv2ZU90PHz6s9ZuVBqWlpcK6desMlEh/5lT3vLw8IS4uTqd11Gq1sGbNGqGystJAqfRnLrWvrq4WfvzxR52bKvHx8cKVK1cMlEp/5lJ3QRCEjRs36tw4P3v2rHDgwAEDJdKfOdU9LS1NOHXqlE7r3L17V1i/fr2BEunPnOqek5Mj7NixQ6d11Gq1sHr1aq2/+DYmc6m9SqUSVq9erXNTZefOncL169cNlEp/5lJ3QRCEDRs2CHfv3tVpnczMTCE1NdVAifRnTnVPSUnR+cvRkpISYePGjQZK9GCW1iARBN0bj66urkJJSYlmmfT0dAHAIz9XXb16VbCyshKWLFnS6PnU1FQBgLBlyxbNc3fu3BG8vLyEiIgIITk5WbC2thY+/vjjRus1HOP//Oc/Gz3/8ssvC05OTppG6J8bj8XFxYKdnZ0wY8aMRuvFxMQIABpdUAFA6Nixo1BRUdFo2Q8//FCws7MTLl682OTfdnNzE2pqagRBEIRp06YJbm5uwv379zXL5OTkCDY2Nmw8/oGl/V61mJvL/Pvf/8b8+fObDHd8lAkTJuDUqVMGSiVOr169kJ+fr3mcPn1a7khNXLhwAd27d4e7u7tO6/n5+aGsrAzl5eUGSqY/c6h7bW0t8vLyMGDAAJ3Wc3Z2RkhICNLT0w2UTH/mUHcASEtLw/jx43VaR6FQYNq0adi5c6eBUoljDrXfuXMnpk6d2mS446NERUXh6NGjBkoljjnU/ezZswgICNAMBdJW7969cefOHVRWVhoomf7Moe7V1dW4detWs0OrH6Z169Z47LHHcOLECQMl05851B0ADh06hHHjxum0Ds/x4u3cuRPTpk3TeaqAsWPH4tChQwZKJY451P3kyZMYMGAAWrdurdN6ffv2RWFhIVQqlYGS6c8c6l5VVYXi4mKd7znQpk0b9O3b1yT3ydKFhISgTZs2mp8bhsXn5OQAqB/GXFtbq3nU1dUBqJ+mRq1W4/nnn2/0elBQEFxcXHDgwAHNNl1dXfHLL78gJSUFUVFRGDp0KBYsWNBsnsmTJzf6ecqUKbh//z7OnDnT7PKHDx+GSqXC9OnTm6ynVCqxf//+Rs+PGTOmyTRR8fHxCAoKgre3d6N9iYqKQnFxMc6dOwfgv39H/zhVRpcuXTBkyJBms5FlaBGNR7VaDRcXFzg6Ouq1fnh4OOLj4yVOJZ5SqYSHh4fmYYo3Szh9+rTOza8Go0aNQlJSksSJxDOHuu/btw8jR47Ua11vb29cv35d4kTimUPd8/Pz0alTJ73WtbGxgUKh0LwRMSWmXvuGN3P6zqHm6+uL7OxsiVOJZ+p1B4CsrCy9b8bGc7z+EhMTMWrUKL3W7dmzJ65cuSJxIvHMoe55eXl6zwtra2sLQRCgVqslTiWeqdderVajrq4Otra2eq3v7e2t+fBvSky97kD9jQl79eql17qjR49GYmKixInEM4e6JyUl6X2O9/f3x8WLFyVO1PIolcoHvidveP6PN1P58xewDTcWq6qqAgCsXbsWNjY2mkf37t0BAIWFhQCAHj16NHrdxsYGpaWlKC4ubrTd4OBg9OrVCyqVCm+88cYDv3Dv0KFDsz/fuHGj2eVLSkoAoMn8rUqlEm5ubprXGzQ3z2thYSEOHDjQZD+effZZANDsS35+fpN8zWUmy9IiGo+//PILxo4dq/f6gYGBJvnN0ZUrV9C5c2d4e3tjypQpJvdBory8XO9mL1B/wlapVBBM7P5Hpl53ACgtLdX52+k/cnd3x+3btyVMJJ451D0tLU3Ut3Xh4eFNvlE0BaZe+0OHDiEkJETv9R977DFkZGRImEgapl73srKyJjfv0YWDg4PmDbkpMfW6A/V/X8XU3tXVFXfu3JEwkXjmUPcjR44gKChI7/XDwsKQmpoqYSJpmHrtU1NTtb5BQ3MGDRpkkiM5TL3ud+/eFfVeslWrVqioqJAwkTRMve5A/Q0IxXyGcnZ2RmlpqYSJWp727dujqKgI1dXVTV67efMmAN0aZePHj0d6errmsW3bNgCAm5sbAGDPnj2NXm94LF68uNF2lixZgkuXLqFfv3548803ce/evWb/vVu3bjX7c3M3/wP+2zgtKCho9HxtbS2Ki4s1ORs0d/W5m5sbQkNDm92P9PR0DBw4EEB90/LP+ZrLTJalRTQeCwsL0a1bN1HbaN++vTRhJBIUFIQ1a9Zg165dWLlyJQoKChAaGtrkWxE5HThwAMOHDxe1je7du5vUt9TmUPeysjK4urqK2sawYcNMamiSOdQd+O9Vi/pq27YtysrKJEwknjnU/vbt23pfadrgj99amwJzqHtKSoroc3yXLl2Qn58vUSLxzKHuJSUlot+TREZGmlQDzBzqDtSfJ8Sc49u3b29yDV9zqP2dO3dEXQmjUCh4jtdDamoqIiMjRW3Dw8MDRUVFEiUSzxzqXlhYKPo9zfDhw5GSkiJRopYpMjIStbW1iIuLa/La5s2b0bFjR52uBnZzc8PAgQM1j4ah2KNGjYKVlRVycnIavd7w8Pb21mwjJSUFH3/8MZYuXYpt27bh7t27mD17drP/3q+//tro5w0bNsDJyQl9+vRpdvng4GDY2dlhw4YNjZ7fuHEjamtrER4e/sh9HDNmDLKysuDl5dXsvjg7OwOoH5a+c+fORlOq5ebmIi0t7ZH/Bpkv0/orbCD6Ds2QehtS+vMVnMHBwfDx8cHatWsxd+5cmVI1VlNTo/fQxwbt2rVDYWEhunbtKlEqccyh7iUlJTrPqflnus6TZ2jmUHeg+W//5NiGlMyh9lLUjMe87urq6mBjYyNqG+3atUNxcXGzQ3bkYA51Ly4uFj000Nra2qRGE5hD3QGea+TCv63yUKvVOs+N/2cN53ix70ulYg51LyoqEv3l0sOGCZN2Ro4ciVGjRmHmzJnIyspCUFAQysrKsGHDBmzduhWrV6+W5HzevXt3LFiwAK+99houXLiA8PBw2NvbIzc3FwkJCXj55ZcRGRmJO3fu4Pnnn0dkZCTmzZsHhUKBFStWYPLkyYiKisKMGTMabXflypVQq9UYNGgQdu/ejVWrVmHx4sUPvDilbdu2mDt3Lv75z3+iVatWGDduHM6fP4+FCxciLCwMTzzxxCP35c0338TGjRsxdOhQvPnmm+jVqxfKy8uRlZWFlJQUbN26FQCwcOFC/Pbbbxg9ejTmz5+P6upqLFq0iEOtLZxpvfsxEKnesCxduhQKhcKoD23/aDg5OSEgIACXLl1q8pogCPj999+Nnv2tt94SXXdBEBAaGmr07NoOu3hY3YH6D4jGzt6tWzdJbtiwePFio2f/5ptvtJr/6lF1FwTB6NkVCoUkN2zYtGmT0XMPGjRI6ybEo84148ePN3r+mJgY0XU/f/68LMeMtvO9Paru69evN3r2v//976LrLggC+vfvb/Tsubm5ousO1A8LMnb2nj17Njv0S1fvv/++0bOvWrVKq3PNo+quVquNnl2hUCAzM1N03eX4XQ0PD5fsHD9y5Eij5//ll19E1/3MmTOyHDNSneNXr15t9Ozvvfee6LrX1tbCz8/P6Nn/PFxUn7oD9fPhGTt7nz59JGkaKhSm1Ww3NwqFAnFxcZgzZw5++uknREdHY8aMGcjPz0dsbCxmzpwp2b/18ccfY8WKFThw4AAmT56MiRMnYtmyZWjTpg18fX0BALNmzUJlZSV++uknzf/bZ599Fi+99BJee+01XL58udE2t27dioSEBEyYMAE///wzFi5ciPfff/+hOZYuXYovv/wSu3btQnR0ND755BO88MIL2LFjh1ZN1tatW+PgwYMYN24cli1bhqioKLz44ovYunVro6un/f39sXPnTlRUVOC5557D22+/jTlz5mDEiBG6lo7MifFvpG18X3zxhehtrFmzRoIkhlNZWSl4eHgIS5YskTuKRnx8vFBRUSFqG8eOHRNycnIkSiQ9U6x7WVmZkJCQIGobtbW1QlxcnESJpGeKdRcEQYiNjTWJbRiSKdZeippt2bJFgiSGY4p137lzp6BSqURt49ChQ0JBQYFEiaRninUvKSkR9u3bJ2obNTU1wrZt26QJZACmWHdB4DleLqy7PLZv3y5UV1eL2sb+/fuF4uJiiRJJzxTrXlhYKKSlpYnahkqlEnbs2CFRokc7d+6c0f4terhFixYJAISamhq5o5BIlvZ71SKueOzUqVOTbwF0ZWqTnc6bNw/79+/H1atXceTIETzzzDMoLy9vcpm1nIYNGyb6bnbXrl1Dly5dJEoknjnU3cnJ6YETDWtr//79CA0NlSiReOZQd6D+m30xdywtKioSNZG7IZhD7T08PLS+gq05giCgpqZGwkTimUPdpTjH37hxw6SG1phD3du0aSN6zrSkpCQMHTpUokTimUPdgfpzvCBiiHpBQUGTCfrlZg61d3d319zMQR+CIKC2tlbCROKZQ92HDh2Kffv2idpGYWFhk7v9yskc6t6uXTvRcx8nJSVh2LBhEiUiIhKvRTQep0yZgr179+q9fnp6OgYNGiRhIvHy8vIwdepU9OrVC0899RTs7Oxw+PBhk5kLERB/x9KqqirY2dlJmEg8c6g7IP6OpSUlJSb14chc6j506FBRN2w4cOCAyb1RNIfaDx48GEePHtV7/fT0dAwePFjCROKZQ93F3rG0vLwcDg4OEiYSzxzqDoi/Y2lpaalJfclhLnUPCQkRdeO1tLQ0DBkyRMJE4plD7UNDQ0XV/fDhwwgODpYwkXjmUHcXFxdRN7wrKyuDk5OThInEM4e6A4Cjo2OjG2/oqry83ORqT0Qtm0IQ89WtGfn000/x6quv6nUS/vLLL01mwmFzc/nyZdy9excDBw7Ued2tW7di9OjRJvfB1BzU1dVhy5YteOaZZ3Re99KlSygrK8Njjz1mgGSWb+PGjZg8ebLOc+uoVCrs3LkTkyZNMlAyy7Zt2zaMGDECjo6OOq+7YcMGTJkyxQCpLF9WVhaqqqowYMAAndeNjY3F2LFjTe4LJnNQU1ODuLg4PP300zqve+7cOdTU1KB///4GSGb5Nm7ciOeee07n9aqqqrB7925MnDjRAKksn5j3hPr+P6P/zo0ZEBCg87qbN2/GhAkTRN+ErCWqrq7Gjh079HpPmJmZCaVSid69exsgWfPOnz8Pf39/o/17RC2Bpf1etYgrHgFgzpw5+PTTT3UearFp0yaT+5bUnPTo0QN5eXlaT/Lc4MyZM3B3d2fTUU/W1tbw9vZGenq6TuvdvXsXJ06cYNNRhMjISMTGxuq0jvD/bg6izR3jqHnjxo3Dxo0bdZ6QfceOHQgLCzNQKsvn5+eHK1euoLCwUKf1MjMz0aFDBzYd9WRjYwMvLy+db2hVUlKCs2fPsukoQnh4OOLi4nRaR61WY/369Rg3bpyBUlm+J554Ahs2bNB5OpO4uDiTmlbA3PTp0wfnz59HcXGxTutlZGSgS5cubDrqydbWFh07dsTJkyd1Wu/27du4dOmSUZuORETaaDGNR1tbW8yZMwcfffSR1kPDNmzYAAcHB5Oa684cPfnkk0hLS8PVq1e1Wv748eO4deuWyQ1HMjePP/44qqurcfDgQa2Wz8/Px44dOzB58mQDJ7Ns7du3R//+/bF582at5gKrrq7GmjVrMGnSJNja2hohoWWytrbG5MmTsXbtWq3v6h4XF4cePXrA09PTwOks26RJk5CcnIzr169rtXx6ejqKi4sREhJi4GSWbdCgQSgvL8fhw4e1Wj4vLw/x8fF6XQlP/+Xh4YHevXsjNjZWq3O8SqXC2rVr8cwzz7AJI4JSqcSzzz6LtWvXaj2NT2xsLPz9/dGpUycDp7NsTz/9NBISErSeS/nIkSMoKyszuSlMzE1wcDDu3bun9UUEOTk5SEpKwlNPPWXgZEREumsxQ62JiIiIiIiISDqWNiSUyBRY2u9Vi7nikYiIiIiIiIiIiIyHjUciIiIiIiIiIiKSnFLuAERERERERETUwgkCUHQIKD4K1JQBNs6A22DAPQRQKOROR0R6YuORiIiIiIiIiOShrgGyfwDOfQqoCut/VtcAVjb1D7v2QO+/A91fqv+ZiMyKRQ+1vn37Nl599VV069YNdnZ26NChA0aMGIGEhIQmy86aNQsKhQKff/55o+dVKhX+93//F+7u7mjVqhUmTJiAvLw8Y+2C2Zk5cyaio6ObPH/s2DEoFApcu3at0fNFRUXo3LkzFAoFioqKNM9XVVVh5syZ6NevH2xsbBAREWHg5OZNqronJydj4sSJ6NixIxwdHdGvXz/8+OOPho5vtqSq+7lz5xAZGYkOHTrA3t4ePj4+ePfdd1FdXW3oXTBLUtX9jy5dugRnZ2c4OTkZIrLFkKr2165dg0KhaPKIj4839C6YJSmPeUEQsHz5cvj5+cHOzg4dO3bE22+/bcj4Zkuqui9evLjZ412hUKCwsNDQu2F2pDzed+/ejZCQEDg7O8Pd3R0TJ07ExYsXDRnfrElZ+19//RUDBgyAo6Mjunbtis8++8yQ0c2eFJ9bs7OzMWnSJLRr1w4uLi6YPHkybt26Zaxd0F/NfSBxOHDiLaD8KlBbDqirAQj1/60tr3/+xFtA4oj65Q1szZo1Dzxv79271+D//h/9/vvvWL58eZPn9+7dC4VCgdTUVKPmIdKHRTcen376aRw9ehQ//PADLl68iO3bt2Ps2LEoLi5utNymTZuQnp6OTp06NdnGnDlzsHnzZqxfvx4pKSkoLS1FdHQ06urqjLUbFu1//ud/MGDAgCbP19XVwd7eHq+99hqeeOIJGZJZtgfV/eDBg+jbty82bdqEM2fOYPbs2Zg1axZ++eUXGVJangfV3dbWFjNmzMCePXtw4cIFLF++HD/88AMWLlwoQ0rL86C6N6iursaUKVMwbNgwI6ZqGR5V+/j4eOTn52sew4cPN2I6y/Wwur/11lv49ttvsWzZMpw/fx47d+7ksS+RB9V93rx5jY7z/Px8hIeHIyIiAu3bt5chqWV5UN2vXr2KiRMnYujQocjIyMDevXtRWVmJcePGyZDSMj2o9rt27cK0adMwa9YsnDlzBt9++y3+9a9/4euvv5YhpXkQ+7m1vLwco0ePhiAISExMRFpaGqqrqzF+/Hio1Wpj7opu1DVA8ligOB2oq3j4snUV9UOwk8fVr2cEv/32Gw4dOtToMXjwYKP82w0e1HgcPHgwDh06hP79+xs1D5E+LHao9d27d5GSkoKEhASMGDECANC1a1cMGjSo0XLXr1/HG2+8gb1792Ls2LGNXrt37x5++OEHrF69GqNGjQIAxMTEoGvXrti7dy+ioqKMszMW6t///jcqKirw3nvvYefOnY1ea9WqFb777jsAQGZmJu7evStHRIv0sLq/++67jX6ePXs29u3bh82bN2PatGnGjGlxHlb3Hj16oEePHpqfu3btiuTkZKSkpBg7psV5WN0bLFiwAP369UN4eDj2799v5ISWS5vau7m5wcPDw8jJLNvD6n7hwgX85z//QWZmJvz9/TXPBwYGGjumxXlY3Z2cnBpdTZ2bm4uUlBTExMQYO6bFeVjdjx8/jpqaGvzzn/+EtbU1AOCdd97B8OHDUVRUBHd3dzkiW4yH1T4mJgbjx4/Hq6++CgDw8fHBO++8g2XLluFvf/sbFJyrrxEpPrempaXh6tWrOHbsGNq0aQMAWLt2Ldq0aYOkpCSMHDnSODujq+wfgJITgFql3fJqFVByHMj+EfD9/wybDcCAAQMavUd/GJVKBTs7OwMn+i8XFxcEBwdLsi1BEFBTUwNbW1tJtkf0ZxZ7xWPDm7y4uDhUVVU1u0xtbS2mTp2KhQsXNnoD3qDhDcvo0aM1z3Xp0gX+/v44ePCgwbK3BBkZGVi2bBl++uknWFlZ7GFocvSpe2lpqeYNDOlH17pfvnwZ8fHxCA8PN0I6y6VN3Xfs2IHt27fjq6++MnI6y6btMf/UU0+hffv2GDJkCDZt2mTEhJbpUXXfunUrfHx8EB8fDx8fH3Tr1g0zZszgcF+RdD3H//DDD3B1dcXTTz9thHSW61F1HzhwIGxsbLBq1SrU1dWhrKwMa9euxaBBg9h0FOlRtVepVLC3t2/0nIODA/Ly8nD9+nVjxTQbUnxuValUUCgUjepub28PKysr0x2KKwj1czo+6krHP6urqF9PEAyTSwsNw5xjY2Px4osvwt3dHZ07d9a8vnPnTgQFBcHBwQGurq6YNGkSLl261GgbYWFhiIiIwJ49exAYGAhHR0f06dMHcXFxmmWmT5+OdevW4fr165qh3g2N0AcNtd60aROCgoLg6OgIV1dXTJ48uclUcZ6enpg5cyZWrlyJXr16wdbWFrt375a6TEQaFtvxUSqVWLNmDX7++We4uroiJCQE8+bNw5EjRzTLLFq0CG5ubpg9e3az2ygoKIC1tXWTNycdOnRAQUGBQfObs/j4eM0f0IbHH4dxlZeXY+rUqfjPf/7T6ARN4hii7tu3b0diYiJmzZplqNhmT8q6h4aGwt7eHr6+vggLC8PHH39s6PhmS4q65+fn45VXXkFMTAycnZ2NFd3sSVF7JycnfP755/j111+xc+dOjBgxAs899xx+/vlnY+2G2ZGi7leuXMH169exYcMGrFmzBjExMcjKyjL9oXgykvpvq1qtxo8//ogXXnjBqFfGmBsp6t6tWzckJCRg0aJFsLOzQ+vWrXH69Gls377dWLthlqSofVRUFGJjY7Fnzx6o1WpcvHgRX3zxBYD6v73UmBSfW4ODg+Hk5IT58+ejvLwc5eXlmDdvHurq6ky35kWH6m8kow/VrY2buLsAACAASURBVPr1Dayurg61tbWax5+nW/vb3/4GpVKJdevW4YcffgBQ//kpOjoabdq0wa+//opvvvkGp06dQlhYWJMewsWLFzF37lzMmzcPv//+Ozp06ICnn34aV69eBQAsWbIEUVFR8PDw0Az1ftgXtV9//TUmT56Mvn37YvPmzfjuu+9w6tQpRERE4P79xnNjJiQk4KuvvsKSJUsQHx+PgIAAKUpG1CyLHWoN1M+V8cQTTyAlJQWHDh1CfHw8vvjiCyxduhRDhgzBmjVrcPLkSZ23KwgChwg8xLBhw7BixYpGz505cwaTJk0CALz++usYMmQIv+mXmNR1T0tLw7Rp0/DVV18ZfS4TcyJl3Tdu3IiysjKcOnUK8+fPx7Jly/DOO+8YJLe5k6Lu06dPx+zZsyUbptJSSFF7d3d3vPXWW5qfBw4ciKKiInz66aeYPn26YYKbOSnqrlaroVKpEBMTg549ewKoHxLZq1cvpKenIygoyHA7YKak/tu6a9cu5Obm4uWXX5Y8qyWRou4FBQV46aWX8MILL2Dq1KkoKyvDBx98gMmTJyMpKYkjbh5Aitq/8soryM7OxsSJE1FTUwMXFxe88cYbWLx4sWbYOzUm9nNru3bt8Ntvv2H27Nn49ttvYWVlhalTp+Kxxx6Tp+bH5wB3HvE5uyIPqNXxascGtRXAoRcAR88HL9NmAPB407kRdeHn59fo5yFDhjS6wjA0NLTJ78vChQvRs2dP7NixQ1P7oKAg+Pn54csvv8Snn36qWbaoqAipqanw8fEBAPTv3x+dOnXCb7/9hr///e/o3r073N3dYWdn98j3q6WlpXjnnXfw8ssvN8o0aNAg+Pn5Yc2aNXjttdc0z9+7dw8ZGRmca5iMwqIbj0D9JeajRo3CqFGj8MEHH+Dll1/G4sWLNRN9d+zYUbNsXV0dFixYgOXLlyMvLw8eHh6oq6tDUVER2rVrp1musLCQE7E/hKOjY5O5MP44R2NiYiJyc3Oxdu1aAPWNXADw8PDAggULsHTpUuOFtSBS1j01NRXjxo3Dhx9++MBvVqmelHXv0qULAKB3796oq6vDyy+/jPnz50OptPhTtc6kqHtSUhL279+PJUuWaJZRq9VQKpX49ttveaXvAxjqHB8UFITVq1cbKLX5k6LuHTt2hFKp1DQdAcDX1xdKpRI5OTlsPDZD6uN9xYoVCA0N5ZUljyBF3b/55hu0atWq0Yf8n3/+GV26dMHBgwcRFhZmhD0xP1LUXqFQYNmyZfj4449RUFCAdu3aITExEUD9lajUPDGfWwFg9OjRyM7ORlFREZRKJVxdXeHh4QFvb2+5dunhhDoA+g6XFv7f+oa1ZcsWeHr+t7n55xEyDQ35BqWlpTh16hQWLVrUqOHbo0cPBAcHN5lL3M/PT9N0BICOHTvC3d0dOTk5OmdNS0vD/fv38fzzz6O2tlbzfNeuXeHr64sDBw40ajyGhoay6UhG0+I+zfbu3Ru1tbX461//2uRmGVFRUZg6dSpeeeUVAMDjjz8OGxsbJCQkaJbNy8vD+fPnERoaavTslmLPnj2orq7W/Jyeno4XX3wRycnJ8PX1lTGZZdO27gcOHMATTzyBxYsXY86cOXJEtSj6Hu9qtVozpIONR91pU/fTp083Wmfr1q1YunQpjh49ymkgRND3mD958mSjD1WkG23qPmTIENTW1iI7Oxvdu3cHUD/8ura2Fl27dpUlt7nT5Xi/efMmduzYgVWrVhk7psXRpu4VFRVNrvRq+JlTC+hPl2Pe2tpa8/d0/fr1CAkJYaNDB7p8bv2jhmnCkpKSUFhYiAkTJhglbyPaXGmYtRw4uQBQVz962T+zsgN6zQH83tB9XR306dPnoTeX+fP7lpKSkmafB+qb86dOnWr0XNu2bZssZ2dn98C5Ph+mYb7miIgIrbLyPRcZk8V+mi0uLsazzz6LF198Ef369YOzszOOHTuGTz/9FCNGjICXl1eTdWxsbODh4YFevXoBAFr//+zdd1gU5/o38O/SlqpEkCIIiMbesAFWiiX2Y1SsESKWo8k5GmKMGmOJwahRY84bT34ao1hQo0nEqIliAywYe4tEsQsCioACImWZ9w/CHgmo7O7szu76/VzXXl7MPjN7z+0wMDdPqVkT4eHh+Oijj+Dk5AQHBwdERESgZcuW+rsymAF4vqcFUNbFHCj7i8/z82leuXIFRUVFyMzMRF5ennJ4QevWrXUXrBGpTt7j4uLQt29fTJ48GaNGjVLOQ2Jqalqh1y9VX3XyvnHjRlhaWqJFixawsLDA6dOnMXPmTAwZMoRzgKmpOnlv3rx5hTanT5+GiYlJpe2kmurkfv369TA3N4ePjw9MTEywa9curFy5EosXL9Z5vMaiOnnv3r072rRpg7Fjx2LFirKHwqlTp8LX1xft2rXTbcBGorq/0wDA2rVrYWNjg5CQEJ3FZ6yqk/e+ffviq6++wvz58zFy5Ejk5uZi1qxZqFu3Ltq2bavzmI1FdXKfmZmJ7du3IyAgAIWFhVi3bh22b99eqbcXlRHjuRUA1q1bh8aNG8PJyQmJiYmYMmUKPvjggwpt9IpDB8DEXM3Coxng0P7V7bTs79OvlRcSq1oPIj09HQ4ODlqLpfzYGzdurDREHKjcW5NTx5EuGW3h0dbWFn5+fvj6669x/fp1FBYWws3NDSNHjsTs2bOrfZyvvvoKZmZmGDZsGAoKChAcHIwNGzZwfhId6NOnT4WV73x8fAD8b0gHiS8qKgpPnz7F0qVLsXTpUuV2T09P3L59W7rAjJyZmRm++OILJCcnQxAEeHp64r333sMHH3wgdWhEWvP555/jzp07MDU1RcOGDbF27VrO76hlJiYm2L17N/7973+ja9eusLKyQo8ePbB8+XLOd6dlgiDg+++/x6hRo2BtbS11OK+FoKAgbN68GUuWLMGXX34JKysr+Pn5Ye/evbCxsZE6PKO3YcMGfPTRRxAEAf7+/oiLi+Oc4S8g1nPr1atXMXPmTGRlZcHLywuffPKJfv8u6egPyJ2Akluq72vpXLa/nqlRowZat26Nbdu24dNPP1X+bL158yZOnDhRYX7r6pLL5SgoKHhlu86dO8PGxgY3btzg71Okd2QCqzhEREREREREpKKkpCQ0adJEvZ2T/w84+yGgUGGRGVNroM1y4M2J6n1mNURFReHdd99FcnJylUOtDxw4gB49euDw4cOVhjbv3r0bAwYMQO/evTFp0iQ8efIEc+bMUS4g6eLiAqCsUGhmZoa4uLgK+7u7u+Ott95STsuxbNkyTJs2DatWrYKPjw+srKzQvHlzZQxHjhxRzlm7cuVKTJ06FePGjUPv3r1Ro0YNpKam4vDhw+jRoweGDRum/Izu3bsjKipK3MSRaDT6vtJDRtvjkYiIiIiIiIj0VP1w4HY08OgUUFr46vYmcqBWW6D+WO3HpqZ+/fph165d+Oyzz5TTJgUFBWHJkiXKoqMqJkyYgJMnT+Ljjz9GTk4O6tevj+vXr1fZ9r333oOnpyeWLl2KTZs2QaFQwM3NDV27dkWrVq00PTUitbHHIxERERERERGpTOOeWcV5QFwfIOvMy3s+mlqXFR0DfgXMbdX/PCIDYGw9HjmhDxERERERERHpnrktEHywbPi0jTdgZlPWsxGysn/NbABb77L3gw+y6EhkgDjUmoiIiIiIiIikYWJeNmdjgwlAZmLZ0OuSXMDMrmz1a0c/gKswExksFh6JiIiIiIiISFoyGVC7Y9mLiIwGh1oTERERERERERGR6Fh4/IuMXbeJiIiIiIhIz/HZlYgMCQuPREREREREREREJDoWHomIiIiIiIiIiEh0LDwSERERERERERGR6LiqNRERERERERFJSxCAxETg5EkgNxewswM6dAD8/ctWvCYig8TCIxERERERERFJo7gY+P57YMkS4MGDsq+LiwFz87KXkxMwfToQHl72NREZFA61JiIiIiIiIiLdy8sDgoKADz8Ebt0C8vOBoqKy3o9FRWVf37pV9n5wcFl7HUhMTERISAjq1KkDCwsLODg4oEePHli/fj0UCoVOYhBbTEwMli9fXml7XFwcZDIZ4uLiRPkcmUz2wldMTIwon/F3Yp+Dto75umKPRyIiIiIiIiLSreJioHdv4NQpoLDw5W2fPi0bgt2nD3DwoFZ7Pq5YsQIREREICgrC4sWL4enpiezsbMTGxmLSpEmwt7fHwIEDtfb52hITE4MDBw4gIiJC658VFhaGiRMnVtreqFEjrX+2WNq0aYPExEQ0bdpU6lAMHguPRERERERERKRb338PnD376qJjucJC4MwZYO1aoIqilhgSEhIQERGB999/H//5z38qvDdw4EBEREQgPz9f488pLi6GmZkZZFXMXVlYWAi5XK7xZ0jJzc0Nfn5+UoehFoVCAUEQUKNGDYM9B33DodZEREREREREpDuCUDan49Onqu339GnZfoKglbAWLVqEWrVqYcmSJVW+X79+fbRs2RIAMG/evCoLh2FhYfDy8lJ+ffv2bchkMvz3v//F9OnTUadOHcjlcuTk5CAqKgoymQwJCQkYOnQo7O3t4evrq9w3Pj4ewcHBsLOzg42NDXr16oXLly9X+LyAgAB07twZBw4cQJs2bWBtbY3mzZtXGNYcFhaG9evXIzU1VTns+fkYn/f+++/D2dkZxcXFFbbn5eXBzs4OM2fOfGkOq2PNmjWVhl4rFAp07doV9evXR25uLoD/5fjSpUsIDAyEtbU1XF1dMWfOHJSWlr70MwRBwFdffYVGjRrBwsICrq6ueP/99/HkyZMK7WQyGT755BMsWrQI9erVg4WFBS5dulTlUOvq5Lrcli1b0LhxY1haWqJFixb45ZdfEBAQgICAAPUTZ6BYeCQiIiIiIiIi3UlMLFtIRh0ZGWX7i0yhUCAuLg49e/aEpaWl6MePjIzEtWvXsHr1auzYsaPCZ4waNQr16tXDjz/+iEWLFgEA9uzZg+DgYNja2mLTpk3YvHkzcnNz0aVLF9y7d6/CsW/cuIEpU6YgIiICP//8M1xdXTFkyBBcv34dAPDpp5+iT58+qF27NhITE5GYmIgdO3ZUGefkyZPx4MGDSu9HR0cjPz8f48ePf+W5CoKAkpKSSq9y48aNw9ChQzFu3DikpqYCABYsWIDExERs3rwZdnZ2FY73j3/8A927d0dMTAxGjhyJBQsW4LPPPntpDJ988gkiIiLQo0cP7Nq1C9OnT0dUVBT69u1bqWgZFRWFPXv2YOnSpdizZw/q1KnzwuO+KtcAsH//fowaNQqNGzfGTz/9hGnTpmHq1Km4du3aK3NnjDjUmoiIiIiIiIjEMXUqcP78y9ukpKje27Hc06fAmDGAu/uL27RuDaxYodJhMzMzUVBQAE9PT/XiegVnZ2fs2LGjyl6SQ4YMqdTLcsqUKejWrRt27typ3BYYGAhvb28sW7YMK547v8zMTCQkJODNN98EUDY/oaurK7Zt24ZZs2ahfv36qF27NiwsLF45fLhp06bo1q0bVq1ahZCQEOX2VatWoWfPnvD29n7luS5cuBALFy6stP3hw4dwdHQEAKxevRqtWrXC6NGjMW/ePHz++edYsGBBhR6f5caPH48ZM2YAAHr27IknT55g2bJlmDp1Kuzt7Su1z8rKwvLlyxEaGopvvvkGANCrVy/Url0b77zzDnbv3o0BAwYo2wuCgNjYWFhZWSm3JSUlVXlur8o1AMydOxdNmzat8P/dokULtG3bFg0bNnxl/owNezwSERERERERke4oFOoPlxaEsv0NzD/+8Y8qi44AMGjQoApfJycn48aNGxg1alSFHoPW1tbw9/dHQkJChfZvvvmmshAGAE5OTnBycsLdu3fVinXy5Mk4fPgwkpOTAQCnTp3CuXPnqlwwpipjx47FqVOnKr2eLxLa29tj8+bNOHLkCHr16oUuXbrg448/rvJ4zxdAAWD48OHIy8urNOy83IkTJ1BYWIjRo0dX2s/MzAzx8fEVtr/11lsVio4v86pcKxQKnD59GoMHD67w/92mTRvUq1evWp9hbNjjkYiIiIiIiIjEUZ2ehitWAB9/DBQVqX58ubysV+WUKarv+xIODg6wsrLCnTt3RD1uOVdX12q/9+CvYejh4eEIDw+v1N7Dw6PC17Vq1arURi6X49mzZ+qEikGDBsHFxQWrVq3C0qVL8X//93+oU6cO+vfvX639XV1d0a5du1e28/PzQ6NGjXDlyhVMmTIFJiZV941zdnau8uvyYdp/l5WVpYzjeWZmZnBwcFC+/3y81fWqXGdmZqK4uBhOTk6V2v39PF4X7PFIRERERERERLrToQNgbq7evmZmQPv24saDsqJUQEAA9u/fj8JqrLRdPkdj0d+Kp48ePaqy/Yt6O1b1noODAwDgiy++qLLn4K5du14ZnybMzc0xbtw4REVF4cGDB9i6dSvCw8NhZiZu37X58+cjOTkZLVu2xAcffIDHjx9X2S4jI6PKr93c3KpsX14cTE9Pr7C9pKQEjx49Uua33Mv+b1Tl6OgIc3NzZfH4eX8/j9cFC49EREREREREpDv+/kAVPcKqxdm5bH8tmDFjBh49eoSPPvqoyvdv3bqFixcvAoByLsjnh/vm5OTg+PHjGsfRqFEjeHl54Y8//kC7du0qvcpX1laFXC5HQUFBtdtPnDgRjx8/xtChQ1FYWFitRWVUceTIESxcuBCRkZHYtWsXcnJyMGnSpCrbbtu2rcLXW7duha2tLZo3b15lez8/P8jlcmzdurXC9h9++AElJSXo1q2bOCdRBVNTU7Rr1w4//fQThOemEzhz5gxu3bqltc/VZxxqTURERERERES6I5MB06cDH36o2iIz1tZl+4nYQ+15Xbt2xfLlyxEREYGkpCSEhYXBw8MD2dnZOHjwINasWYPNmzejZcuW6N27N2rWrInx48dj/vz5KCwsxJIlS2Bra6txHDKZDCtXrsTAgQNRVFSEkJAQODo6IiMjA8ePH4eHhwciIiJUOmbTpk2RlZWFb7/9Fu3atYOlpSVatGjxwvZubm7o378/duzYgf79+6Nu3brV/qzU1FScOHGi0nZPT0+4uroiOzsbo0aNQmBgIKZNmwaZTIbVq1cjJCQEvXr1QmhoaIX9vvvuO5SWlqJ9+/bYt28f1qxZg3nz5lW5sAxQ1uMxIiICX3zxBWxsbNCnTx8kJSVh9uzZ6Ny5M/r27Vvtc1HH/Pnz0bNnTwwaNAgTJkxAZmYm5s2bBxcXlxcOJzdmr98ZExEREREREZG0wsOBNm3K5mysDrkcaNsWGDtWq2FNnToVR48ehb29PaZNm4agoCCEhYUhKSkJq1atUs5zaG9vj927d8PExAQhISGYOXMm/vWvfyEwMFCUOPr06YOEhATk5+dj3Lhx6NWrF6ZPn4709HT4q9Hjc9y4cRg+fDhmzZqFDh06VGu+xqFDhwJAtReVKRcVFQV/f/9Kr+joaADAhAkTUFBQgA0bNiiHOQ8dOhTh4eF4//33cf369QrH27lzJ/bv348BAwZg06ZNmD17Nj799NOXxhAZGYnly5fjt99+Q79+/bBo0SKMGTMGe/bs0Xrxr0ePHoiOjkZSUhIGDRqExYsXY9myZXBxcUHNmjW1+tn6SCYI6i4lZVxkMhmYCiIiIiIiItJn+vTsmpSUhCZNmqh/gLw8oE8f4MyZl/d8tLYuKzr++isgQo9Cqp5Ro0bh2LFjuHnzpiQ99ebNm4f58+ejuLhY9PkldS0lJQUNGjTAJ5988sqiqcbfV3rGsP/niIiIiIiIiMgw2doCBw8Ca9cCS5YAGRlASUnZatcWFmULyTg7lw2vHjtW/QVpSCUnTpzA+fPn8cMPP2D58uWv5fBgTRQUFCAiIgLdu3eHo6Mjbt68iSVLlsDa2hrjxo2TOjydY+GRiIiIiIiIiKRhbg5MnAhMmAAkJgKnTgG5uYCdXdnq135+WpvTkarm7+8PW1tbhIaGYvLkyVKHY3BMTU2Rnp6O999/H48ePYKNjQ26dOmC7du3w9XVVerwdI5Drf+iT93ViYiIiIiIiKqiT8+uxjYklEgfGNv3FfvLEhERERERERERkehYeCQiIiIiIiIiIiLRsfBIREREREREREREomPhkYiIiIiIiIiIiETHwiMRERERERERERGJzkzqAIiIiIiIiIjo9SYIAlJSUpCamorCwkLI5XK4ubnB3d0dMplM6vCISE0sPBIRERERERGRJBQKBc6dO4djx44hPz8fpaWlUCgUMDU1hYmJCWxsbNCpUyf4+PjA1NRU6nCJSEUcak1EREREREREOldUVIQNGzYgNjYWOTk5KC4uhkKhAFBWkCwuLkZOTg5iY2OxYcMGFBUVaT2mqKgoyGSyKl/29vZa+cywsDB4eXlp5djqkslkmDdvntRhkBFgj0ciIiIiIiIi0imFQoHo6GikpqYqi40vUlxcjNTUVERHR2PMmDE66fm4fft2uLu7V9hmZsYSCpGq+F1DRERERERERDp17tw5pKWlvbLoWE6hUCAtLQ3nzp1Du3bttBwd0Lp1azRo0EDrnyO28vkxifQFh1oTERERERERkc4IgoBjx46huLhYpf2Ki4tx7NgxCIKgpcherbS0FAEBAfDy8sLjx4+V2y9dugQrKyt89NFHym1eXl4YPXo0vvvuOzRo0ACWlpZo06YNDh8+/MrPSUtLw5gxY+Do6Ai5XI6WLVti06ZNFdqUDwtPSEjA0KFDYW9vD19fX+X78fHxCA4Ohp2dHWxsbNCrVy9cvny5wjEUCgVmz54NV1dXWFtbIyAgAH/88Ye66SGqhIVHIiIiIiIiItKZlJQU5Ofnq7Vvfn4+UlJSRI6oMoVCgZKSkgqv0tJSmJiYYNOmTcjNzcXEiRMBAAUFBRg+fDiaNWuGyMjICseJj4/H8uXLERkZia1bt0Iul6N37964evXqCz87Pz8f3bp1w2+//YaFCxciJiYGLVq0wDvvvIPVq1dXaj9q1CjUq1cPP/74IxYtWgQA2LNnD4KDg2Fra4tNmzZh8+bNyM3NRZcuXXDv3j3lvvPmzcPChQsxatQoxMTEoGfPnhgwYIAYKSQCwKHWRERERERERCSSvXv3Ij09/aVtnjx5onJvx3LFxcXYsWMHatSo8cI2Li4ueOutt9Q6frnGjRtX2ta3b1/s3r0b7u7uWLNmDd5++2306tULiYmJuHPnDs6ePQsLC4sK+2RkZODYsWPw8PAAAAQHB8PT0xOff/45Nm7cWOVnr1u3DsnJyTh8+DACAgIAAL1790ZGRgZmz56N8PDwCvNcDhkyBEuWLKlwjClTpqBbt27YuXOncltgYCC8vb2xbNkyrFixAtnZ2fjqq68wYcIELF26FADQs2dPmJqaYsaMGaonjagKLDwSERERERERkc6UlpZKun917Nixo9LiMs+vaj1o0CBMnDgRkyZNQmFhIdauXYuGDRtWOo6fn5+y6AgAdnZ26Nu3LxITE1/42QkJCXBzc1MWHcuNHj0a7777Lq5cuYIWLVpUiOV5ycnJuHHjBmbNmoWSkhLldmtra/j7+yMhIQFA2fDw/Px8hISEVNh/+PDhLDySaFh4JCIiIiIiIiJRVKen4YkTJ3DgwIFqLyzzPFNTU/j5+cHPz0+d8KqtefPmr1xcJjQ0FKtWrYKTkxNGjhxZZRtnZ+cqt6Wmpr7wuFlZWXB1da203cXFRfn+8/7e9sGDBwCA8PBwhIeHVzpOeSE0LS2tyhiriplIXSw8EhEREREREZHOuLm5wcTERK3Co4mJCdzc3LQQlWqePn2KsWPHonnz5khOTsaMGTPw1VdfVWqXkZFR5baXnUOtWrWqnAOyfAi7g4NDhe0ymazC1+Xvf/HFF+jevXul45QPBy8vWGZkZKBZs2YvjZlIXVxchoiIiIiIiIh0xt3dHTY2Nmrta2trW2kItBSmTJmC1NRU7Ny5E0uWLMHXX3+NvXv3Vmp34sSJCou55ObmYs+ePfD393/hsbt164aUlBQcO3aswvbNmzfDyckJTZo0eWlsjRo1gpeXF/744w+0a9eu0qtly5YAgJYtW8LGxgbbtm2rsP/WrVtfef5E1cUej0RERERERESkMzKZDJ06dUJsbKxKi8yYm5ujY8eOlXr4acP58+eRmZlZaXu7du2wc+dOrFmzBhs3boS3tzf+/e9/IzY2FmFhYbh48SKcnJyU7Z2dndGzZ0/MmzcPcrkcixcvRn5+Pj799NMXfnZYWBi+/vprvP3224iMjIS7uzuio6Oxf/9+rFq1qsLCMlWRyWRYuXIlBg4ciKKiIoSEhMDR0REZGRk4fvw4PDw8EBERAXt7e3zwwQeIjIyEnZ0devbsiVOnTuH7779XP3FEf8PCIxERERERERHplI+PDy5duoTU1NRqDbk2NTWFq6srfHx8dBAdMHTo0Cq33717F+PHj8eoUaMwevRo5fZ169ahZcuWCAsLw549e5TF0W7duiEgIACzZs1CSkoKmjZtit9++63KhWjK2djYID4+HtOnT8eMGTOQm5uLRo0aYePGjRU+82X69OmDhIQEREZGYty4cSgoKICLiwv8/PwwbNgwZbt58+ZBEASsWbMG33zzDXx9fbFr164KQ6+JNCETBEGQOgh9IJPJwFQQERERERGRPtOnZ9ekpKRXDvt9maKiIkRHRyMtLe2lPR/Nzc3h6uqKUaNGKecnNAReXl7o3LkzNm3aJHUoZEA0/b7SN+zxSEREREREREQ6Z2FhgTFjxuDcuXM4duwY8vPzUVpaCoVCAVNTU5iYmMDW1hYdO3aEj4/PK4cYE5H+YeGRiIiIiIiIiCRhamqKdu3aoW3btkhJSUFqaiqKiopgYWEBNzc3uLu762RORyLSDhYeiYiIiIiIiEhSMpkMdevWRd26daUORTS3b9+WOgQiyZlIHQAREREREREREREZHxYeiYiILdFqmAAAIABJREFUiIiIiIiISHQsPBIREREREREREZHoWHgkIiIiIiIiIiIi0bHwSERERERERERERKLjqtZEREREREREJClBEJCYkoiTqSeRW5gLO7kdOrh1gL+7P2QymdThEZGaWHgkIiIiIiIiIkkUK4rx/bnvseTYEjzIf4Di0mIUK4phbmoOcxNzONk4YXqn6Qj3CYe5qbnU4RKRijjUmoiIiIiIiIh0Lq8oD0EbgvBh7Ie4lXML+cX5KFIUQYCAIkUR8ovzcSvnFj6M/RDBG4KRV5Sn1XiioqIgk8mqfB04cAAAcODAAchkMhw9elRrcYwePRoNGjR4Zbv09HT861//QsOGDWFlZQVHR0e0bdsWU6ZMQXFxsUqfef36dchkMmzatEnleA8dOoR58+aJekwyHuzxSEREREREREQ6VawoRu/o3jiVegqFisKXtn1a/BQnU0+iT3QfHBxzUOs9H7dv3w53d/cK25o2bQoA6NChAxITE9GsWTOtxvAqOTk56NChAywsLDBt2jQ0atQIWVlZOHfuHKKjoxEZGQlzc930ED106BAiIyMrFR/r1q2LxMTEahVRyXix8EhEREREREREOvX9ue9xNu3sK4uO5QoVhTiTdgZrz63FxHYTtRpb69atX1gsq1GjBvz8/LT6+dWxbds23Lt3D5cvX65QBB08eDAWLFigF/NiyuVyvcgVSYtDrYmIiIiIiIhIZwRBwJJjS/C0+KlK+z0tfoolx5ZAEAQtRfZqVQ217ty5MwICAhAbGwsfHx9YW1ujefPm+OWXXyrse+3aNYwePRpeXl6wsrJC/fr18d577yEnJ0flOLKysgAALi4uld77e9GxqKgIs2bNgqenJywsLODl5YU5c+a8cjh2586d0b1790rb3d3dMW7cOADA7NmzERkZqfxcmUwGM7OyPm4vGmq9fv16tGzZEnK5HLVr10ZoaCgyMjIqfUZYWBiio6PRuHFj2NjYoH379jh+/PhLYyb9w8IjEREREREREelMYkoiHuQ/UGvfjPwMJKYkihxRRQqFAiUlJcqXQqF45T7Xrl1DREQEpk2bhp9//hnOzs4YPHgwbt26pWyTmpoKT09PfP3119i3bx8++eQT7Nu3D/369VM5xg4dOgAAQkJCEBsbi/z8/Be2HT16NL788ku8++672L17N8aMGYOFCxciPDxc5c/9u3/+858ICwsDACQmJiIxMRHHjh17Yfv//ve/CAsLQ4sWLRATE4PIyEjs2bMHAQEBePq0YiH68OHD+M9//oPIyEhs3boVRUVF6NevH548eaJx3KQ7HGpNRERERERERKKYuncqzqeff2mblCcpKvd2LPe0+CnG7BgD9xruL2zT2qU1Vry1Qq3jA0Djxo0rfN2pU6dXLiaTmZmJo0ePwtvbGwDQqlUr1KlTB9u3b8f06dMBAIGBgQgMDFTu07FjR3h7eyMwMBCXLl1CixYtqh1jUFAQ5syZg4ULF+LQoUMwNTWFj48P+vfvj6lTp6JGjRoAgAsXLmD79u1YsGABZs+eDQDo2bMnTExMMH/+fMyYMUM5f6U63N3d4ebmBgCvHFZdUlKCuXPnIjg4GNHR0crtDRs2RGBgIKKiojB58mTl9ry8PMTGxqJmzZoAgNq1a8Pf3x979+5FSEiI2jGTbrHHIxERERERERHpjKJUAQHqDZcWIEBR+uoeiJrYsWMHTp06pXx9//33r9yncePGyqIjALi6usLR0RF3795VbissLMTnn3+Oxo0bw8rKCubm5spC5NWrV1WOc/78+bhz5w6+++47jB49Gg8fPsTcuXPRvHlzPHz4EAAQHx8PoKzX4/PKvy5/XxeuXLmCzMzMSrEEBATAzc2tUiydOnVSFh0BKAuzz+eU9B97PBIRERERERGRKKrT03DFiRX4+MDHKFIUqXx8uakcU/2mYorfFHXCq5bmzZurvBJzrVq1Km2Ty+V49uyZ8uvp06fj22+/xbx58+Dn5wc7OzvcuXMHQ4cOrdBOFXXq1MG4ceOUcy5+/fXXmDp1KpYtW4ZFixYp54J0dXWtsF/53JDl7+vCi2Ipj+fvsfw9p3K5HADUzhVJgz0eiYiIiIiIiEhnOrh1gLmJuVr7mpmYob1be5Ej0o2tW7di7NixmDVrFoKCgtC+ffsKPfrEMGXKFNSoUQNXrlwB8L/iXXp6eoV25V87ODi88FiWlpYoKqpYHBYEAdnZ2WrF9qJYyre9LBYyXCw8EhEREREREZHO+Lv7w8nGSa19nW2d4e/uL3JEulFQUABz84oF13Xr1ql1rLS0tCoXvUlJSUFubq6yV2G3bt0AlBU9n1c+x2LXrl1f+Bmenp64evUqSkpKlNsOHz5caRGY8p6IBQUFL425adOmcHR0rBRLfHw8UlNTlbGSceFQayIiIiIiIiLSGZlMhumdpuPD2A9VWmTG2twa0ztOh0wm02J02tOrVy+sXbsWTZs2Rf369bF9+3acPHlSrWOtX78e3377LcaOHYsOHTrAysoK165dw9KlS2FpaalcpKVVq1YYOnQoPv30UxQVFcHPzw/Hjh1DZGQk3nnnnZcuLDN8+HCsXbsWY8eOxZgxY3Djxg2sWLECdnZ2FdqVH2Pp0qXo2bMnzMzM0LZt20rHMzMzw/z58/Hee+8hNDQUI0aMQEpKCmbNmoXGjRsjNDRUrVyQfmOPRyIiIiIiIiLSqXCfcLRxbQO5qbxa7eWmcrR1bYuxPmO1HJn2/Pe//0Xfvn0xc+ZMDBs2DM+ePauwurMq+vfvj0GDBmHHjh0YNWoUevTogXnz5qF169Y4fvw4WrVqpWy7adMmTJs2DWvWrEGfPn0QFRWFmTNnvnLRnB49emDlypU4fvw4+vfvj40bN2Lz5s3KFbPLDRw4EBMnTsR//vMf+Pv7w9fX94XHnDx5MqKionDu3DkMHDgQM2bMQO/evREXFwdra2u1ckH6TSYIgnpLSRkZmUwGpoKIiIiIiIj0mT49uyYlJaFJkyZq759XlIc+0X1wJu3MS3s+Wptbo61rW/w66lfYWtiq/XlEhkDT7yt9wx6PRERERERERKRztha2ODjmIJb3XA5ve2/YmNtAbiqHDDLITeWwMbeB9xveWN5zOQ6OOciiI5EBYo/Hv+jTX42IiIiIiIiIqqJPz65i9swSBAGJKYk4lXoKuUW5sLOwQwe3DvBz9zPYOR2J1GFsPR65uAwRERERERERSUomk6Fj3Y7oWLej1KEQkYg41JqIiIiIiIiIiIhEx8LjX5KTk6UOgYiIiIiIiOil+OxKRIaEhce/NGjQQOoQiIiIiIiIiF5K355d9WW+SSJjYIzfTyw8EhEREREREZHKzM3NUVBQIHUYREajoKAA5ubmUochKhYeiYiIiIiIiEhlTk5OSE1NxdOnT42ypxaRrgiCgKdPnyI1NRVOTk5ShyMqmcC7AxERERERERGp4cmTJ3jw4AGKi4ulDoXIoJmbm8PJyQk1atSQOhRRsfBIREREREREREREouNQayIiIiIiIiIiIhIdC48A4uPjkZ+f/8L3f/vtNxw5ckSHERERERERERH9D59bicgQsfAIIDAwENevX3/h+8eOHcPSpUt1GBERERERERHR//C5lYgMEQuPAGQy2UtX4GrTpg3OnDmjw4iIiIiIiIiI/ofPrURkiLi4DABTU1NYWlrCxKTqOmz5sualpaU6joyIiIiIiIiIz61EZJjMpA5AX8ycORMeHh5Sh0FERERERERUJT63EpGhYY9HlP3l6OzZs2jVqpXUoRARERERERFVwudWIjJEnOMRQGhoKGrVqiV1GERERERERERV4nMrERki9nj8m1u3biE9PR0A4OLignr16kkcEREREREREdH/8LmViAwFezz+ZcmSJahTpw7q16+Pzp07o3Pnzqhfvz7q1KmDxYsXSx0eERERERERveb43EpEhoaLywD47LPPsHz5csyYMQM9evSAi4sLBEFARkYG9u/fj4ULF6KgoADz5s2TOlQiIiIiIiJ6DfG5lYgMEYdaA3Bzc8M333yDQYMGVfl+TEwM3nvvPaSmpuo4MiIiIiIiIiI+txKRYeJQawDZ2dl48803X/h+w4YNkZ2drcOIiIiIiIiIiP6Hz61EZIhYeATg6+uLzz//HM+ePav03rNnzzB//nz4+vpKEBkRERERERERn1uJyDBxqDWAK1euoGfPnsjNzUWXLl3g5OQEmUyGjIwMJCQkwM7ODvv370fTpk2lDpWIiIiIiIheQ3xuJSJDxMLjX/Lz87FlyxYcO3YMGRkZEAQBLi4u6NixI0aOHAkbGxupQyQiIiIiIqLXGJ9bicjQsPBIREREREREREREouMcj0RERERERERERCQ6Fh6JiIiIiIiIiIhIdCw8EhERERERERERkehYePwLp7okIiIiIiIifcdnVyIyJGZSB6AvduzYgbffflvqMF4LJSUliI+Px9OnT5XbHB0d4efnB5lMJmFkxk0QBJw5cwbp6enKX1YsLCwQGBgICwsLiaMzbrdv38bFixchk8kgk8kgCAI6deqEWrVqSR2aUXv8+DGOHDkCoOz6FwQBTZs2RYMGDSSOzLgVFxcjPj4eBQUFAACZTAZHR0f4+vryHq9FgiDg9OnTSE9PV26Ty+UICAjgPV7Lbt68icuXL1e4vjt37ow33nhDwqiMX05OjvIeD5R9DzRr1gz169eXMCrjV1RUhPj4eBQWFip/n3R2dkb79u15j9chPrsSkSHhqtZ/KS8GkPakp6fj2LFjMDU1RWBgIGrWrKl87/79+0hMTISpqSmCg4NhZ2cnYaTGpaCgAAcOHEBRURHatm0LLy8v5Xv5+fk4dOgQCgsL0aFDB3h4eEgXqJERBAHx8fF49OgRPD090bZtW+Uv5AqFAgkJCcjKykK9evXQpk0biaM1LpcuXcK1a9dQs2ZNBAQEwMzsf39ju3DhAq5fv46aNWsiMDAQpqamEkZqXNLS0nD8+HGYm5sjMDCwwn08NTUVJ06cgJmZGYKDg2FraythpMbl6dOnOHjwIIqLi9G+fXvUrVtX+V5eXh4OHTqEoqIi+Pn5wd3dXcJIjUtpaSni4uKQnZ1d6T6uUCgQHx+PnJwceHt7o3Xr1hJGanwuXLiAGzduKO/xz9/Hz507h1u3binv8SYmHNwlltTUVCQmJsLCwgJBQUEV7uP37t3DyZMnYW5ujuDgYNjY2EgY6euBz65EZEhYePwLb97adfr0aWRmZqJXr14v/WtocXExYmJi0LZtW3h7e+swQuOUmpqK+Ph4DB48GHK5/IXtyotk5ubm6NSpkw4jNE6FhYXYsmUL+vbti9q1a7+07dWrV3Hp0iUMHjyYPQVEsHPnTnh7e6NFixYvbZednY2YmBgMGzYM1tbWOorOeJ08eRKPHz9G9+7dX3mP//nnn+Hr61vhjyCknnv37uHo0aMYPHjwS3s1CoKAw4cPw8rKCv7+/jqM0Dg9e/YMW7ZswYABA+Dg4PDStklJSUhKSsKgQYN4j9eQIAiIiYlBo0aN0LRp05e2zcrKws6dOzF8+HBYWVnpKELjdeLECeTn5yMoKOil13FRURF+/vlndOzYkX/M1jI+uxKRIWHh8S+8eWvP2bNnlb0tqmv37t1o2bIlf2nRwMOHDxEfH48hQ4ZUe58LFy4gLy+PxUcNKBQKbNiwAaNGjar28MZHjx7h4MGDCAkJ0XJ0xi0mJga+vr5wdXWtVvvy/6vRo0fD3Nxcy9EZr1OnTkEQBHTo0KHa+/zyyy9o06YNe+BpID09HcePH1dpqJ06P4+popKSEmzcuFGl+4Y6P4+psp9++gldunSBk5NTtdqX/1+98847FXq+k2p+//13mJmZoW3bttXeZ8eOHfDz86v2z2NSHZ9diciQcPwBadXjx4+RkpKi8kNOv379kJCQwB+oGti3bx8GDx6s0j6tWrVCYWEh7t+/r6Wo1DNv3jzl/IjlLxcXF6nDqtLOnTsREhKi0pxqDg4O8PX1RUJCghYjM24nTpxAs2bNVHrIMTU1xciRI7Fjxw4tRqYeQ7nms7Ky8ODBA5WKjgAwYMAAxMXF6d093lDyDgD79+9XeX6vNm3a4MmTJ8jIyNBSVMavvBedKn+sqF27Ntq2bYujR49qMTLjdvz4cfj4+FS76AgAZmZmGD58OGJiYrQYmXF78OABsrOzVSo6AsCgQYNw4MABvbvHExGRNFh4JK06fPgw+vTpo9a+3bt3x7Fjx0SO6PVw8eJFdOjQQa1hXYGBgUhMTNRCVJpp1KgR0tLSlK9Lly5JHVIlhYWFMDc3V2tuI09PTzx8+FALUb0eUlNT8eabb6q8n1wuR40aNZCXl6eFqDRjCNd8QkIC3nrrLbX2DQgIwMmTJ0WOSHOGkPezZ8+q3TO9R48e/NmqpoKCAlhZWak1dLdevXp48OCBFqJ6PaSlpak1BY+VlRWsra0rLGhI1Xf06FH07NlTrX27dOmCM2fOiBwREREZIhYeSWsEQYBCoVB7eIuLiwt7ZagpOTkZDRs2VGtfmUwGMzMzFBcXixyVZszMzODi4qJ8vWruRCkcPHgQQUFBau/fuHFjJCUliRjR6+HOnTsaTcsQFBSEgwcPihiROPT9mi8tLUVpaanaC/S4u7sjJSVF5Kg0p+95B8pWUVZ3HuTynpwKhULkqIzfoUOHNLrH169fH9evXxcxotfDjRs3NJr3OygoCIcOHRIxoteDQqGATCZTe4EeLy8v3L59W9ygiIjIILHwSFpz4sQJjSexd3R0RFZWlkgRvR6KiopgaWmp0TECAwMRFxcnTkAiuXnzJtzc3FCvXj0MHz4cN2/elDqkSp49e6bRSo7NmjXDn3/+KWJEr4ezZ8+iXbt2au9vYWGhl0UYfb/mjx8/ji5dumh0DHt7ezx58kSkiMSh73l/+vSpxivGBgQEID4+XqSIXh+a/nxt1aqVXvag1XcXLlyAj4+P2vtbWlrq3R9TDcGRI0cQEBCg0THs7OyQn58vTkBERGSwWHgkrXn48CHq1Kmj0TE8PDz0br5Bfffo0SM4OztrdIwaNWrg2bNnIkWkOV9fX0RFReG3337Dd999h/T0dHTs2BGPHj2SOrQKxFighBPgq87MzEzj1WL1Le+GcM1nZ2dr3BvQ3d0d6enpIkWkOUPIuxg/W9944w29nF5A34lxn9C3e40h4M9WaeTm5uKNN97Q6Bh16tThFANERMTCI+k3S0tLzsujooKCAo17PALAZ599VmmRBW2/Vq5cidLS0kqx9O7dGyEhIWjZsiW6d++O3bt3o7S0FOvXr68ydkEQdB67TCbDuXPnNM47J2JXnRg5u3r1qiTXTFXXO6DaNS8IArZs2aLz2GfOnKlx3q2srNC8eXOdx37v3j2N8w4AGRkZOo/dy8sLcrlc49yT6nh/loYYeef/nerEyJmVlRV/jyciIvDPf6Q1MplMWQBS1+PHj2Fvby9iVMavZs2aSEtL0/g4c+bMQf/+/UWISHy2trZo1qwZkpOTq3y//NrTtV9++UXjY2jy/ULqa9SokV4/mL7smpfJZBgxYgRGjBih05h27dql8TEeP36Ma9euwcvLS/OAtOBV9xpnZ2edXzdpaWkvLJwSUdX4s1Uajx8/hqurq9RhEBGRxNjjkbSmdevW+P333zU6hj4/kOqrWrVqabwoT1JSEurVqydSROJ79uwZ/vzzT737ZVbTOaSKi4tf2AOOXszMzAwFBQUaHaOoqEikaLRDH6/5Fi1aaLxi6Y0bN+Du7i5SROLTx7w7OztrvCjPxYsX0ahRI5Eien1oeo8vLCwUKZLXi0wm0zh3+n6P10dNmjTBxYsXNTrGnTt3NJ7+h4iIDB8Lj6Q1devW1ejhSBAEFBUVwcLCQsSojF/5cDxNFsu4cuUKmjdvLmJUmpk2bRri4+Nx69Yt/P777xgyZAjy8/MRGhoqdWgVaLpi6aFDhxAYGChiRK8HTVelvn//vl4VlgDDuOa9NFyxVBAEKBQKvZp7zRDybmJiAkEQNPojxbVr11h4VIOHh4dG17ymq2K/roKDgzW6x9+9exd169YVMaLXw5tvvolr166pvX9paSkEQYCpqamIURERkSFi4ZG0qnbt2mpPKv3777/D19dX5IheDwEBATh8+LBa++bl5Wm8YqrYUlJSMGLECDRq1Ahvv/025HI5Tpw4AU9PT6lDq6B169a4cOGC2vvn5uaiRo0aIkb0erC0tNRoMaTjx4+jY8eOIkakOUO55mvVqqX2wivMu/q6deuGhIQEtfZ9/Pgx7zNqateunUa9fMVYkfx1ZG1trVGv9pMnT6J9+/YiRvT6qFmzJnJyctTa98iRI+jSpYvIERERkSFi4ZG0qkuXLsrJ+VWRl5eHW7du8S/UanrjjTfw5MkTZGZmqrSfIAj46aef9K5HxtatW3H//n0UFRUhNTUVP/30E5o2bSp1WFXy8PDA+fPnVd4vNjaWD0Ya6Ny5s1pzDl65cgWurq56N/+XoVzz3bp1w86dO1W+xz958gQpKSl619PUUPLu6OiIzMxMZGdnq7SfIAjYsWOH3t3jDYVMJoO7uzsuXbqk8r6//fYb/5iqAT8/P/z6668q73f58mW4ubnp3T3eUAQGBmLHjh0qz2Wbk5ODBw8ewMnJSUuRERGRIWHhkbTKxMQEISEh2LBhA0pKSqq1z5MnT7B9+3YMGzZMy9EZt0GDBmHv3r3VLj4KgoDNmzejb9++HN6ugfbt2+PRo0e4fPlytfeJi4uDs7Oz3vWqMiQuLi6oX78+YmNjq73P1atXcffuXXTq1EmLkRk3ExMTDB48GBs3bqz29A6PHz/Gzz//jKFDh2o5OuM2ePBg7N69G1lZWdVqX1paik2bNmHgwIF6Nbzd0Pj6+iI9PR1Xrlyp9j6HDh2Cu7u7Xs9nqu/c3Nzg4eGh0pDrpKQk3L9/H/7+/lqMzLiZmZlh0KBB2LhxY7X/wJSdnY1ffvkFQ4YM0XJ0RERkKGSCPi/jqUNSrYJLREREREREVF18diUiQ8Iej0RERERERERERCQ6Fh6JiIiIiIiIiIhIdCw8EhERERERERERkehYeCQiIiIiIiIiIiLRsfBIREREREREREREomPhkUQVFhYGmUwGmUwGMzMzeHh4YNKkScjOzla2GT9+POrXrw8rKyvUrl0bAwcORFJSUoXjREZGolOnTrCxsYFMJtP1aRgcMfJ++/ZthIeHw9vbG1ZWVvD29sbMmTNRUFAgxSkZDDFyX1paigEDBsDDwwOWlpZwdXXF6NGjkZqaKsUpGQSx7jXlnj17hlatWkEmk+H06dO6Og2DI1bevby8lMcpf82YMUPXp2MwxLze9+3bB39/f1hbW8Pe3h7BwcG6PBWDIkbe4+LiKl3r5a/t27dLcVoGQaxr/tq1a/jHP/4BR0dH2NnZwc/PD3v37tX16RgMsfJ+9uxZ9OjRA/b29nBwcMCECROQl5en69MhIiI9wcIjia579+5IS0vD7du3sWbNGuzatQuTJ09Wvt+uXTtERUUhKSkJ+/btgyAI6N69O4qLi5VtCgsL8fbbb2Pq1KlSnIJB0jTvf/75JxQKBb799lv88ccf+H//7/9hw4YNmDJlilSnZDDEuOaDgoKwbds2XL16FT/99BNu3ryJQYMGSXE6BkOMvJebNm0a3N3ddRm+wRIr73PmzEFaWpryNXv2bF2fikERI+8xMTEYPnw43nnnHZw7dw6JiYkYO3asFKdjMDTNe8eOHStc52lpaZg5cyZsbW3Ru3dvqU7LIIhxzffr1w/Pnj3DwYMHce7cOXTu3BkDBw7EjRs3pDglg6Bp3u/fv4/u3bvD29sbv//+O/bu3Ys//vgDYWFhEp0RERFJTiBBEASBqRBHaGio0Ldv3wrbIiIihFq1ar1wnwsXLggAhD///LPSe9u3b+f/TTWInfdyK1eufOkxSHu537lzpwBAKCgoEC1WYyJm3mNiYoSmTZsKV65cEQAIp06d0krMxkCsvHt6egpffvml1uI0NmLkvaSkRKhbt66wevVqrcZqTLR1f2/YsKEwfvx40eI0RmLk/uHDhwIA4dChQ8o2xcXFgomJibB9+3btBG7gxMj7qlWrBAcHB6GkpETZ5uLFiwIAITk5WTuBv4b4fEREhoQ9Hkmrbt68ib1798Lc3LzK9/Pz87Fu3Tp4eHjAy8tLt8EZMbHy/uTJE7zxxhtaitI4iZH7rKwsREdHw9fXF5aWllqM1niom/eUlBRMmjQJ0dHRsLKy0lG0xkOT633p0qVwcHBA69atERkZiaKiIh1EbBzUyfuZM2dw7949yOVytGnTBi4uLujZsyfOnTunw8gNmxj397i4OFy7dg0TJkzQYqTGR53cOzg4oEmTJti4cSPy8vKgUCiwevVq2NnZoVOnTjqM3nCpk/fCwkKYm5vD1NRU2a785+vRo0e1HjMREekhqSuf+oKpEEdoaKhgamoq2NjYCJaWlgIAAYCwfPnyCu1Wrlwp2NjYCACERo0avfAvoOzxWD1i510QBOHOnTuCg4ODsGzZMm2Hb9DEzP306dMFa2trAYDg5+cnPHz4UFenYXDEyHtJSYnQtWtXYenSpYIgCMKtW7fY4/EVxLrely1bJhw6dEi4cOGC8N133wkODg5CeHi4Lk/FoIiR9y1btggABA8PD2H79u3C6dOnhXfffVews7MTUlNTdX1KBkEbP1tHjBghtGrVStuhGzyxcp+SkiK0b99ekMlkgqmpqVC7dm3h+PHjujwVgyJG3i9fviyYmZkJX3zxhVBYWChkZWUJgwcPFgAICxcu1PUpGS0+HxGRIeEd6y+8eYsjNDRUCAwMFJKTk4WLFy8K//rXv4Q+ffpUGG4hCIKQk5MjXLt2TYiPjxf69+8vtG7dWsjPz690PBYeq0fsvKenpwuNGzcWhg8fLpSWlurqNAySmLl/+PChcPXDu0ZSAAAgAElEQVTqVSE2Nlbo1KmT0KtXL+b/BcTI+2effSYEBwcrc8zC46uJfa8p98MPPwgAhMzMTG2fgkESI+/R0dECAGHVqlXK9sXFxULdunWFRYsW6fR8DIXY1/ujR48EuVwurFy5UlenYLDEyH1paakwYMAA4a233hKOHj0qnDlzRpg0aZLg6uoqpKSkSHFaek+saz46OlpwdnYWTE1NBQsLC2HatGmCs7OzsHjxYl2fktHi8xERGRLesf7Cm7c4qpobJiAgQJg7d+4L9yksLBSsra2FDRs2VHqPhcfqETPvaWlpQpMmTYQhQ4YIxcXF2gjXqIh9zZe7d++eAEBISEgQK1SjIkbeu3XrJpiYmAimpqbKFwDB1NRUGDlypDbDN1jaut5v374tABBOnDghVqhGRYy8Hzp0SAAgHDlypEK7oKAgYfLkyaLHbAzEvt6XL18uWFlZCTk5OWKHanTEyP2BAwcEmUwmZGdnV2jXoEEDYcGCBaLHbAzEvubT09OF3NxcIS8vTzAxMRG2bdsmdsivLT4fEZEh4RyPpHVz587F4sWLcf/+/SrfF8oK4CgsLNRxZMZNnbynpaUhICAATZo0wZYtW2BmZqarcI2KGNd8aWkpAPD7QgWq5n3dunW4cOECzp8/j/Pnz+PXX38FAERHR2Px4sU6i9vQiXG9nz9/HgDg6uqqlRiNkap5b9u2LeRyOa5evapsU1paihs3bsDT01MnMRsDTa73NWvWICQkBDVr1tR2mEZJ1dw/ffoUAGBiUvFxx8TERPkzll5Nk2ve2dkZtra2+OGHH2BpaYkePXpoO1wiItJDLDyS1gUEBKBZs2b4/PPPcf36dSxevBhnzpzB3bt3cfz4cQwdOhRyuRz9+vVT7nP37l2cP38et2/fBgBlYSAvL0+iszA8qub9/v376NatG1xcXLBixQpkZmYiPT0d6enpUCgUEp+NYVE194mJiVi5ciUuXLiAO3fu4NChQxgxYgS8vLzQuXNnic/GcKia93r16qF58+bKV8OGDQEA9evXh7u7u5SnYlDUud6/+uornD9/Hrdu3cK2bdswefJkDBgwAB4eHhKfjeFQNe81atTAP//5T8ydOxf79u3D1atXMWXKFGRnZ2P06NESn43hUOd3GqBsUY0rV65g/PjxEkVu+FTNvb+/P2rVqoV3330XFy5cwLVr1/DRRx/h5s2blf5/6MXUuea/+eYbnD17FteuXcPKlSvx/vvv44svvoC9vb2EZ0JERFJh4ZF0IiIiAt9//z3Mzc0RFxeH3r17o0GDBhg2bBjs7OyQmJgIFxcXZfs5c+bAx8cHH330EQDAx8cHPj4+OH36tFSnYJBUyXtsbCySk5MRHx8PDw8PuLq6Kl/37t2T+EwMjyq5t7Kywo8//oigoCA0bNgQ4eHhaNmyJY4cOcJVrVWk6r2GxKFK3uVyOX744QcEBASgadOmmDNnDsaPH48tW7ZIfBaGR9Xr/csvv8TIkSMRGhqK9u3b49KlSzh8+DDq1Kkj4VkYHnXuM9999x2aNGnC1ZQ1pEruHR0dsXfvXuTl5SEoKAjt2rVDQkICYmJi0KZNG4nPxLCoes2fPHkSPXr0QIsWLbB69WqsWrUK//73vyU8AyIikpJMEARB6iD0gUwmA1NBRERERERE+ozPrkRkSNjjkYiIiIiIiIiIiETHwiMRERERERERERGJjoVHIiIiIiIiIiIiEh0Lj0RERERERERERCQ6Fh6JiIiIiIiIiIhIdCw8kqRkMpnUIby2mHtpMO/SYN6lwbxLh7mXBvMuDeZdGsw7ERFVBwuPREREREREREREJDoWHomIiIiIiIiIiEh0LDwSERERERERERGR6Fh4JCIiIiIiIiIiItGx8EhERERERERERESiY+GRJFWnTh2pQ3htMffSYN6lwbxLg3mXDnMvDeZdGsy7NJh3IiKqDpkgCILUQegDmUwGpkL3BEGATCaTOozXEnMvDeZdGsy7NJh36TD30mDepcG8S4N5lw6fXYnIkLDw+BfevImIiIiIiEjf8dmViAwJh1oTERERERERERGR6Fh4JCIiIiIiIiIiItGx8EhERERERERERESiY+GRiIiIiIiIiIiIRGcmdQD0ehoxYgTc3d3x5ZdfKrft27cPJ06cqNBu7ty5ug7N6DH30mDepcG8S4N5lw5zLw3mXRrMuzSYdyIiUgVXtf4LVwbTLXd3d2zevBldu3ZVbvvxxx8RFhYGb29vlJSU4M8//0RpaamEURon5l4azLs0mHdpMO/SYe6lwbxLg3mXBvMuPT67EpEhYY9HkkRmZiY8PDwqbGvcuDHs7e1x8eJFPHz4EM7OzhJFZ9yYe2kw79Jg3qXBvEuHuZcG8y4N5l0azDsREamCczySJGrXro2MjIwK2x48eAALCwsA4F/wtIi5lwbzLg3mXRrMu3SYe2kw79Jg3qXBvBMRkSpYeCRJ+Pn5YcGCBXj27BkAID8/HwsWLICvr6/EkRk/5l4azLs0mHdpMO/SYe6lwbxLg3mXBvNORESq4ByPf+E8Gbr1559/ws/PD9bW1mjcuDH++OMPmJiY4Pjx46hXrx4ePXqEFi1a4P79+1KHanSYe2kw79Jg3qXBvEuHuZcG8y4N5l0azLv0+OxKRIaEhce/8Oate/fu3cP69euRlpaGN998E6GhoXjjjTekDuu1wNxLg3mXBvMuDeZdOsy9NJh3aTDv0mDepcVnVyIyJCw8/oU3byIiIiIiItJ3fHYlIkPCOR6JiIiIiIiIiIhIdCw8EhERERERERERkehYeCQiIiIiIiIiIiLRsfBIkiotLZU6hNcWcy8N5l0azLs0mHfpMPfSYN6lwbxLg3knIqLqYOGRJDVx4kSpQ3htMffSYN6lwbxLg3mXDnMvDeZdGsy7NJh3IiKqDq5q/ReuDCYN5l06zL00mHdpMO/SYN6lw9xLg3mXBvMuDeZdOsw9ERkS9ngkIiIiIiIiIiIi0bHwSERE9P/Zu/P4Kgp7/ePPyQ4ksgQI+y6EVQSRsAYSNkFRXIAgFVurt+qtW/X1U2urtdrWpdVa6b21KCgCslkUhCAmLGHfZQl7ghBIQgJhS8h65veHkjYXkLPMOZM5+bxfr/zR5MzpM0+nw5nvmQUAAAAAYDoGjwAAAAAAAABMx+ARAAAAAAAAgOkYPAIAAAAAAAAwHYNHAAAAAAAAAKZj8AgAAAAAAADAdAweAQAAAAAAAJiOwSMAAAAAAAAA0zF4BAAAAAAAAGA6Bo8AAAAAAAAATMfgEQAAAAAAAIDpGDwCAAAAAAAAMB2DRwAAAAAAAACmY/AIAAAAAAAAwHQMHgEAAAAAAACYjsEjAAAAAAAAANMxeAQAAAAAAABgOgaPAAAAAAAAAEzH4BEAAAAAAACA6Rg8AgAAAAAAADAdg0cAAAAAAAAApmPw+IPy8nKrIwAAAAAAAAABg8HjD4KDg62OAAAAAAAAAAQMBo8AAAAAAAAATOcwDMOwOoQVDh06pPnz56tx48aqVauWJKmiokJ5eXlq166dxo0bZ3HCwFRSUqKUlBQVFxcrNDRU+/fvV2xsrMrKytSgQQMNHjxYQUHMw81mGIbWr1+vnJwchYWFyTAM7d69W126dFFISIgSExNVu3Ztq2MGpAMHDmjPnj0KCQmRw+FQenq6YmNjVVFRoQEDBqhJkyZWRwxI+fn5WrNmjYKCghQcHKz09HR17txZpaWlio2NVbdu3ayOGJCKi4uVmpp6xT6+tLRUDRs21KBBg9jH+4BhGFq3bp1OnTql0NBQGYahXbt2qWvXrgoLC1NCQkLlZx2Ya9++fdq7d6/CwsIkqco+ftCgQWrcuLHFCQPTqVOnlJaWpuDgYAUFBWnfvn3q3LmzysrK1KVLF3Xu3NnqiAGpuLhYKSkpKi0tVUhISJV9fOPGjTVw4EA5HA6rYwYcp9OptWvXKi8vr/Jz/H/u4xMTExUREWF1TAC4pho3eDx58qSmT5+u3r17a8SIEVc9ANq3b59SU1PVrFkzBpAmMQxDX3zxhYKDg5WQkKA6depc8ZrLg4K6desqMTHRgpSBae3atcrNzVX//v3VtGnTK/5+eRhcVFSku+66SyEhIRakDDwHDhzQrl27FBsbq+7du1/x98uDguPHj2v48OFq2LChBSkDz7lz57R06VI1a9bsmkOuffv2ac+ePercuTMDSJM4nU4tWrSocsh1tS8yLg8KGjRooKFDh1qQMjCtWbNGeXl51/wi4/Kg4NKlSxo3bhy3ljHJ5f1Ily5d1LVr1yv+fnlQcOLECY0cOVINGjSwIGXgKSgoUHJyspo3b66BAwdedR+fnp6uvXv3qmvXrurSpYsFKQNPRUWFFi1apPDwcCUmJl71i4zc3FytW7dO0dHRio+PtyBlYFq5cqXOnDlzzS8yLl26VDkMvuuuu/hyD0C1VKMGj3v37tWKFSv0xBNPuLRTXr16tTIyMvTTn/7UD+kCV0VFhWbOnKlx48apbt2613390aNHtW3bNt1zzz1+SBfYvvrqK3Xo0EGdOnW67muLioo0d+5cTZo0SeHh4X5IF7i2b9+u8+fPa8iQIdd9rWEY+vzzz9WnTx+1atXK9+ECWE5OjlauXKkJEya4tI9ft26dQkJC1LdvXz+kC1zl5eWaOXOm7r33XkVFRV339RkZGfr222/5Ys8EixcvVmxsrG688cbrvrawsFDz5s3T/fffX3l2HjyzdetWFRUVafDgwdd9rWEYWrBggfr166cWLVr4IV3gOnHihNauXavx48e7dFZdWlqaIiIi1KdPHz+kC1xlZWX69NNPdd999ykyMvK6rz98+LDS09M1duxYP6QLbF988YW6d++udu3aXfe1Fy5c0IIFCzR58mSFhob6IR0AuK7GfCWSn5+vZcuW6cknn3T5m6D4+Hi1b99eCxcu9HE6973yyityOBxVfqrrJZtz5szR+PHjXRo6SlKbNm0UFxenr776ysfJ3Gen3lNTU9WpUyeXho6SVLt2bU2ePFlz5sxRdfs+wk69Hzx40OWhoyQ5HA7dc8892rhxo86ePevbcB6wS/cXL15USkqKkpKSXN7HDxgwQBUVFdq9e7eP07nPLr0bhqHZs2dr4sSJLg0dJaldu3bq3bu3li1b5uN07rNL75K0YsUKdevWzaWhoyTVqVNHkyZN0uzZs9nHe2H//v26dOmSS0NH6ft9/H333ae1a9fq3LlzPk7nPrt0f/78ea1Zs0YTJkxw+VLeQYMGqbi4WOnp6T5O5z679G4YhubMmaNJkya5NHSUpA4dOqhHjx5avny5j9O5zy69S1JycrJuvvlml4aOkhQVFaWkpKRq+TkeAGrM4PGDDz7QU0895fZ9RwYPHqycnBwfpfJOp06dlJ2dXflTHQ+et2/frri4OLfvH9i8eXNFRESooKDAR8k8Z4feL126pMLCQnXo0MGt5UJDQzV69GilpaX5KJnn7NC7JO3atcvloeN/uu+++/TNN9+YH8gEduj+66+/1sSJE91ern///tq/f78PEnnPDr1v3bpV8fHxbt8/sFWrVgoODtb58+d9lMxzdui9sLBQpaWlatu2rVvLhYeHa8SIEVq/fr2PknnODr1L0p49ezRo0CC3lxs/fjz7eC+sWLFCEyZMcHu5QYMGVcvBo2SP3jds2KDExES3r4Rp06aNnE6nLl686KNknrND7xcuXJAkt6+EiYiI0NChQ7V582ZfxAIAj9WIwWN5ebliYmI8vnfdiBEjNHfuXJNTeS8kJERNmjSp/GnUqJHVka6QkZHh9vDrsiFDhmjVqlXmBjKBHXpPTU3VsGHDPFq2cePGysvLMzmR9+zQe0ZGhsvfTP9fDodDYWFhKi0tNTmV96p79xUVFXI4HB7fu6579+7V8sCjuvcuSceOHVPr1q09WjYhIUGpqakmJ/KeHXpPSUnxeB/frFkzZWdnm5zIe3bo/cCBA+rYsaNHy15+0FVZWZnJqbxX3bsvLy+vfIiMJ2JjY6vlF0zVvXdJys7OVvPmzT1aNjExUSkpKSYn8p4dek9NTfX4fvctW7ZUVlaWyYkAwDs1YvA4bdo03X777R4vf+ONN+rEiRMmJjJHRkaGmjdvrrZt22rixInKyMiwOlIVBQUFqlevnsfLBwcHyzAMOZ1OE1N5r7r3Ln3/MAFvnmDaokULHTt2zMRE3rND79u3b1evXr08Xr66fkiv7t2vXr3aqxvZx8bG6sCBAyYmMkd17z0/P1/R0dEeLx8SEqKKiopqd0lYde/dMAyVlJR4dS/epk2b6uTJkyam8l517136/mzHHj16eLx8QkKCVq5caWIic1T37leuXOnVA6m6deumvXv3mpjIHNW995ycHMXExHi8/OUvU9nHu8cwDJWXl3t1n8ZGjRrp1KlTJqYCAO/UiMFjcXGxV/9wSqp234b17dtXM2bM0LJly/TPf/5TOTk56t+/v06fPm11tErr16/36JLT/9SxY0dlZmaaE8gEduj93LlzXj8h+dZbb9XOnTtNSuQ9O/QuyesHNtSpU6fanQ1jh+4vXrzo9RNjq9uN2O3Q+8aNG12+z921tG3btlqdmWGH3vPz8z0+A+my/v37a+vWrSYl8p4depe830/ccMMNKi4uNimNOezQ/aVLl1y+T/i1sI9335YtWzRgwACv3qNly5bVagBmh96zs7M9vpLgsoEDB2rTpk0mJQIA73l27bHNeHqJ9X+qbh9Ybrvttir/OS4uTu3atdPHH3+sZ555xqJUVVVUVHjdfYMGDarVWRl26L2goED169f36j3cvReqr9mh90BVU7pnm3efYRgeX/p4WXR0tAoKCtSyZUuTUnnHDr0XFBR4PWhne7cO3UOyR++GYXi9vUZHR+vMmTNenwBiFjv0bsY+PigoqNqdaQqgZqsRZzya9SHv9ddfv+JJaL7+qaiocClbZGSkunbtqkOHDl3xN8Mw9Pnnn/s9+9NPP+1152VlZerfv7/fs7t62cWP9S5Jp0+f9nv2tm3bVt6U2hsvv/yy37NPnTrVpUvrr9f75Q/L/v7Ztm2b173Pnz/f77n79Onj8gfU6+1r7rjjDr/n/+STT7zuPT093ZJtxtVbSVyv9zlz5vg9+3PPPed17yUlJerZs6ffsx8/ftzr3iUpNzfX79k7deqkS5cued39r3/9a79nnzZtmkv7muv17nQ6/Z7d4XDo22+/9br32bNn+z13fHy8afv4YcOG+T3/rFmzvO59165dlmwzZu3jp0+f7vfsL774ote9FxUVqUuXLn7P7uqDQa+3rzlx4oTfs3fr1s2U+307HNXrSw4ANVuNGDwWFRWZ8h6//vWvZRiGX39cfVhCcXGx9u/fr6ZNm17xN4fDobvvvtvv2f/5z3/q3LlzXvWenZ2tY8eO+T27qw8I+bHepe+/6fV39qKiIq+fIlhaWqrXXnvN79kff/xxl86gul7vDofD79kNw9DNN9/sVe+SdM899/g995YtW1z+gHq9fc3ixYv9nn/y5Mle996pUydLthlXzxi8Xu9JSUl+z/63v/1NhYWFXvWem5urvLw8v2d39QzL6+1rYmJi/J79/PnzXl8WWFxcrDfffNPv2X/+85+7tK+5Xu+Xz+bx90/37t296l2SJkyY4Pfcq1evNm0f/8033/g9f1JSkte9d+vWzZJtxqx9/E9/+lO/Z3/77be9/pLj9OnTOnv2rN+zN2nSxOveJal58+Z+z37mzBnl5uZ61XtRUZFX9wEGALPViMFjt27dvPqW2jAMr/8BMNuzzz6r1atXKzMzU5s2bdK9996rwsJCTZkyxepolQYNGuT1TdRPnDjh8ocHf7BD77Vq1fJ68JiSkuLVwzrMZofepe/3Fd7co/H48ePX/PBrFTt03759e68eDuN0OqvdQ6zs0Ht8fLzXD0M6deqUVw+oMZsdeo+KitLZs2e9eo9vvvnG63swm8kOvUvf7+NdvRLlajIyMtSqVSsTE3nPDt23atVKR44c8Xj56vgQKzv0PmTIEK/38WfOnPH6/pxmskPv9evXV35+vlfvUd0+xwNAjRg83nbbbVq7dq3Hy69Zs0YjR440MZH3srKylJSUpE6dOunuu+9WeHi4Nm7c6PXNiM0UGhqq8vJyjz/snT9/XlFRUSan8o4depekJk2aKDs72+PlCwsLFRkZaWIi79ild2+fWLp582bdeuutJibynh267969u/bs2ePx8mlpaRo0aJCJibxnh97DwsJUVlbm8T6+oKBA9erVMzmVd+zQu+T9E0uLi4tVq1YtExN5xy69DxkyRKtXr/Z4+R07dqhXr14mJvKeHbrv1auXduzY4fHya9as8fpBWGazQ+8REREqKSnxePn8/Pxq9cWSZI/epe+Hj2fOnPFoWcMwVFJSwhmPAKqVGvFwGen7M1pyc3PdvrmxYRjasGGDnn/+eR8l88xnn31mdQSX9O/fX6tXr/bozIrly5frrrvuMj+UF+zU+2effebR5Uk7duxQt27dfJDKc3bpvW7duiooKFBFRYXLt0m47Ny5c4qIiKh29+SxS/dRUVHKz893+4nuhmHo5MmT1e7MALv03qdPH61bt04DBw50e9kVK1bonnvu8UEqz9ml90GDBmnevHmaOHGi28tu3rxZPXv29EEqz9ml9/r16+vUqVNyOp1uP1ipoKBAtWvX9lEyz9ml+8jISJ05c8bth25c/vxf3QZgdun95ptv1saNGxUXF+f2st98843Gjx/vg1Ses0vv8fHxWrBggSZMmOD2shs2bNAtt9zig1QA4LkaccajJD3++OOaOnWq2/ejmjZtWrU7MLKTZs2aqaKi4po3bb6WjRs3qmPHjtXuaeJ24XA41Lt3b7fPvsvKytLJkycVGxvro2SBb8yYMfrss8/cOgustLRU//rXv6542iJcN3z4cC1dutTt+1HNnz9fo0aN8lGqwNeqVSsVFRW5/ECuy9atW6fOnTu7PaDH94KCgnTTTTe5ffbdsWPHdPr0aXXo0MFHyQLf6NGjNXfuXLf28SUlJfryyy/Z13hh5MiRWrx4sYqLi91abu7cuRo9erSPUgW+du3a6ezZszp69Khby6WlpalHjx5uD+jxveDgYHXt2tXtK/YyMzN18eJFtWnTxjfBAMBDwa+88sorVofwB4fDoQEDBuiPf/yjunTpct3LSJ1Op6ZOnapevXqpR48efkoZmNq1a6dt27bp4sWLLt2vcdWqVQoPD692lyPZTXR0tC5cuKAdO3a4dJB54MAB7dmzR3fccYcf0gWusLAwNW3aVAsXLlTXrl2v+6H73Llzmj9/vpKSkhi0e8HhcKhr166aO3eumjdvft0zi5xOp+bMmaPBgwercePGfkoZmNq3b6+NGzequLjYpasKUlNTVadOHVMexlSTNWrUSOfOndPu3bvVvn37675+37592r9/v8aMGeOHdIErPDxcjRs31qJFi1zaxxcUFGjhwoWaNGkSg3YvXN7Hf/bZZ2rVqtV1bxVQUVGh2bNnKzExsdqd7Wg3HTp00Lp161RWVubSv5fffPON6tWrx/GTlxo3bqz8/Hylp6e79NDLPXv26MiRI3zBAaBachjV7W7LAAAAAAAAAGyP898BAAAAAAAAmI7BIwAAAAAAAADTMXgEAAAAAAAAYDoGjwAAAAAAAABMF9CDx7y8PD322GNq06aNwsPDFRMTo8TERK1YsUKS9Jvf/EaxsbGqU6eO6tevr8TERK1fv77Ke5SUlOiXv/ylGjZsqDp16mjs2LHKysqyYnVs4cEHH9Ttt99+xe+3bt0qh8Oho0ePKi8vTyNHjlSzZs0UHh6uli1b6vHHH9e5c+cqX19cXKwHH3xQPXr0UGhoqIYMGeLHtbAfs3pftWqV7rzzTjVt2lS1a9dWjx499NFHH/lzVWzFrN7T09M1dOhQxcTEKCIiQu3atdOLL76o0tJSf66ObZjV+386dOiQoqKiFBkZ6ev4tmZW90ePHpXD4bjiJzk52Z+rYxtmbvOGYejdd99VbGyswsPD1bRpUz3//PP+WhVbMav3V1555arbu8Ph0KlTp/y5SrZg5va+fPly9evXT1FRUWrYsKHuvPNOHTx40F+rYjtmdj9v3jz17NlTtWvXVuvWrfXWW2/5azVsyYzj1iNHjmjcuHFq1KiRbrjhBo0fP165ublWrA4AVBHQg8d77rlHmzdv1ocffqiDBw9qyZIluu2223T69GlJUqdOnTR16lTt3r1ba9euVdu2bTVq1KgqO+innnpKCxcu1Jw5c5SWlqbz58/r9ttvV0VFhVWrZXtBQUEaN26cFi9erIMHD2rGjBlKSUnRww8/XPmaiooKRURE6L//+781ZswYC9MGDld6X79+vbp3764FCxZoz549evTRR/XII49o9uzZFia3N1d6DwsL05QpU/T111/rwIEDevfdd/Xhhx/qpZdesjC5vbnS+2WlpaWaOHGiBg8ebEHSwONO98nJycrOzq78SUhIsCBxYHC191/96lf6+9//rjfeeEP79u3T0qVL2fa94Ervzz77bJXtPDs7W/Hx8RoyZIgaN25sYXr7cqX3zMxM3XnnnRo0aJB27Nihb775RpcuXdLo0aMtTG5/rnS/bNkyTZo0SY888oj27Nmjv//973rnnXf0/vvvW5i8evP2uLWwsFAjRoyQYRhKSUnRunXrVFpaqjvuuENOp9PKVQMAyQhQBQUFhiRjxYoVLi9z7tw5Q5KRnJxsGIZhnD171ggNDTU+/fTTytccO3bMcDgcla9BVVOmTDHGjBlzxe+3bNliSDIyMzOvutxf//pXo0mTJlf92+OPP27Ex8ebmDLw+KL3y+677z7j7rvvNiNmwPFl708//bQRFxdnRsyAY3bvTz31lPHggw8a06dPN+rUqWN23IBiVveZmZmGJGPLli2+ihpQzOp9//79RkhIiJGenu6rqNAl9gwAACAASURBVAHFV/v4Y8eOGUFBQcasWbPMihpQzOp9/vz5RlBQkFFeXl75u9TUVEOSkZeXZ3ruQGBW90lJScZdd91V5TXvvfee0aJFC8PpdJqaORCYcdy6fPlyw+FwGGfOnKl8zdmzZw2Hw+HW+wKALwTsGY+RkZGKjIzUl19+qeLi4uu+vrS0VB988IFuuOEG9ezZU5K0bds2lZWVacSIEZWva9mypTp37nzFqe3w3MmTJ/X5558rPj7e6ig1iqu9nz9/XvXr1/dTqsDnSu+HDx9WcnIy/58w0bV6/+qrr7RkyRK99957FiULfD+2zd99991q3LixBgwYoAULFliQLnBdrfcvvvhC7dq1U3Jystq1a6c2bdpoypQpXO5rIlf28R9++KHq1aune+65x4/JAtvVer/lllsUGhqqadOmqaKiQhcuXNDHH3+sPn36qGHDhhamDSxX676kpEQRERFVXlerVi1lZWXpu+++83fEas+M49aSkhI5HI4qvUdERCgoKEhr1671WXYAcEXADh5DQkI0Y8YMffrpp6pXr5769eunZ599Vps2baryuiVLligyMlIRERF65513tGLFCsXExEiScnJyFBwcfMWHk5iYGOXk5PhtXewmOTm58h/Qyz9Xu4wrKSlJtWvXVvPmzRUVFaXp06dbkDZw+KL3JUuWKCUlRY888ogvo9uamb33799fERERuvHGGzVw4ED94Q9/8Mcq2JIZvWdnZ+vhhx/WzJkzFRUV5c/4tmZG95GRkXr77bc1b948LV26VImJiZowYYI+/fRTf66KrZjRe0ZGhr777jt99tlnmjFjhmbOnKn9+/dzKd6PMPvfVqfTqY8++kgPPPCAwsPDfR3ftszovU2bNlqxYoVefvllhYeHq27dutq9e7eWLFniz1WxHTO6HzlypBYtWqSvv/5aTqdTBw8e1J///GdJ3//bi6rMOG6Ni4tTZGSknnvuORUWFqqwsFDPPvusKioq6ByA5QJ28Ch9f6+MkydPavHixbrtttu0fv16xcXFVTmYHzp0qHbu3Kn169dr1KhRGj9+/HV3zoZhyOFw+Dq+bQ0ePFg7d+6s8nO1ewS+88472r59uxYtWqSMjAw99dRTFqQNHGb3vm7dOk2aNEnvvfeebr31Vl/Hty0ze587d662b9+u2bNna+nSpXrjjTf8sQq2ZEbvkydP1qOPPqq4uDh/Rrc9M7pv2LChfvWrXykuLk633HKLXn31Vf3Xf/2X3nzzTX+uiq2Y0bvT6VRJSYlmzpypwYMHa9CgQZo5c6Y2b96sLVu2+HN1bMPsf1uXLVum48eP6+c//7mvo9uaGb3n5OTooYce0gMPPKAtW7Zo1apVioqK0vjx4xm0/wgzun/44Yf1xBNP6M4771RYWJji4uI0ceJESVJwcLDf1sVOvD1ubdSokebPn69ly5YpKipKdevW1dmzZ9WrVy86B2A9q6/19reHHnrICA0NNUpKSq769w4dOhivvvqqYRiGkZKSYkgyTp06VeU1Xbp0MX7729/6PKsdeXpvmLS0NEOScezYsSv+xj0er8/s3tPS0oyoqCjjnXfe8UXcgOGL7f2ymTNnGuHh4UZZWZlZcQOGWb1LMoKDgyt/goKCKn/3j3/8w5erYFu+3OZnzJhhREREmBU1oJjV+29/+1sjJCSkymucTqcREhJizJs3z/TcdueL7X3s2LFG//79zY4aUMzq/aWXXjJ69uxZ5TXHjx83JBlpaWmm5w4EZm/z5eXlRlZWllFSUmIsXbrUkGTk5ub6InpAcue49T/l5eUZBQUFhmEYRkxMjPHmm2/6NCcAXE+IH2ec1UKXLl1UXl6u4uJihYWFXfH3y2cDSFLv3r0VGhqqFStWaNKkSZKkrKws7du3T/379/dr7kB3+Zvny93DP67W+5o1azRmzBi98sornIXqI65s706nU+Xl5aqoqFBISI3bVfvE/+199+7dVf7+xRdf6PXXX9fmzZvVvHlzv+cLZK5s8zt37lTTpk39FalG+L+9DxgwQOXl5Tpy5Ijat28v6fvLr8vLy9W6dWvLcgaaa23vJ0+e1FdffaVp06ZZESvg/d/ei4qKrjjT6/J/5oxHc11rmw8ODq7893TOnDnq168fT3J3gzvHrf/p8m3CUlNTderUKY0dO9bnWQHgxwTs0ezp06d133336Wc/+5l69OihqKgobd26VW+++aYSExMlSS+99JLuuOMONW3aVHl5eZo6daqysrI0fvx4SVLdunX10EMP6bnnnlPjxo0VHR2tZ555Rj169NCwYcOsXD1bW7JkiU6fPq3evXsrMjJSe/fu1XPPPae4uDh16NCh8nXp6ekqLS1Vfn6+Ll68qJ07d0pS5U2U4R5Xel+1apXGjBmjxx57TPfff3/lvUyDg4PVqFEjK+Pbliu9z5w5UxEREerevbvCwsK0detWvfDCC7r33nu5B5iHXOm9W7duVZbZunWrgoKCrvg93ONK9x9//LFCQ0N18803KygoSIsXL9bUqVO5vYAXXOl92LBh6tWrl372s5/p3XfflSQ99dRT6tu3r2655RYr49uWq59pJOmjjz5SnTp1Kj9nwnOu9D5mzBi98847+t3vfqdJkybpwoULevHFF9WyZUv17t3b4jWwL1e6z8/P1/z58zVkyBCVlJRo+vTpmj9/vlavXm1x+urJjONWSZo+fbpiY2PVuHFjbdiwQU8++aSefvppderUyapVAwBJATx4jIyMVFxcnP7617/q8OHDKikpUfPmzTVp0iS99NJLCgkJ0d69e/XRRx/p9OnTio6OVp8+fbRmzRr16NGj8n3eeecdhYSEaMKECbp06ZISExP1ySefcK8ML0REROh///d/tW/fPpWUlKhly5YaN26cnn/++SqvGz16dJUn3918882Svr/HJtznSu8zZsxQUVGR3n77bb399tuVv2/durWOHj1qQWr7c6X3kJAQ/fGPf9ShQ4dkGIZat26txx9/XE8//bSFye3N1f0MzOdq96+99pq+++47BQcHq2PHjvroo480efJki1Lbnyu9BwUFacmSJXriiSc0ePBg1apVS8OHD9df/vIXBQUF9G2/fcbV7d0wDH344Ye6//77Vbt2bYvSBg5Xek9ISNDs2bP15ptv6q233lKtWrUUFxen5ORk1alTx8L09ubqNv/JJ5/oueeek2EY6tevn1atWsU9w6/BrOPWAwcO6IUXXtCZM2fUpk0b/frXv+azJIBqwWEwxQEAAAAAAABgMr7eBgAAAAAAAGA6Bo8AAAAAAAAATMfgEQAAAAAAAIDpGDwCAAAAAAAAMB2DRwAAAAAAAACmY/AIAAAAAAAAwHQMHn/gcDisjgAAAAAAwI/i2BWAnTB4BAAAAAAAAGA6Bo8AAAAAAAAATMfgEQAAAAAAAIDpGDwCAAAAAAAAMB2DRwAAAAAAAACmY/AIAAAAAAAAwHQMHgEAAAAAAACYjsEjAAAAAAAAANMxeAQAAAAAAABgOgaPAAAAAAAAAEzH4BEAAAAAAACA6Rg8AgAAAAAAADAdg0cAAAAAAAAApmPwCAAAAAAAAMB0DB4BAAAAAAAAmI7BIwAAAAAAAADTMXgEAAAAAAAAYDoGjwAAAAAAAABMx+ARAAAAAAAAgOkYPAIAAAAAAAAwHYNHAAAAAAAAAKZj8AgAAAAAAADAdAweAQAAAAAAAJiOwSMAAAAAAAAA0zF4BAAAAAAAAGA6Bo8AAAAAAAAATMfgEQAAAAAAAIDpGDwCAAAAAAAAMB2DRwAAAAAAAACmY/AIAAAAAAAAwHQMHgEAAAAAAACYjsEjAAAAAAAAANMxeAQAAAAAAABgOgaPAAAAAAAAAEzH4BEAAAAAAACA6Rg8AgAAAAAAADAdg0cAAAAAAAAApmPwCAAAAAAAAMB0DB4BAAAAAAAAmI7BIwAAAAAAAADTMXgEAAAAAAAAYDoGjwAAAAAAAABMx+ARAAAAAAAAgOkYPAIAAAAAAAAwHYNHAAAAAAAAAKZj8AgAAAAAAADAdAweAQAAAAAAAJiOwSMAAAAAAAAA0zF4BAAAAAAAAGA6Bo8AAAAAAAAATMfgEQAAAAAAAIDpGDwCAAAAAAAAMB2DRwAAAAAAAACmY/AIAAAAAAAAwHQMHgEAAAAAAACYjsEjAAAAAAAAANMxeAQAAAAAAABgOgaPAAAAAAAAAEzH4BEAAAAAAACA6Rg8AgAAAAAAADAdg0cAAAAAAAAApmPwCAAAAAAAAMB0DB4BAAAAAAAAmI7BIwAAAAAAAADTMXgEAAAAAAAAYDoGjwAAAAAAAABMx+ARAAAAAAAAgOkYPAIAAAAAAAAwHYPHH5w7d87qCAAAAAAA/CiOXQHYicMwDMPqEAAAAAAAAAACC2c8AgAAAAAAADAdg0cAAAAAAAAApmPwCAAAAAAAAMB0DB4BAAAAAAAAmI7Bo6TVq1ersLDwmn9ftmyZ0tLS/JgIAAAAAIB/47gVgB0xeJQ0dOhQHT58+Jp/X7dund5++20/JgIAAAAA4N84bgVgRwweJTkcDhmGcc2/9+rVS9u2bfNjIgAAAAAA/o3jVgB25DB+bM9VQwQHBysiIkJBQVefwxqGoaKiIjmdTj8nAwAAAACA41YA9hRidYDq4oUXXlCrVq2sjgEAAAAAwFVx3ArAbjjjUd9/c7R9+3bddNNNVkcBAAAAAOAKHLcCsCPu8ShpypQpatCggdUxAAAAAAC4Ko5bAdgRZzz+H5mZmcrJyZEkNWnSRG3btrU4EQAAAAAA/8ZxKwC74IzHH7z55ptq1qyZ2rdvr4EDB2rgwIFq3769mjVrpjfeeMPqeAAAAACAGo7jVgB2w8NlJL366qv6y1/+oueff17Dhw9XkyZNZBiGcnNztWLFCv3hD3/QpUuX9Morr1gdFQAAAABQA3HcCsCOuNRaUvPmzfX+++9r3LhxV/37okWL9Pjjj+vEiRN+TgYAAAAAAMetAOyJS60lFRQU6MYbb7zm3zt27KiCggI/JgIAAAAA4N84bgVgRwweJfXt21evvfaaiouLr/hbcXGxfve736lv374WJAMAAAAAgONWAPbEpdaS0tPTNWLECF24cEGDBg1S48aN5XA4lJubqzVr1igqKkorVqxQly5drI4KAAAAAKiBOG4FYEcMHn9QWFioOXPmaN26dcrNzZVhGGrSpIn69++vSZMmqU6dOlZHBAAAAADUYBy3ArAbBo8AAAAAAAAATMc9HgEAAAAAAACYjsEjAAAAAAAAANMxeAQAAAAAAABgOgaPAAAAAAAAAEzH4PEHPGMHAAAAAFDdcewKwE5CrA5QXfzpT3/SCy+8YHWMGqGgoEBr1qxRUFCQDMOQw+FQcHCwEhISFBERYXW8gFVaWqqVK1eqtLS0sveKigoNGDBAjRo1sjpewDIMQ5s2bVJubq4cDkdl77GxsYqNjbU6XkA7fPiw9uzZo+Dg4MoP6PXr19fAgQPlcDgsThe4zpw5o7S0NPbxflZaWqrU1FSVlZVVbu+GYWjAgAFq2LChxekCl2EY2rBhg/Lz8yWpch/fuXNnderUyeJ0ge3gwYNKT09XUNC/z6No2LCh+vXrxz7eh06fPq21a9dW2ceHhIQoISFB4eHhVserMTh2BWAnDoOvSyR9/0GRKnwrPT1d+/btU7169TRkyBAFBwdX/u3SpUtKTU1VcXGx+vbtqxYtWliYNLCcOnVKaWlpCg0NVUJCgiIjIyv/5nQ6tXbtWuXl5al9+/bq2bOnhUkDS2lpqZKTk1VWVnbVbXrv3r3av3+/6tatq8TERA6STLRq1SqdOXNG7du310033VTlbzk5OVq/fr2CgoI0cuRI1apVy6KUgWfPnj06ePCg6tevr8GDB1fZxxcVFVXu4/v3769mzZpZmDSw5OTkaN26dQoLC1NCQoLq1KlT+Ten06m0tDTl5+erQ4cOV/z/AZ4rKSlRcnKyKioqFBcXd8U2vXv3bh06dEj16tXT0KFD2cebxDAMrVq1SgUFBerQoYN69OhR5e/Z2dnasGGDgoKCNGrUKL7sMNGuXbt06NAhRUdHa/DgwVUGvoWFhUpNTVVpaakGDBigJk2aWJi0ZuDYFYCdMHj8ATtv31q5cqUiIyPVp0+f677266+/VuPGjRmCmWD//v06dOiQbr/99use9OzevVtZWVm67bbb/JQucJ09e1aLFi1SUlLSdb/9z8/P19KlSzVp0iSFhHASujecTqfmzJmjoUOHXnewVV5erjlz5mjUqFGc8WuCb775RvXr11fv3r2v+9rk5GQ1a9bsioEB3Jeenq7MzEyNHj36uvv4b7/9Vjk5ORo5cqSf0gWuM2fOaPHixUpKSlJYWNiPvvbUqVP6+uuvlZSUVGUYD/dVVFRozpw5Gj58uGJiYn70tWVlZZozZ47GjBmj6OhoPyUMXK5+NjcMQ8uWLVPr1q3VtWtXP6WrmTh2BWAnDB5/wM7bd9asWaOGDRuqS5cuPl0GVWVmZurgwYNuHWR6sgyqunTpkubNm6cHHnjA5TNcLl26pPnz5+snP/kJZ8V4YdasWRo7dqyioqJcer1hGJo9e7Zby+BKK1euVNOmTd26dYAny6Cqw4cP6+jRoxo2bJhPl0FVRUVFWrhwoSZPnuzy/rqwsFCff/65W8ugKsMw9Omnn+ruu++uclav2cvgSikpKWrVqpVuvPFGny4D93DsCsBOeLgMfCo3N1elpaVuDxAHDx6s3bt3q6KiwkfJAtvle065O0Bs27at6tevr8OHD/somWdeeeWVyvsjXv6prpfxLF68WPfff79bB5e1atXSmDFjtHz5ch8mC2ypqalKSEhwa4DocDiUlJSkJUuW+DCZZ+yyzZ88eVIOh8PtAeLQoUO1c+dOOZ1OHyXzjF16NwxDmzdvdnuA2KFDB9WqVUtHjx71TbAaYPHixZo0aZJb+/g6depo1KhRWrFihQ+TBbaUlBSNHDnSrQGiw+HQpEmTtHjxYh8mC2zHjh1TeHi42wPExMREbdmyhcEYAEASg0f42Nq1a5WQkODRsiNHjtTKlStNTlQzbN68WYMHD/Zo2VtvvVU7d+40OZH3OnXqpOzs7Mqf3bt3Wx3pChcvXtQNN9zg0SXT0dHRKiws9EGqmqGgoEBNmzZ1e7mgoCDFxMTo9OnTPkjlHTts8xs2bFB8fLxHyw4bNkxr1qwxOZH37ND7unXrNHToUI+W7d+/v7Zu3Wpyoprh3LlzatCggUeXTDdq1EgXLlzwQaqa4ezZs2rcuLHbywUHB6thw4Y6e/asD1IFvi1btmjAgAEeLZuQkKC1a9eanAgAYEcMHuEzFRUVcjgcVW4+7Y569erp3LlzJqeqGbKysrx6QE+tWrVUVFRkYiLvhYSEqEmTJpU/1fG+fCkpKR4P2iWpV69e2rZtm4mJaoZ9+/Z5dclufHy8Vq9ebWIic1T3bb6srEwhISEeXzrasGHDajnwre69S98/UMaTQbv0/VlgYWFhKikpMTlV4Fu5cqXHA19J6t69u3bt2mViopph165d6t69u8fLDxkyRKtWrTIvUA1RUlKisLAwj/fxTZo0UW5ursmpAAB2xOARPpOWlqYhQ4Z49R5NmzblQ4ubiouLvb6XUWJiYrUbxGRkZKh58+Zq27atJk6cqIyMDKsjXcHpdF73QQM/pm3btjp+/LiJiWqGAwcOeHUT++Dg4Gp537Xqvs2vWbPGqyGM9P3w8cyZMyYlMkd17/3ChQuqW7euV+8xbNgwBjEe8uYhYB07dqx225MdHDlyRJ06dfJ4eR7c5pnVq1d79WWqJNWvX1/nz583KREAwK4YPMJnzp8/rwYNGnj1Hs2bN2fw6KbTp097dDnSf4qIiFB5eblJibzXt29fzZgxQ8uWLdM///lP5eTkqH///tXubCkzDm546qn7zOisuvVuh22+qKhIN9xwg1fv0axZM506dcqkRN6zQ+/5+fle33eydu3anPHogUDc19gB/7Zao6SkxOsvsps0aaK8vDyTEgEA7IrBI6q10NBQDo7cVFpaqtDQUK/f53e/+90VD1nw9c/UqVOv+rCJ2267TePHj1ePHj00bNgwLVmyRE6nUx9//PFVsxuG4ffsDodDO3bs8Lp3bsTuPjM6O3DggCXbzLUeruLONm8YhubMmeP37M8//7zXvYeFhal79+5+z36tM4vd3dfk5ub6PXu7du04g8si7J+tYUbv/G/nPjM6CwsLU2lpqQlpAAB2xidX+IzD4VBFRYVX3zKfPXtW9evXNzFV4Ktfv74pl+v+9re/1dixY01IZL7IyEh17dpVhw4duurfHQ6HJQcZX375pd//O2GOjh07VusD0x/b5h2O75/OnZSU5NdMixcvrhzye6qgoEBHjhxRq1atTExmnuvta2JiYvy+3Zw6dUpHjhzx6j0Mw6jW23sgo3fYiRn7+Oq6fwcA+A9nPMJn+vXrp7S0NK/e48CBA2rbtq1JiWqGunXren1Zy7Zt29StWzeTEpmvuLhY+/fv9/jhCr7i7bf6ly5d4nIwD9SqVcvrB1GVlZWZlMY3quM236dPH61bt86r98jIyPDqQVi+Vh17b9SokU6cOOHVe2zatEm9evUyKVHN4e1+4uLFi17dB7imCgsL8/qJ4NV9H18d9erVS5s2bfLqPY4dO6aYmBiTEgEA7IrBI3ymYcOGys/P93h5p9MpwzAYxLjJ4fD+iaWZmZlq166diam88+yzz2r16tXKzMzUpk2bdO+996qwsFBTpkyxOloVPXr08OqJpSkpKUpMTDQxUc0wdOhQrVy50uPlDx8+rPbt25uYyHt22Oa9fWJpRUWFHA6HgoKqz0cRO/TucDgUEhLi1SAlKytLLVu2NDFVzdC5c2elp6d7vHxqaqrXD+uoiRISEpSamurx8vv37/fq4TQ1VYsWLbz6kqOsrEwhISFenTEJAAgM1efTPgJSq1atdPToUY+WXbNmjQYPHmxuoBoiMTFRKSkpHi17+vRpRUdHm5zIO1lZWUpKSlKnTp109913Kzw8XBs3blTr1q2tjlZFx44ddfDgQY+WNQxDxcXFioiIMDlV4AsJCVFFRcU175d4PTt37tTNN99scirv2GWbb9asmccHpqtWrdKQIUPMDeQlu/TuzT7+1KlTatSokcmJaoYuXbp4PHg0DENlZWWc8eiBsLAwlZeXe3yZ+p49e6r1VRzVWePGjZWTk+PRsgzaAQCXMXiET/Xp00erV692++y73NxcnT17Vg0bNvRRssBWu3ZtBQcH67vvvnNruYqKCn355ZeKj4/3UTLPfPbZZzp58qRKS0t14sQJLVy4UF26dLE61lV17tzZo8tP//Wvf1W7IYydDBs2TPPnz3d7uS1btlS7sx0l+2zzcXFxWrFihdu3GcjOzlZhYWG1u4evXXqPioqS0+lUVlaWW8uVlZXpq6++0qBBg3yULPB16tRJGzZscHu5hQsXaujQoT5IVDMkJCRowYIFbi+3ceNGdezY0QeJaoaBAwcqOTnZ7TOss7KyVF5erhtuuMFHyQAAdsLgET7lcDg0adIkzZ49W4WFhS4tc/LkSa1atUp33nmnj9MFtpEjR2rHjh3KzMx06fWlpaX65JNPNGHChGp16aPddO3aVaGhoVq/fr3Ly3z55Ze66aabGLR7oW7duurfv78WLFjg8lkxW7ZsUUlJSbU729FOLu/jP/30U126dMmlZbKyspSWllZtH15lF6NHj9bmzZtd/oKpuLhYM2fOVFJSEvt4L3Tv3l3S9wMtVxiGoUWLFql3795q0KCBL6MFtPr16+vWW2/Vv/71L5f38Zs2bZLT6VSPHj18nC5wORwOTZw4UTNnzlRxcbFLyxw7dkybNm3SmDFjfJwOAGAXDoPH60my7im4AAAAAAC4imNXAHbCV94AAAAAAAAATMfgEQAAAAAAAIDpGDwCAAAAAAAAMB2DRwAAAAAAAACmY/AIUz344INyOBxyOBwKCQlRq1at9Oijj6qgoECSdObMGf3yl79UbGysatWqpZYtW+rRRx/V6dOnq7zP66+/rgEDBqhOnTpyOBxWrIqtmNH70aNH9dBDD6ldu3aqVauW2rVrpxdeeMHlJ9XWVGZ073Q6NXbsWLVq1UoRERFq2rSpJk+erBMnTli1WtWeWfuay4qLi3XTTTfJ4XBo69at/lwVWzGr9zZt2lS+z+Wf559/3opVsgUzt/fly5erX79+ql27turVq6fExER/r45tmNH7qlWrrtjWL//Mnz/fqlWr9sza5g8ePKi77rpLDRs2VFRUlOLi4pScnGzFKtmCWb1v375dw4cPV7169RQdHa1HHnlEFy9etGKVAADVAINHmG7YsGHKzs7W0aNHNW3aNC1evFiPPfaYJOnkyZM6ceKE3nzzTe3evVuffvqp1qxZo6SkpCrvUVJSorvvvltPPfWUFatgS972vn//flVUVOh//ud/tHfvXv3tb3/TJ598oieffNKqVbINM7b5hIQEzZs3TwcOHNDChQuVkZGhcePGWbE6tmFG75c9++yzatGihT/j25ZZvf/2t79VdnZ25c9LL73k71WxFTN6X7RokSZOnKif/OQn2rFjhzZs2KCf/exnVqyObXjbe//+/ats59nZ2XrhhRcUGRmp2267zarVsgUztvnbb79dxcXFSklJ0Y4dOzRw4EDdeeedOnLkiBWrZAve9n7y5EkNGzZM7dq106ZNm5ScnKy9e/fqwQcftGiNAACWM2AYhmFQhTmmTJlijBkzpsrvnnnmGaNBgwbXXOarr74yHA6Hce7cuSv+Nn/+fP63cYHZvV82derUH30P+K77L774wpBkXLp0ybSsgcTM3hctWmR06dLFSE9PNyQZW7Zs8UnmQGBW761btzbeeustn+UMNGb0Xl5ebrRs2dL44IMPfJo1kPhq/96xY0fj4YcfNi1nIDKj+7y8/AgLJwAAIABJREFUPEOSkZqaWvmasrIyIygoyJg/f75vgtucGb3/4x//MKKjo43y8vLK1+zatcuQZBw6dMg3wWsgjo8A2AlnPMKnMjIylJycrNDQ0Gu+5vz58woPD1ft2rX9mCywmdX7+fPnVb9+fV9EDFhmdH/mzBnNmjVLffv2VUREhK+iBhRPe8/KytKjjz6qWbNmqVatWv6IGlC82d7ffvttRUdHq2fPnnr99ddVWlrq67gBw5Pet23bpuPHjys8PFy9evVSkyZNNGLECO3YscNfsW3PjP37qlWrdPDgQT3yyCO+ihmQPOk+OjpanTt31syZM3Xx4kVVVFTogw8+UFRUlAYMGOCv6LbmSe8lJSUKDQ1VcHBw5Wsu//u6du1a3wYGAFRLIVYHQOBJTk5WZGSkKioqVFxcLEn6y1/+ctXXnj17Vr/5zW/08MMPKySEzdEbZvd+7Ngxvf3223rxxRd9ljlQmNX9//t//0/vv/++ioqKFBcXpyVLlvg8u51523tFRYXuv/9+/epXv1LPnj119OhRf0W3NTO29yeeeEI333yzoqOjtXnzZj3//PPKzMzUtGnT/LIOduRt7xkZGZKk3/zmN/rzn/+stm3baurUqYqPj9f+/fvVrFkz/6yIzZj9b+sHH3ygm266SbfccovPMgcKb7t3OBxasWKFxo0bpxtuuEFBQUFq0KCBli1bpqZNm/ptPezG294TEhL0zDPP6E9/+pOeeeYZFRYWVt7DNzs72z8rAQCoXqw+5bK6oApzTJkyxRg6dKhx6NAhY9euXcYvf/lLY/To0VUut7js4sWLxsCBA434+PhrXk7KpdauMbv3nJwcIzY21pg4caLhdDp9Hd/WzOw+Ly/POHDggPH1118bAwYMMEaOHEn/12BG76+++qqRmJhY2XFmZiaXWl+H2fuay+bOnWtIMvLz830V3dbM6H3WrFmGJOMf//hH5e/KysqMli1bGn/605/8sh52Y/b2fvr0aSM8PNyYOnWqr6PbnhndO51OY+zYscaoUaOMtWvXGtu2bTMeffRRo2nTpkZWVpY/V8c2zNrmZ82aZcTExBjBwcFGWFiY8eyzzxoxMTHGG2+84a9VCXgcHwGwEy61hulq166tDh06qHv37nrvvfdUVFSk3//+91Vec/Hixcqbqi9ZsoTLSU1gVu85OTkaOnSounXrppkzZ/JUcReY1X3Dhg3VsWNHDR8+XJ999pmWL1/OZUk/wtveU1JStHLlSoWGhiokJEQdOnSQJMXFxen+++/334rYjC/28X379pUkHT582DehA4C3vV8+w6tLly6VvwsJCdGNN96oY8eO+WEN7MnM7f3jjz9WUFAQ+xcXedt9amqqFi9erDlz5mjAgAHq1auX/v73v6tOnTqaPn26X9fFTszY5idNmqScnBydOHFCp0+f1iuvvKK8vDy1bdvWb+sBAKg+GDzC515++WW98cYbOnnypCTpwoULGjVqlCoqKrR06VJFRkZanDAwedJ7dna2hgwZos6dO2vOnDlc/u4hM7Z5p9Mp6ft7JcE17vY+ffp0ffvtt9q5c6d27typpUuXSpJmzZqlN954w+/57cqM7X3nzp2SxOWPbnC39969eys8PFwHDhyo/J3T6dSRI0fUunVrv2a3M2+292nTpmn8+PGqW7euv+IGFHe7LyoqkiQFBVU93AkKCqr8NxbX5802HxMTo8jISM2dO1cREREaPny4v2IDAKoRBo/wuSFDhqhr16567bXXdOHCBY0YMUIFBQWaMWOGCgsLlZOTo5ycnCoPFjh27Jh27txZec+1y4OBixcvWrQW9uNu7ydPnlR8fLyaNGmid999V/n5+ZWvqaiosHht7MXd7jds2KCpU6fq22+/1XfffafU1FQlJSWpTZs2GjhwoMVrYx/u9t62bVt169at8qdjx46SpPbt26tFixZWroqteLK9v/POO9q5c6cyMzM1b948PfbYYxo7dqxatWpl8drYh7u933DDDfrFL36hl19+WcuXL9eBAwf05JNPqqCgQJMnT7Z4bezDk8800vcP1UhPT9fDDz9sUXL7c7f7fv36qUGDBvrpT3+qb7/9VgcPHtRzzz2njIwM3X777RavjX14ss2///772r59uw4ePKipU6fqv//7v/XHP/5R9erVs3BNAACWsfpa7+qCKswxZcoUY8yYMVf8ftasWUZYWJgxY8YMQ9JVf1auXFnlfa73GvybGb1Pnz79mq/JzMz07wrZiBnd79ixwxgyZIjRoEEDIywszGjTpo3xi1/8wjh+/Lif18Y+zNrX/Cfu8Xh9ZvS+bds2o2/fvkbdunWNiIgIo1OnTsbLL79sFBYW+nlt7MOs7b20tNR47rnnjJiYGCMqKsqIj483tm3b5sc1sRcz9zMPPPCA0blzZz8ltz+zut+yZYsxYsQIo0GDBkZUVJRx6623GkuWLPHjmtiLWb3/5Cc/qfxM06NHD+OTTz7x41rUDBy7ArATh2EYhnejy8DgcDhEFQAAAACA6oxjVwB2wqXWAAAAAAAAAEzH4BEAAAAAAACA6Rg8AgAAAAAAADAdg0cAAAAAAAAApmPwCAAAAAAAAMB0DB4BAAAAAAAAmI7BIyzlcDisjlBj0b016N0a9G4NercO3VuD3q1B79agdwCAKxg8AgAAAAAAADAdg0cAAAAAAAAApmPwCAAAAAAAAMB0DB4BAAAAAAAAmI7BIwAAAAAAAADTMXiEpe68806rI9RYdG8NercGvVuD3q1D99agd2vQuzXoHQDgCodhGIbVIaoDh8MhqvA/wzDkcDisjlEj0b016N0a9G4NercO3VuD3q1B79agd+tw7ArAThg8/oCdNwAAAACguuPYFYCdcKk1AAAAAAAAANMxeAQAAAAAAABgOgaPAAAAAAAAAEzH4BEAAAAAAACA6UKsDoCaKSkpSS1atNBbb71V+bvly5dr48aNVV738ssv+ztawKN7a9C7NejdGvRuHbq3Br1bg96tQe8AAHfwVOsf8GQw/2rRooVmz56twYMHV/5uwYIFevDBB9WuXTuVl5dr//79cjqdFqYMTHRvDXq3Br1bg96tQ/fWoHdr0Ls16N16HLsCsBPOeIQl8vPz1apVqyq/i42NVb169bRr1y7l5eUpJibGonSBje6tQe/WoHdr0Lt16N4a9G4NercGvQMA3ME9HmGJRo0aKTc3t8rvTp06pbCwMEniGzwfontr0Ls16N0a9G4durcGvVuD3q1B7wAAdzB4hCXi4uL0+9//XsXFxZKkwsJC/f73v1ffvn0tThb46N4a9G4NercGvVuH7q1B79agd2vQOwDAHdzj8QfcJ8O/9u/fr7i4ONWuXVuxsbHau3evgoKCtH79erVt21anT59W9+7ddfLkSaujBhy6twa9W4PerUHv1qF7a9C7NejdGvRuPY5dAdgJg8cfsPP2v+PHj+vjjz9Wdna2brzxRk2ZMkX169e3OlaNQPfWoHdr0Ls16N06dG8NercGvVuD3q3FsSsAO2Hw+AN23gAAAACA6o5jVwB2wj0eAQAAAAAAAJiOwSMAAAAAAAAA0zF4BAAAAAAAAGA6Bo+wFPcmsQ7dW4PerUHv1qB369C9NejdGvRuDXoHALiCwSMs1atXL6sj1Fh0bw16twa9W4PerUP31qB3a9C7NegdAOAKnmr9A54MZg16tw7dW4PerUHv1qB369C9NejdGvRuDXq3Dt0DsBPOeAQAAAAAAABgOgaPAAAAAAAAAEzH4BEAAAAAAACA6Rg8AgAAAAAAADAdg0cAAAAAAAAApmPwCAAAAAAAAMB0DB4BAAAAAAAAmI7BIwAAAAAAAADTMXgEAAAAAAAAYDoGjwAAAAAAAABMx+ARAAAAAAAAgOkYPAIAAAAA/j979x0dVYH3f/wzKZCQBAMJJdJCkdCLoIQEgxDAAoLSpOOu4s/VXUXUXXWLbHH3UVz18dF9nnVVQKSLgoCAEAgQEAgl9FBDCaRCQkkv9/eHkl0EZZK5Mzczeb/OyTmSzJ3zmY/33Jn7nVsAADAdg0cAAAAAAAAApmPwCAAAAAAAAMB0DB4BAAAAAAAAmI7BIwAAAAAAAADTMXgEAAAAAAAAYDoGjwAAAAAAAABMx+ARAAAAAAAAgOkYPAIAAAAAAAAwHYNHAAAAAAAAAKZj8AgAAAAAAADAdAwev1deXm51BAAAAAAAAMBjMHj8ns1mszoCAAAAAAAA4DEYPErKzc3V+fPnOerRxUpLSyVJZWVlFiepWcrLy3X58mWrY9Q4hmHo6tWrVseokQoLCyV99/8ArlNSUiKJMwpcjW28NdjGW6egoEAS23hXYxtvDbbxANyRzaih79IrV67U4cOH1ahRIwUHB6tWrVrKzc1VZmamDMPQU089pVq1alkd0+NkZmZq8+bNstls8vf3V0FBgWrXrq2ioiJ5e3srNjZWgYGBVsf0OAUFBYqLi1NRUZFq166twMBApaSkKDg4WGVlZYqMjFTTpk2tjulxysvLlZCQoKysLPn6+iowMFBpaWkKCAhQWVmZ2rRpo65du1od0yMdPHhQycnJ8vb2Vp06dZSbmys/Pz+VlJSoXr166tu3r7y9va2O6XHS09O1ZcuWim18fn6+/Pz8VFhYKF9fX8XGxiogIMDqmB4nPz9f69evV1FRkfz8/BQQEKCTJ0+qXr16Ki8vV+/evXX77bdbHdPjlJeXa9OmTbpw4ULFNv78+fMKDAxUaWmp2rZtqy5dulgd0yPt379fR44ckY+PjwICApSTk1OxjQ8JCVFMTIy8vDi+wmxpaWnaunWrvLy85Ofnd902vlatWoqNjVWdOnWsjulx8vLyFBcXp5KSkorP8f+5jY+Ojlbjxo2tjgkAP6rGDR53796tuLg43XfffT/6YfDixYtatmyZysrK9MQTT7g4oWcqLi7WkiVL1KRJE/Xp0+emHwaLi4sVFxenwsJCPfzww5z+bpKVK1dKkvr37y9/f/8b/m4YhrZt26aTJ0/q4YcfZihgksTERJ0+fVoxMTFq2LDhTR9z/PhxJSYmqlevXmrVqpWLE3qm1NRUbdq0Sd27d1f79u1v+pgLFy4oPj5eYWFhioqKcnFCz1RYWKgvvvhCzZs3V3R09E2330VFRVq/fr2Ki4s1dOhQtvEmMAxDK1eulJeXl/r37y8/P7+bPubbb79VSkqKHnnkEYYCJtm+fbtSU1PVt29fhYaG3vQxR44c0e7duxUVFaUWLVq4OKFnOnPmjBISEtSjRw9FRETc9DHZ2dnauHGjmjRposjISBcn9EwFBQX64osvFB4erqioqB/dxsfFxamsrExDhgxhG28CwzC0fPly+fj4KDY2VrVr177pY7Zs2aIzZ85o+PDhN30fAACr1ajB48aNG3XmzBlNnDjRrsfv27dP8fHxevbZZ52czLMVFBRowYIFGj9+vF1HkV68eFErVqzQxIkT+dDioIULFyomJkZhYWG3fGxZWZnmzp2roUOHKjg42AXpPNemTZsUGBioO++8067Hf/PNN2ratKk6dOjg5GSe7dixYzpy5IiGDBli1+MPHDigjIwMxcbGOjmZZ8vLy9OiRYs0YcIE+fr63vLx2dnZWr16tcaPH8823gGGYWjBggXq37+/GjVqdMvHl5aW6rPPPtPw4cNVt25dFyT0XPHx8QoODla3bt3sevzq1asVHh6udu3aOTmZZzty5IhOnjypBx54wK7H7927VxcvXlS/fv2cnMyzXblyRUuWLNGECRPk4+Nzy8dnZmZq3bp1Gjt2LNt4BxiGoXnz5um+++770S83/lNJSYnmzp2rkSNHcvYYgGqnxpyDcOLECR09etTuoaMkdenSRX379tXMmTOdmKxqpk+fLpvNdt1PdTzE/tqO0cSJE+0+db1+/foaOnSoFi9e7OR0lecuvUvS8uXL1bdvX7uGjpLk7e2tiRMnaunSpRXX36wu3Kn3PXv2qE6dOnYPHSVp0KBBOnXqlM6dO+fEZFXjLt1nZ2frwIEDdg8dJalTp05q0KCBtm/f7sRkVeMuvZeXl2vRokWaNGmSXUNHSQoNDdWDDz6oJUuWODld5blL75K0bNkyDRgwwK6hoyT5+Pho0qRJWrJkSbW7trI79b5r1y7VrVvX7qGjJN1///06duyY0tPTnZisatyl+4yMDCUnJ9s9dJSkrl27Kjg4WImJiU5MVjXu0ntZWZk+//xzTZo0ya6hoyQ1bNhQgwYN0tKlS52crvLcpXdJ+vLLL3X//ffbNXSUJF9fX02cOFGLFy/mupsAqp0aM3hctGhRlU6b7tq1q0pKSqrlBjwiIkJpaWkVP/v377c60g22bt2q++67z+4PK9cEBwerSZMmOn/+vJOSVZ079H758mXVqlWr0h+mbDabhg8frvXr1zspWdW5Q++SdPLkSfXs2bPSyz344IP69ttvnZDIce7QfXx8vB5++OFKL9elSxedOXOmWt6UwB16T0hI0ODBgyt9vcz69eurYcOGyszMdFKyqnOH3nNychQYGKgGDRpUajkvLy89/PDDio+Pd04wB7hD75J06tSpSn2xdM1DDz2kLVu2OCGR49yh+4SEBA0bNqzSy3Xv3l2nT592QiLHuUPvGzdu1NChQyt9vczQ0FDddtttunDhgpOSVZ079J6dna369esrJCSkUst5e3vroYce0ubNm52UDACqpnLTIDdVWFioJk2aVPlw/8GDB2vmzJl6/PHHTU7mGB8fn2r7Ld01aWlpio6OrtKyUVFR+uKLLzRixAiTUznGHXpfv369Bg8eXKVl69atqytXrpicyHHu0PuBAwfUsWPHKi9fp04d5eXlVbvrbFb37ouLi+Xr61vlbXyvXr20Y8cO9erVy+RkjqnuvUtSVlaWYmJiqrRsnz59tHTpUg0fPtzkVI5xh97j4+M1dOjQKi1br1495eTkmJzIce7Qe1JSUqWOdPwhPz8/FRQU3PR6y1aq7t0XFhbe9Np29urevbt2795dpYGxM1X33qXvLn9U2eHXNX379tWyZcvYxlfB5s2bqzRol74b+mZnZ5ucCAAcUyOOePy///u/Kh0Jc02TJk2q5SDm5MmTatKkiVq2bKkxY8bo5MmTVke6Tlpamt2n+d6MzWaTt7d3tTvtt7r3bhiGysrK7D7t8Wbatm2r5ORkE1M5rrr3Ln13/SlHruEVGxtbLY82re7dr1+/3qHrNDZv3lxnz541MZE5qnvvqampatq0aZWX9/Lyks1mq3an/Vb33svLy1VeXu7QXdlbt26tEydOmJjKcdW9d+m7jK1bt67y8mzjqyYuLs6hbXzr1q2VkpJiYiJzVPfeU1JSHLrx3bVtVHU7a6y6936tL0fuyt68eXOdOXPGrEgA4LAaMXi02WwOX0i9sqczOVuvXr00a9YsrVq1Sv/617+Unp6uqKioanVKw86dO9W7d2+HniMiIqJafVh0h95zcnLsvubXj+ncubOOHj1qUiLHuUPvkhwa9kpS7dq1q90pv+7QfXFxscMXUrf3GrSu4g6979mzR3fffbdDz9G6dWulpqaalMhx7tB7ZmamQwNf6bsjwA4ePGhSIse5Q++SKn3ZmB/y8/OrdkMYd+i+rKzM4aNEHX1/Nps79L5//36HjxJt3rx5tbq2qTv0fu7cOYWHhzv0HD179tTevXvNCQQAJqgRp1o7clSAmc9hph9eXDsyMlKtWrXS7NmzNW3aNItSXc8wDIe+rZO+u9ZjddopdYfec3NzPe6u1O7Qu6eie2u4S++O3rE0ODhYOTk5atGihUmJHOMOvefm5qpevXpWxzCVO/TuqejeGjWl9+DgYOXm5ur222+3Oook9+jdjG28zWardl9kA6jZasQRj2YwDEOvv/76DXdCc/aPvaegBQYGqmPHjjp27NhNs3/xxRcuzz516lSHey8sLFRUVJTLs9t72sVP9S5JFy5ccHn21q1bm/LN7e9//3uXZ//ggw/sOhrkVr0bhuHy7DabTTt37nS494ULF7o891133WX3B9RbbWseeughl+efNWuWw70fPHjQknXG3qOfbtX7/PnzXZ79hRdecLj3/Px8devWzeXZ7T21/lbbmoyMDJdnb9++vS5duuRw96+++qrLs3/00Ud2bWtu1Xt5ebnLs9tsNiUlJTnc+9y5c12eu2/fvqZt4wcMGODy/J999pnDve/du9eSdcasbfzMmTNdnv3ll192uPcrV66oY8eOLs9u71GWt9rWnDt3zuXZu3Tpory8PIe7t9kc+2IQAMxUIwaP+fn5Dn/rk5eXp9/+9rcyDMOlP/YeaVlYWKjk5OSbXlPRZvvuTsWuzv7pp586fMfS1NRUpaWluTy7vde0+aneJSkkJMTl2QsLCx3+wJKXl6cZM2a4PPszzzxj11Gyt+rdZrO5PLthGOrevbtDvUvSqFGjXJ47MTHR7g+ot9rWLF++3OX5J02a5HDv7dq1s2Sdsfeo8Fv1PnbsWJdn/9e//qWLFy861HtaWppycnJcnr1Zs2YO9y5JjRo1cnn2q1evOtz75cuX9e6777o8+xNPPGHXtuZWvXt5ebk8u2EY6tKli0O9S9KYMWNcnnvjxo2mbePXrVvn8vxjx451uPfOnTtbss6YtY3/2c9+5vLs77//vi5fvuxQ79nZ2bpy5YrLs9t785hbbWuaNGni8uyXLl1y+PT03Nxchy9BAwBmqhGDx3vuuUfbtm2r8vJlZWXV7u5gL774ojZu3KiUlBRt375dI0eOVF5eniZPnmx1tApRUVFKSEhw6DkyMzMVGhpqUiLHuUPvtWvXVkFBgUPPsX79evXt29ekRI5zh96l764h5Uj3R44cUZs2bUxM5Dh36L5Lly7as2dPlZcvLS2tdkcGuEPvffr00aZNmxx6jpycnGp1aQh36D0gIEBXr1516Dk2bNjANr4KvL29VVxcXOXlDx486NANyJzBHbrv0KGD9u/fX+Xli4uLHb70j9ncofeYmBht2LDBoee4fPlytRqAuUPvdevWdfio9vj4eMXExJiUCAAcV73ehZ2kd+/eDp0C+c033+jRRx81MZHjUlNTNXbsWEVERGj48OGqXbu2tm3bVm2ukyU5fsfSrKysajV0lNyjd0lq1apVle9YahiGiouLVbt2bZNTVZ279O7oHUsPHDigTp06mZjIce7QfatWrRy6K+WGDRvUr18/ExM5zh169/b2lmEYVb5ZRnp6usM3wjKbO/QuSc2aNavyHUsNw1BpaWm1utmGu/Tev39/h7bxR44cqXaDR3foPiIiwqEb3q1fv179+/c3MZHj3KF3Hx8flZaWyjCqdtZYamqqmjRpYnIqx7hD75IUFham8+fPV2nZa+/L1e3+BABqNptR1XcTNzNz5kz16dNHd9xxR6WWKy0t1ZtvvqlXX33VSck828WLF7Vt2zY9+OCDlV523rx5GjNmTLX7ltpdfPbZZ5owYUKll9u0aZPCw8PVvHlzJ6TyfJ9//rmGDBkiPz+/Si13/vx5JScnV7udI3eRkJCgpk2bKrySd4IsKSnRkiVLNGbMGOcE83BZWVnavXu37rvvvkovO2/ePI0dO7baHW3qDgzD0Ny5c6u0jV+/fr3atWtXbW724G4WL16sYcOGqVatWpVaLjU1VSdOnKhWR5q6k02bNqlly5Z2XybhmuLiYi1dulSjR492UjLPlpaWpkOHDik2NrbSy3722WcaP3482/gqMAxD8+bN0/jx4yu97Nq1a9WlS5dq98UegJqtxkx0fvazn2nhwoXKyMiwexnDMPT222/rySefdGIyz1a/fn2FhoZq9+7dlVrum2++Ua9evRg6OqB///5atmxZpZY5fPiwDMNg6OiAYcOGaf78+ZU60vfSpUuKj49n6OiAPn36KDExsVKXxSgvL9e8efP08MMPOzGZZ2vQoIHq1q1b6ZturFq1quLGYag8m82me++9VytWrKjUcgcOHJCvry9DRwcMGzZM8+bNq9Q2PicnRwkJCQwdHRATE6OtW7dW6vqmbOMdFxYWJj8/v0qf6r5y5UrFxMSwja8im82mPn36aNWqVZVabu/evQoICGDoCKDa8Z4+ffp0q0O4Sp8+ffTee+8pNDRUDRo0+MnH5ufna8aMGRo3bhwf0B3UpEkTnT59WsePH7/l0Ujl5eVatmyZWrdurbZt27omoIcKCgqSn5+fvvnmG7Vr1+6WQ9xt27bp0qVLuvfee10T0EN5e3srIiJC8+bNU+vWrW95yvrp06e1YcMGPfroo3xAd1CHDh20atUq+fr6KiQk5Ccfm5eXp/nz52v48OEKCAhwUULP1KxZM504cUKnTp265elq5eXlWrp0qdq1a6fWrVu7KKFnqlu3rnx8fBQXF6eIiIhbbuO3bt2qvLw8rvvlIG9vb7Vp00bz589XmzZtbrmNT0lJ0ebNmzV69Gi28Q7q2LGjVq5cKX9/f9WrV+8nH3v16lXNmzdPo0aNkr+/v4sSeqbmzZvr6NGjOnv27C2/mC4rK9OXX36pTp06qWXLli5K6JmuXf9448aNatu27S238Zs3b1ZxcbGio6NdEQ8AKqXGnGoNAAAAAAAAwHU4jxUAAAAAAACA6Rg8AgAAAAAAADAdg0cAAAAAAAAApmPwCAAAAAAAAMB0Hj14zMrK0tNPP63w8HDVrl1bjRo1UmxsrNauXauSkhL95je/UZcuXRQQEKCwsDCNGzdOZ86cue45ioqK9Ktf/UqhoaEKCAjQ0KFDlZqaatErqv4ee+wxDRky5Ibf79y5UzabTadOndLevXs1duxYNWvWTP7+/oqIiNCMGTNUXl5e8fjCwkI99thj6tKli3x9fbnT8i2Y1Xt8fLyGDRumsLAw1alTR126dNEnn3ziypfiVszq/dChQ+rXr58aNWokPz8/tWrVSq+++qqKi4td+XLchlm9/6djx44pKChIgYGBzo7v1szq/tRYDlgTAAAgAElEQVSpU7LZbDf8rF692pUvx22Yuc4bhqF3331X7dq1U+3atRUWFqaXX37ZVS/FrZjV+/Tp02+6vttsNmVmZrryJbkFM9f3NWvWqHfv3goKClJoaKiGDRumo0ePuuqluB0zu1+0aJG6deumOnXqqEWLFpoxY4arXoZbMmO/9cSJE3rkkUfUoEED1a1bV6NHj1ZGRoZFrwgA/s3H6gDONGLECOXn5+vjjz9WmzZtlJmZqY0bN+rChQvKz8/X7t279dvf/lbdunXTpUuX9MILL+j+++/Xvn375OPzXTVTp07VsmXLNH/+fIWEhGjatGkaMmSIdu3aJW9vb4tfoXvatWuXGjRooDlz5qh58+basWOHpkyZopKSEr366quSpLKyMvn5+emXv/ylvv76a+Xm5lqc2v3Z0/vWrVvVuXNn/frXv1ZYWJjWrFmjJ598Un5+fho3bpzFr8A92dN7rVq1NHnyZHXv3l3BwcHau3evpkyZotLSUr355psWvwL3ZE/v1xQXF2vMmDGKiYnRxo0bLUrsOSrT/erVq9W1a9eKf9evX9/VcT2Gvb2/8MILWrFihWbMmKHOnTvr0qVLSktLszC5e7On9xdffFFPPfXUdcuNGTNGNptNDRs2tCK227On95SUFA0bNkzPPvus5syZo6tXr+rXv/61HnzwQR0/ftziV+C+7Ol+1apVGjdunN577z3df//9Onz4sKZMmSJ/f3/98pe/tPgVVE+O7rfm5eVp0KBB6ty5s+Li4mSz2fT73/9eDz30kLZt2yYvL48+3ghAdWd4qJycHEOSsXbtWruXOXjwoCHJ2Ldvn2EYhpGbm2v4+voan332WcVjzpw5Y9hsNmP16tWmZ/YEkydPNgYPHnzD7xMTEw1JRkpKyk2Xe+mll4w777zzpn975plnjL59+5qY0vM4o/drRo0aZQwfPtyMmB7Hmb0///zzRmRkpBkxPY7ZvU+dOtV47LHHjJkzZxoBAQFmx/UoZnWfkpJiSDISExOdFdWjmNV7cnKy4ePjYxw6dMhZUT2Ks7bxZ86cMby8vIy5c+eaFdWjmNX74sWLDS8vL6O0tLTid+vXrzckGVlZWabn9gRmdT927Fjj4Ycfvu4x7733ntG0aVOjvLzc1MyewIz91jVr1hg2m824ePFixWNyc3MNm81WqecFAGfw2K8+AgMDFRgYqK+++kqFhYV2LXP58mVJUr169SR9941eSUmJBg0aVPGYZs2aqX379tq6dav5oWuwy5cvV/QO17Gnd/7fmO9WnR4/flyrV69W3759XZjK892s95UrV2rFihV67733LEpVM/zYOj98+HA1bNhQ0dHR+vzzzy1I5tl+2PuyZcvUqlUrrV69Wq1atVJ4eLgmT57M6b4mu9U2/uOPP1ZwcLBGjBjhwlSe74e99+zZU76+vvroo49UVlamK1euaPbs2brrrrsUGhpqYVLP88Pui4qK5Ofnd91j/P39lZqaqtOnT7s6XrVnxn5rUVGRbDbbdb37+fnJy8tLCQkJ5ocGgErw2FOtfXx8NGvWLE2ZMkUffvihunfvrujoaI0aNUq9evW64fHFxcV64YUX9NBDD6lp06aSpPT0dHl7e9/w4aRRo0ZKT093yetwR6tXr77hOmk/dl01Sdq9e7dmzZqluXPnOjuaR3NG7ytWrFBcXJy2bNliWk5PY2bvUVFR2r17t4qKijRlyhT99a9/NT2vpzCj97S0NE2ZMkVffPGFgoKCnJbV05jRfWBgoN566y1FR0fLx8dHX331lR599FHNnj1bEyZMcFp2d2ZG7ydPntTp06e1YMECzZo1SzabTS+++KIeeughffvtt5yKdxNmv7eWl5frk08+0aRJk1S7dm1Ts3oSM3oPDw/X2rVrNWrUKD3zzDMqLy9X9+7dtWrVKqfl9gRmdH/ffffpueee0zfffKMBAwbo+PHj+vvf/y7pu/fe8PBwp2R3V2bst0ZGRiowMFAvvfSS3njjDUnSyy+/rLKyMi6nAcByHv0Jc8SIETp//ryWL1+uBx54QFu3blVkZOQNO/OlpaWaMGGCcnNzNXPmzFs+r2EYstlszort9mJiYpSUlHTdz7x582762CNHjmjw4MGaOnUq3/w7yOzet2zZUnF9nrvvvtuZ0d2amb0vXLhQu3fv1rx58/T1119XfHDEjczofcKECfrFL36hyMhIV8X2CGZ0HxoaqhdeeEGRkZHq2bOn/vSnP+n//b//xzVNf4IZvZeXl6uoqEhz5sxRTEyM7rnnHs2ZM0c7duxQYmKiq16KWzH7vXXVqlU6e/asnnjiCWfGdntm9J6enq7HH39ckyZNUmJiouLj4xUUFKTRo0f/5CCtpjOj+ylTpujZZ5/VsGHDVKtWLUVGRmrMmDGSxDXyf4Sj+60NGjTQ4sWLtWrVKgUFBem2225Tbm6u7rzzTjoHYD2rz/V2tccff9zw9fU1ioqKDMMwjJKSEmPkyJFGRESEkZaWdt1j4+LiDElGZmbmdb/v0KGD8Yc//MFlmd1JZa4Nc/jwYaNx48bG1KlTf/I5ucbjrZnd++bNm42goCDjnXfecUZcj+GM9f2aOXPmGLVr1zZKSkrMiusxzOpdkuHt7V3x4+XlVfG7f/7zn858CW7Lmev8rFmzDD8/P7OiehSzev/DH/5g+Pj4XPe78vJyw8fHx1i0aJHpud2dM9b3oUOHGlFRUWZH9Shm9f673/3O6Nat23W/O3v2rCHJ2Lx5s+m5PYHZ63xpaamRmppqFBUVGV9//bUhycjIyHBGdI9Umf3W/5SVlWXk5OQYhmEYjRo1Mt58802X5AWAH+Oxp1r/mA4dOqi0tFSFhYWy2WwaM2aMDhw4oPj4eDVu3Pi6x/bo0UO+vr5au3ZtxR19U1NTdfjwYUVFRVkR32McOnRI/fv31+jRo/XOO+9YHafGsKf3TZs2afDgwZo+fbqmTp3q4oSeqSrre3l5uUpLS1VWViYfnxq3qTbFrXrfv3//df9etmyZXn/9de3YsUNNmjRxVUyPVJV1PikpSWFhYU5O5tlu1Xt0dLRKS0t14sQJtW7dWtJ3p1+XlpaqRYsWro7rMexd38+fP6+VK1fqo48+cmE6z3Wr3vPz82840uvavzni0TH2rvPe3t4V76fz589X7969uZN7JVRmv/U/XbtM2Pr165WZmamhQ4e6KjIA3JTH7s1euHBBo0aN0s9//nN16dJFQUFB2rlzp958803FxsaqTp06GjlypBITE7V8+XLZbLaK6zbedttt8vf312233abHH39cL730kho2bKiQkBBNmzZNXbp00YABAyx+he7r4MGD6t+/v/r166dXX331uutl/ueb6KFDh1RcXKzs7GxdvXpVSUlJkqRu3bq5PLMnsKf3+Ph4DR48WE8//bTGjx9f8Rhvb281aNDAktzuzp7e58yZIz8/P3Xu3Fm1atXSzp079corr2jkyJFcA6yK7Om9U6dO1y2zc+dOeXl53fB7VI493c+ePVu+vr7q3r27vLy8tHz5cn3wwQdcXsAB9vQ+YMAA3Xnnnfr5z3+ud999V5I0depU9erVSz179rQkt7uz9zONJH3yyScKCAjQ6NGjXR3T49jT++DBg/XOO+/oj3/8o8aNG6crV67o1VdfVbNmzdSjRw+rors9e7rPzs7W4sWLde+996qoqEgzZ87U4sWLtXHjRqtiV2tm7LdK0syZM9WuXTs1bNhQ3377rZ577jk9//zzioiIsPLlAYDnDh4DAwMVGRmp//7v/9bx48dVVFSkJk2aaNy4cfrd736n1NRULVu2TJJu+PAxc+ZMPfbYY5Kkd955Rz4+Pnr00UdVUFCg2NhYffrpp1wrwwGLFy9WZmamFi5cqIULF173N8MwKv77wQcfvO7Od927d7/hMbCfPb3PmjVL+fn5euutt/TWW29V/L1FixY6deqUK+N6DHt69/Hx0d/+9jcdO3ZMhmGoRYsWeuaZZ/T8889bEdkj2Ludgfns7f4vf/mLTp8+LW9vb7Vt21affPIJN5ZxgD29e3l5acWKFXr22WcVExMjf39/DRw4UG+//TY3lqkie9d3wzD08ccfa/z48apTp46rY3oce3rv37+/5s2bpzfffFMzZsyQv7+/IiMjtXr1agUEBFgR2yPYu85/+umneumll2QYhnr37q34+HiuGf4jzNpvPXLkiF555RVdvHhR4eHh+u1vf8tnSQDVgs1gDwwAAAAAAACAyfh6GwAAAAAAAIDpGDwCAAAAAAAAMB2DRwAAAAAAAACmY/AIAAAAAAAAwHQMHgEAAAAAAACYjsEjAAAAAAAAANMxePyezWazOgIAAAAAAD+JfVcA7oTBIwAAAAAAAADTMXgEAAAAAAAAYDoGjwAAAAAAAABMx+ARAAAAAAAAgOkYPAIAAAAAAAAwHYNHAAAAAAAAAKZj8AgAAAAAAADAdAweAQAAAAAAAJiOwSMAAAAAAAAA0zF4BAAAAAAAAGA6Bo8AAAAAAAAATMfgEQAAAAAAAIDpGDwCAAAAAAAAMB2DRwAAAAAAAACmY/AIAAAAAAAAwHQMHgEAAAAAAACYjsEjAAAAAAAAANMxeAQAAAAAAABgOgaPAAAAAAAAAEzH4BEAAAAAAACA6Rg8AgAAAAAAADAdg0cAAAAAAAAApmPwCAAAAAAAAMB0DB4BAAAAAAAAmI7BIwAAAAAAAADTMXgEAAAAAAAAYDoGjwAAAAAAAABMx+ARAAAAAAAAgOkYPAIAAAAAAAAwHYNHAAAAAAAAAKZj8AgAAAAAAADAdAweAQAAAAAAAJiOwSMAAAAAAAAA0zF4BAAAAAAAAGA6Bo8AAAAAAAAATMfgEQAAAAAAAIDpGDwCAAAAAAAAMB2DRwAAAAAAAACmY/AIAAAAAAAAwHQMHgEAAAAAAACYjsEjAAAAAAAAANMxeAQAAAAAAABgOgaPAAAAAAAAAEzH4BEAAAAAAACA6Rg8AgAAAAAAADAdg0cAAAAAAAAApmPwCAAAAAAAAMB0DB4BAAAAAAAAmI7BIwAAAAAAAADTMXgEAAAAAAAAYDoGjwAAAAAAAABMx+ARAAAAAAAAgOkYPAIAAAAAAAAwHYNHAAAAAAAAAKZj8AgAAAAAAADAdAweAQAAAAAAAJiOwSMAAAAAAAAA0zF4BAAAAAAAAGA6Bo8AAAAAAAAATMfgEQAAAAAAAIDpGDwCAAAAAAAAMB2DRwAAAAAAAACmY/AIAAAAAAAAwHQMHgEAAAAAAACYjsEjAAAAAAAAANMxeAQAAAAAAABgOgaPAAAAAAAAAEzH4BEAAAAAAACA6Rg8fq+kpMTqCAAAAAAA/CT2XQG4E5thGIbVIQAAAAAAAAB4Fo54BAAAAAAAAGA6Bo8AAAAAAAAATMfgEQAAAAAAAIDpGDwCAAAAAAAAMB2DR0kbN25UXl7ej/591apV2rx5swsTAQAAAADwb+y3AnBHDB4l9evXT8ePH//Rv2/ZskVvvfWWCxMBAAAAAPBv7LcCcEcMHiXZbDYZhvGjf7/zzju1a9cuFyYCAAAAAODf2G8F4I5sxk9tuWoIb29v+fn5ycvr5nNYwzCUn5+v8vJyFycDAAAAAID9VgDuycfqANXFK6+8oubNm1sdAwAAAACAm2K/FYC74YhHfffN0e7du9W1a1erowAAAAAAcAP2WwG4I67xKGny5MmqX7++1TEAAAAAALgp9lsBuCOOePyBlJQUpaenS5IaN26sli1bWpwIAAAAAIB/Y78VgLvgiMfvvfnmm7r99tvVunVr9enTR3369FHr1q11++2364033rA6HgAAAACghmO/FYC74eYykv70pz/p7bff1ssvv6yBAweqcePGMgxDGRkZWrt2rf7617+qoKBA06dPtzoqAAAAAKAGYr8VgDviVGtJTZo00fvvv69HHnnkpn9funSpnnnmGZ07d87FyQAAAAAAYL8VgHviVGtJOTk5uuOOO370723btlVOTo4LEwEAAAAA8G/stwJwRwweJfXq1Ut/+ctfVFhYeMPfCgsL9cc//lG9evWyIBkAAAAAAOy3AnBPnGot6dChQxo0aJCuXLmie+65Rw0bNpTNZlNGRoY2bdqkoKAgrV27Vh06dLA6KgAAAACgBmK/FYA7YvD4vby8PM2fP19btmxRRkaGDMNQ48aNFRUVpXHjxikgIMDqiAAAAACAGoz9VgDuhsEjAAAAAAAAANNxjUcAAAAAAAAApmPwCAAAAAAAAMB0DB4BAAAAAAAAmI7BIwAAAAAAAADTMXj8HvfYAQAAAABUd+y7AnAn3NX6e2PGjNGCBQusjlEjHD16VAcOHJCvr68Mw5DNZlNJSYl69+6tsLAwq+N5rOzsbG3evFk+Pj4VvZeWluqOO+5Qp06drI7nsYqKihQXF6eSkhLZbDbZbDaVlZUpODhYMTEx8vLi+x9nMAxDW7ZsUXZ2try9vSs+oNtsNg0YMED+/v4WJ/RcycnJOnTo0A3b+OjoaDVq1MjqeB4rKytLCQkJFdt4SSorK1NERIQ6dOhgcTrPVVhYqLi4OJWVlUlSxTa+fv366tOnD9t4JzEMQ5s3b9bFixev69jb21uxsbHy8/OzMJ1nO3TokI4cOXLd58mSkhL16dNHDRs2tDpejcG+KwB3wuDxezabjW+OnOzbb7/VuXPn1LZtW3Xp0uW6vxmGoa1btyotLU3t27dXx44dLUrpeY4fP66kpCSFhobedNCVnJysAwcOqEGDBurbt69FKT1Pbm6u1q1bp9q1ays2NlZ16tS57u9ZWVnavHmzvLy8NGTIEPn4+FiU1LOUl5dr5cqVKi4uVnR0tBo3bnzd368NCfLz89WvXz+FhoZalNTzbNmyRenp6YqIiLjhywzDMJSQkKCMjAx17NhR7du3tyil5zl69Kj279+v0NBQ3XPPPTds4w8dOqRDhw6pYcOGiomJsSil58nJydG6devk7++v2NjYG77MyMzMVEJCgry9vTVkyBB5e3tblNSzlJWVaeXKlRWDrh9+mVFQUKD169crPz9fsbGxql+/vkVJPc/mzZuVkZGhDh063PBlRnl5uRISEpSVlaVOnTopIiLCopQ1B/uuANwJg8fvsfF2rq+++krt2rVT27Ztb/nYbdu2qbi4mB0kEyQmJio/P9+ugeLp06e1fft2jRo1SjabzQXpPFdqaqq2bt1qV5cFBQVasGCBRo8erYCAABcl9EyFhYWaP3++Ro4cqaCgoJ98rGEY+vLLL9WtWze1atXKRQk915dffqnOnTurTZs2t3zs1q1bZRiGoqOjXZDMs23fvl3FxcW65557bvnYlJQU7dq1SyNGjGAb76DTp09rx44dGjly5C27zMvL06JFi/Too4/e8AUUKqcy75eGYejzzz/XXXfdpfDwcNcE9GBLlixR9+7d7Xq/vHbkdWRkpAuS1VzsuwJwJ5z/Aaf7+uuv1b17d7uGjpIUGRmpoKAg7dixw8nJPNu+fftUUlJi91GMLVq0UP/+/fXll186OVnlTZ8+veI05Ws/PzySrbq4ePGitm7dqtGjR9u1c+/v769JkyZp0aJFKi0tdUFCz1ReXq758+drwoQJtxw6St99YB8+fLj27dunjIwMFySsHHda57/66ivdfffddg0dJSkqKkp+fn7auXOnk5NVnjv1npSUJEl2DR0lqWXLlrrnnnu0bNkyZ8byeNnZ2UpMTLT7S7qAgABNnDhRCxcurDgdG5VXVlamBQsWaOLEiXZ9SWez2TRq1Cjt3r1bWVlZLkjouZYtW6bo6Gi7v6Tr06ePvL29tWfPHicnAwC4CwaPcKpTp06pXr16atasWaWW6969u1JTU1VUVOSkZJ6tvLxchw8fVlRUVKWWCw0NVbt27bRv3z4nJau6iIgIpaWlVfzs37/f6kg3tXbtWo0aNapSy3h7e+vRRx/VihUrnJTK861atUojRoyQr69vpZYbNmyY1q9f76RUjnGHdf748eMKCwtTkyZNKrVcjx49dPr0aZWUlDgpWdW5Q+9lZWU6evSoevXqVanlGjVqpJYtW+rgwYNOSub51q1bpxEjRlRqGR8fH40ePVpff/21k1J5vlWrVmnUqFGVvizJI488onXr1jkplec7fPiwmjdvXukvYO666y4dP36cL1QBAJIYPMLJdu7cWeVTLe6//37FxcWZnKhm2LRpk2JjY6u0bIcOHXTs2DGTEznOx8dHjRs3rvhp0KCB1ZFucOHCBTVs2LBKpzHWqVNHZWVlnDZTRQUFBapbt26ll7PZbAoPD1dqaqoTUjnGHdb5vXv36q677qrSsoMGDaqWQ1936H3Dhg0aOHBglZbt2rWrDh8+bHKimiEzM1O33357lbbxAQEBKi4uZhtfBYZhqLCwUIGBgZVe1mazqWnTpkpPT3dCMs938OBBde/evUrLDhw4UBs2bDA5EQDAHTF4hNMUFRWpVq1aVb6WVJ06dVRQUGByqprhwoULDt00o27dusrNzTUxkeNOnjypJk2aqGXLlhozZoxOnjxpdaQbbNy40aFrk0ZHR2vLli0mJqoZdu3apR49elR5+cjISG3bts3EROao7ut8QUGBQ3eODQoK0tWrV01MZI7q3rv03c2r6tWrV+XlAwMDdeXKFRMT1QwJCQnq06dPlZfv1auXtm/fbmKimmHHjh2VPrr3P/Xp04f31iq4evVqlYa91wQHB+vSpUsmJgIAuCsGj3CajRs3Vvmou2tatGihc+fOmZSoZsjLy6vSkV//qV+/fkpISDApkeN69eqlWbNmadWqVfrXv/6l9PR0RUVF6cKFC1ZHu46Xl5dDdy5t3LhxtXtN7iA1NVUtW7as8vI2m63a3VXcHdZ5M7bxYWFhyszMNCmR49yh99zcXIWEhDj0HP3799emTZtMSlRzeHt733DX8Mpo2rRptbymbHWXlpZW6Uv2/KfquI13B5s2bVL//v0deo4GDRooJyfHpEQAAHfFuzCcprCw0OG79DZq1EiZmZmVvn5YTXbhwgWHTw308fGpVqeDPfDAA9f9OzIyUq1atdLs2bM1bdo0i1LdyJGh4zXcbbbyzOjMkWGCM7jDOl9SUuLQEY/Sd9v4rKwsNWzY0KRUjnGH3rOzsx3uq1atWtzopAo8cVvjDnhvtUZpaalq1arl0HM0bNhQ2dnZDh2hDQBwf3z6QbXm5eWl8vJyq2O4lfLyclM+YN/s7q7O/vnggw/s+v8dGBiojh07/ui1KA3DcHl2m82mXbt2Odw7rJGcnGzJOmPv9u2n1nnDMDR//nyXZ//Nb37jcO9eXl7q1q2by7OfPXvW4d4lKSMjw+XZ77jjDt4XUaNUpy9CUTleXl58yQEAYPAI5/Hx8VFxcbFDz5Gdna369eublKhmqF+/vsOnBRqGoddee02GYbj055lnnrHraJDCwkIlJycrLCzspn+32Wwuz24YRpUvwP7D7lE5ZnTWtm1bS9YZe49++ql13mazaezYsS7PPmPGDIfvWJqdna1Tp065PLu9p23ealvTqFEjl2fPzs52+Bq8DC6rxoxtDd1Xnhm9895aeZX5cuzHZGdnO3xpCACA+2PwCKe55557HL5j6fHjxxUeHm5OoBqibt26Dl9PJyEhQXfffbdJiRz34osvauPGjUpJSdH27ds1cuRI5eXlafLkyVZHu05JSYlDOzeXLl1SnTp1TExUM9SvX9/h66Y5OkAzmzus89HR0YqPj3foOc6cOaPbb7/dnEAmcIfeQ0JCHF7fN23apKioKJMS1RyObuMvXLjg8DWYa6K6desqOzvboeeobtt4dxAVFaWNGzc69BxpaWkOX/4HAOD+GDzCaRy9Y2lJSYl8fHxks3FdnsoKCAhwqPuMjAw1btzYxESOSU1N1dixYxUREaHhw4erdu3a2rZtm1q0aGF1tOtERkY6dMfSDRs2qF+/fiYmqhkcvWPp3r171aVLFxMTOc4d1nlH71haVFSkWrVqVattvDv0Lkn+/v7Kz8+v8vLZ2dkKDQ01MVHN0LNnT4cuqbFp0ybFxMSYmKhm6Nu3r0M3Q9q9e7cpZyTUNCEhIbp48WKVly8oKHD4OsAAAM/A4BFO1b59ex04cKBKy65bt87hu+nVVP3799fatWurtOzZs2er3c18FixYoPPnz6u4uFjnzp3TkiVL1KFDB6tj3aBp06Z2Xzvuh8rKylRWVsadN6vg2rXvqnpphyNHjqht27Ymp3KMu6zzbdq00ZEjR6q07Lp16xy+K7bZ3KX32NjYKm/jU1JS1Lx5c5MT1Qzh4eFKSUmp0rKlpaUyDMOUG6XUNF5eXrLZbFU+avH48eNq1aqVyalqhvDwcJ04caJKy65du1YDBgwwOREAwB0xeIRTdezYUQcPHqz09ahOnDghX19fBQUFOSmZZ6tVq5YaNmyogwcPVmq5goICxcfHKzIy0knJPN/dd9+tNWvWVGoZw/ju5iD333+/k1J5vgcffFDz58+v9GmQ69ev50gYB3Tt2lW7d+/W5cuXK7XcsWPH5O/vz6UFqsjPz0/16tXT4cOHK7VcXl6etmzZorvuustJyTxfz549Kz30vbaN/+Fd02G/+++/X/Pmzav0Nn7dunXq0aOHk1J5vh49emjbtm2VPosmOTlZt912G0c8AgAkMXiEC4wePVorV660+5pUycnJSk5O5ltSB0VHRys9PV1JSUl2PT43N1cLFy7U2LFjq9Wpj+6mRYsWatasmVavXm3X48vLyzV//nwNGjRIAQEBTk7nuWrXrq2hQ4dqzpw5dh8VExcXp5CQEN1xxx1OTufZHn30US1btkxZWVl2Pf7QoUM6fvw4R7Q7KCYmRqmpqdq/f79dj7948aI+//xztvEOatmypcLCwuz+gqmsrExz587VAw88IH9/fyen81z+/v4aPHiwPvvsM7vvkrx27Vo1atRIrVu3dnI6zzZ27FgtWbLE7mhI2zAAACAASURBVNOuDxw4oDNnzqhv375OTgYAcBc2g9u8Sfr3XXABAAAAAKiu2HcF4E444hEAAAAAAACA6Rg8AgAAAAAAADAdg0cAAAAAAAAApmPwCAAAAAAAAMB0DB5hqscee0w2m002m00+Pj5q3ry5fvGLXygnJ6fiMR9++KH69eun4OBg2Ww2nTp16obnef311xUdHa2AgADuvmkHM3o/deqUHn/8cbVq1Ur+/v5q1aqVXnnlFRUUFLj41bgXM7ovLy/X0KFD1bx5c/n5+SksLEwTJkzQuXPnXPxq3IdZ25prCgsL1bVrV9lsNu3cudMFr8A9mdV7eHh4xfNc+3n55Zdd+Erci5nr+5o1a9S7d2/VqVNHwcHBio2NddGrcD9m9B4fH3/Dun7tZ/HixS5+Re7DrHX+6NGjevjhhxUaGqqgoCBFRkZq9erVLnwl7sWs3nfv3q2BAwcqODhYISEhevLJJ3X16lUXvhIAQHXC4BGmGzBggNLS0nTq1Cl99NFHWr58uZ5++umKv+fn52vQoEGaPn36jz5HUVGRhg8frqlTp7ogsWdwtPfk5GSVlZXpf//3f3Xw4EH9z//8jz799FM999xzLnoF7suMdb5///5atGiRjhw5oiVLlujkyZN65JFHXJDefZnR+zUvvviimjZt6sS0nsOs3v/whz8oLS2t4ud3v/udk5O7NzN6X7p0qcaMGaOJEydqz549+vbbb/Xzn//cBendl6O9R0VFXbeep6Wl6ZVXXlFgYKAeeOABF70K92TGOj9kyBAVFhYqLi5Oe/bsUZ8+fTRs2DCdOHHCBa/APTna+/nz5zVgwAC1atVK27dv1+rVq3Xw4EE99thjrnkBAIDqx4BhGIZBFeaYPHmyMXjw4Ot+N23aNKN+/fo3PDYxMdGQZKSkpPzo8y1evJj/N3Ywu/drPvjgg5s+B/7NWd0vW7bMkGQUFBSYFdWjmNn70qVLjQ4dOhiHDh0yJBmJiYnOiOwRzOq9RYsWxowZM5wV0+OY0XtpaanRrFkz48MPP3RmVI/irO1727ZtjSlTppgV0yOZ0X1WVpYhyVi/fn3F70pKSgwvLy9j8eLFTsnt7szo/Z///KcREhJilJaWVvxu3759hiTj2LFjTsldE7F/BMCdcMQjnOrkyZNavXq1fH19rY5So5jV++XLl1WvXj2TUtUMZnR/8eJFzZ07V7169ZKfn5+J6TxXVXtPTU3VL37xC82dO1f+/v5OSue5HFnf33rrLYWEhKhbt256/fXXVVxc7ISEnqkqve/atUtnz55V7dq1deedd6px48YaNGiQ9uzZ48SknsWM7Xt8fLyOHj2qJ5980sRknq8q3YeEhKh9+/aaM2eOrl69qrKyMn344YcKCgpSdHS0E9N6jqr0XlRUJF9fX3l7e1f87tr7a0JCgukZAQDVn4/VAeB5Vq9ercDAQJWVlamwsFCS9Pbbb1ucyvOZ3fuZM2f01ltv6dVXXzUroscyq/vf/OY3ev/995Wfn6/IyEitWLHC7KgexdHey8rKNH78eL3wwgvq1q3bT14DEv9mxvr+7LPPqnv37goJCdGOHTv08ssvKyUlRR999JEzInsER3s/efKkJOn3v/+9/v73v6tly5b64IMP1LdvXyUnJ+v22293Sm53Z/Z764cffqiuXbuqZ8+eZkX0WI52b7PZtHbtWj3yyCOqW7euvLy8VL9+fa1atUphYWHOiu32HO29f//+mjZtmv7rv/5L06ZNU15eXsU1fNPS0pySGQBQvXHEI0wXExOjpKQk7dixQ7/61a/04IMP6tlnn7U6lsczs/eMjAzdd999GjhwoJ5//nmTk3oes7p/6aWXtGfPHn3zzTfy9vbWhAkTZBiGExJ7Bkd7/+tf/ypfX19NmzbNiSk9jxnr+7Rp09SvXz916dJFTzzxhP7xj3/o448/1oULF5yU2v052nt5ebkk6be//a1GjhypHj166MMPP1RwcLDmzJnjrNhuz8z31osXL+qLL77gaEc7Odq9YRh6+umnFRISos2bN2vHjh0aOXKkRowYwc3bfoKjvXfs2FGzZ8/Wu+++qzp16qhx48Zq2bKlGjVqdN1RkACAmoPBI0xXp04dtWnTRp07d9Z7772n/Px8/fnPf7Y6lsczq/f09HT169dPnTp10pw5c7iruB3M6j40NFRt27bVwIEDtWDBAq1Zs4bTkn6Co73HxcVpw4YN8vX1lY+Pj9q0aSNJioyM1Pjx450V2+05Yxvfq1cvSdLx48fNiOiRHO392hFeHTp0qPidj4+P7rjjDp05c8b0vJ7CzPV99uzZ8vLyYvtiJ0e7X79+vZYvX6758+crOjpad955p/7xj38oICBAM2fOdGJy92bGOj9u3Dilp6fr3LlzunDhgqZPn66srCy1bNnSSakBANUZg0c43WuvvaY33nhD58+ftzpKjVKV3tPS0nTvvfeqffv2mj9/vnx8uBpDVZixzl87OqmoqMisWB6vsr3PnDlTe/fuVVJSkpKSkvT1119LkubOnas33njDmVE9ihnre1JSkiRx+mMlVLb3Hj16qHbt2jpy5EjF78rLy3XixAm1aNHCWTE9jiPr+0cffaTRo0frtttuc0Iyz1fZ7vPz8yVJXl7X7+54eXlVvMfi1hxZ5xs1aqTAwEAtXLhQfn5+GjhwoBMSAgCqOwaPcLp7771XHTt21F/+8hdJ3x1Rl5SUpKNHj0qSDh06pKSkJF28eLFimTNnzigpKanimmvXBgNXr151eX53Vdnez58/r759+6px48Z69913lZ2drfT0dKWnp6usrMyy1+GOKtv9t99+qw8++EB79+7V6dOntX79eo0dO1bh4eHq06ePZa/D3VS295YtW6pTp04VP23btpUktW7dWk2bNrXmRbihqqzv77zzjpKSkpSSkqJFixbp6aef1tChQ9W8eXPLXoe7qWzvdevW1VNPPaXXXntNa9as0ZEjR/Tcc88pJydHEyZMsOx1uJuqfKaRvrupxqFDhzRlyhSXZ/YUle2+d+/eql+/vn72s59p7969Onr0qF566SWdPHlSQ4YMsex1uJuqrPPvv/++du/eraNHj+qDDz7QL3/5S/3tb39TcHCwJa8BAGAxq2+rXV1QhTkmT55sDB48+Ibfz50716hVq5Zx6tQp47XXXjMk3fAzc+bM657nZo/ZsGGD616MGzGj95kzZ97075KMlJQU174gN2JG93v27DHuvfdeo379+katWrWM8PBw46mnnjLOnj3r4lfjPsza1vynlJQUQ5KRmJjo5PTuy4zed+3aZfTq1cu47bbbDD8/PyMiIsJ47bXXjLy8PBe/Gvdh1vpeXFxsvPTSS0ajRo2MoKAgo2/fvsauXbtc+Erci5nbmUmTJhnt27d3UXL3Z1b3iYmJxqBBg4z69esbQUFBxt13322sWLHCha/EvZjV+8SJEys+03Tp0sX49NNPXfgqagb2XQG4E5thcOcC6bs731EFAAAAAKA6Y98VgDvhVGsAAAAAAAAApmPwCAAAAAAAAMB0DB4BAAAAAAAAmI7BIwAAAAAAAADTMXgEAAAAAAAAYDoGjwAAAAAAAABMx+ARlrLZbFZHqLHo3hr0bg16twa9W4furUHv1qB3a9A7AMAeDB4BAAAAAAAAmI7BIwAAAAAAAADTMXgEAAAAAAAAYDoGjwAAAAAAAABMx+ARAAAAAAAAgOkYPMJSr732mtURaiy6twa9W4PerUHv1qF7a9C7NejdGvQOALCHzTAMw+oQ1YHNZhNVuF55ebm8vJh/W4HurUHv1qB3a9C7dejeGvRuDXq3Br1bh31XAO6EweP32HgDAAAAAKo79l0BuBO+ogIAAAAAAABgOgaPAAAAAAAAAEzH4BEAAAAAAACA6Rg8AgAAAAAAADCdj9UBUDONHTtWTZs21YwZMyp+t2bNGm3btu26x7322muujubx6N4a9G4NercGvVuH7q1B79agd2vQOwCgMrir9fe4M5hrNW3aVPPmzVNMTEzF7z7//HM99thjatWqlUpLS5WcnKzy8nILU3omurcGvVuD3q1B79ahe2vQuzXo3Rr0bj32XQG4E454hCWys7PVvHnz637Xrl07BQcHa9++fcrKylKjRo0sSufZ6N4a9G4NercGvVuH7q1B79agd2vQOwCgMrjGIyzRoEEDZWRkXPe7zMxM1apVS5L4Bs+J6N4a9G4NercGvVuH7q1B79agd2vQOwCgMhg8whKRkZH685//rMLCQklSXl6e/vznP6tXr14WJ/N8dG8NercGvVuD3q1D99agd2vQuzXoHQBQGVzj8XtcJ8O1kpOTFRkZqTp16qhdu3Y6ePCgvLy8tHXrVrVs2VIXLlxQ586ddf78eaujehy6twa9W4PerUHv1qF7a9C7NejdGvRuPfZdAbgTBo/fY+PtemfPntXs2bOVlpamO+64Q5MnT1a9evWsjlUj0L016N0a9G4NercO3VuD3q1B79agd2ux7wrAnTB4/B4bbwAAAABAdce+KwB3wjUeAQAAAAAAAJiOwSMAAAAAAAAA0zF4BAAAAAAAAGA6Bo+wFNcmsQ7dW4PerUHv1qB369C9NejdGvRuDXoHANiDwSMs5eXFKmgVurcGvVuD3q1B79ahe2vQuzXo3Rr0DgCwB+8WAAAAAAAAAEzH4BEAAAAAAACA6Rg8AgAAAAAAADAdg0cAAAAAAAAApmPwCAAAAAAAAMB0DB4BAAAAAAAAmI7BIwAAAAAAAADTMXgEAAAAAAAAYDoGjwAAAAAAAABMx+ARAAAAAAAAgOkYPAIAAAAAAAAwHYNHAAAAAAAAAKZj8AgAAAAAAADAdAweAQAAAAAAAJiOwSMAAP+/vTuPjqq+/z/+mmyEJBCWEEAMCQFFECg7ISCEVQQiyCZrwqRqq12sFY9bvy1tT9tjv11sbT1KayYhFIQIKiCgbIGwKQgICqKsYUkgIWBIINvM/f3h1/yKgCSZO2uej3PmHJjMvbzu+wyfzLzv594PAAAAAMB0NB4BAAAAAAAAmI7GIwAAAAAAAADT0XgEAAAAAAAAYDoajwAAAAAAAABMR+MRAAAAAAAAgOloPAIAAAAAAAAwHY1HAAAAAAAAAKaj8fh/Onfu7OkIAAAAAAAAgN+wGIZheDqENzAMQxaLxdMxGhyLxSLegp5B7T2DunsGdfcM6u451N4zqLtnUHfPoO6eQ+0B+BJmPP4fmo4AAAAAAACAeYI8HcDTTp06pc8//1xXr15VbGysevbsqYAA+rGudu3aNeXn5yswMFCnTp1S27ZtFRIS4ulYfq+6ulrnzp3TV199JUkqKytTeHi4h1P5P8MwdP78eV28eFGSVFxcrBYtWng4VcNw+fJlXbhwQQEBATp37pzatm3LiSY3uHr1qgoKChQYGKi8vDy1bdtWwcHBno7l9xjjPcMwDBUUFKi4uFgSY7w7Xbp0qWaMz8/PV5s2bRjj3aCsrIwx3gOqqqqUn59fM8ZfvXpVYWFhHk4FALfXIC+1rq6u1muvvSa73a577rlHsbGxCgkJUWFhofbv36+ioiLNmTNH7du393RUv3Pw4EEdOXJE4eHhiomJUXh4uEpKSnTq1ClVVFSof//+io2N9XRMv5Ofn6/t27crMDBQHTp0UGRkpEpKSlRQUKArV64oLi5Offv29XRMv1NWVqaNGzeqsrJSMTExioqKUmVlpQoLC3XhwgVFRkZq2LBhCgpq8OeATGW327VlyxYVFxcrKipKbdu2VVBQkIqLi3Xq1CkFBQVpxIgRatKkiaej+p1PPvlEX375pcLDw9W+fXuFhYWppKREJ0+eVGVlpQYMGMDvVhc4e/asdu7cqeDgYMXGxioyMlJfffWVzp8/rytXrqhjx47q1auXp2P6ndLSUm3cuFFVVVVq3769WrZsqYqKChUWFqqwsFDNmzdXUlKSAgMDPR3Vr9jtduXk5OjSpUtq1aqV2rRpo6CgIF28eFGnT5+uGeMjIiI8HdXv7Nu3T8eOHVNERIRiYmKuG+OrqqqUkJCgO++809Mx/c7p06f14YcfKjg4WHFxcWratKm++uorFRQUqKysTB07dlTPnj09HRMAbqnBNR7Xrl2ro0ePavr06WrVqtVNX1NdXa333ntPX375pebNm+fmhP7p8uXLWrlypQYMGHDLhXwMw9CePXv0xRdfaNq0aZw5NYHD4VB2drbuvPNOJSYm3nIWwIkTJ7Rt2zaNHj1arVu3dnNK/7Rx40aVl5dr5MiRatSo0U1fc/nyZa1fv1533XUXHxhNcujQIR04cECjRo1Sy5Ytb/qaqqoqbdy4UZI0ZswYd8bzW8XFxVq9erUGDhyou+6666avMQxDH330kY4dO6Zp06bRcDeB3W7XsmXLFBcXp4SEhFuO8ceOHdP27dv1wAMP3PKzD+pm/fr1qq6u1ogRI255xcalS5e0fv163XPPPerRo4ebE/qngwcP6tChQxo1atQtZ5VWVlZq48aNCgwM1OjRo92c0D8VFRVpzZo1SkxMVKdOnW76GsMw9OGHH+rEiROaNm0aDXcTVFdXa9myZYqPj9eAAQNuOcYfPXpUO3bs0Lhx42752QcAPKlBNR5XrFihxo0b64EHHqjV60+fPq2srCy98MILLk7m34qLi7V27VrNnDmzVpe/lJeXa/HixZozZw7NRyc4HA5lZWVp8uTJtTrrbxiGVqxYoYSEBLVr184NCf3XmjVrdPfdd9/yw/m37dq1SwEBAerfv7+Lk/m3/fv3q6SkREOGDKnV6/Py8rRv3z5NmDDBxcn8W2FhoTZs2KDp06fXaoy/du2alixZopSUFJqPTrDb7crKytLUqVNrdTm1YRjKzs7WkCFD1KZNGzck9F+rV69W165dFR8fX6vX79ixQyEhIVxZ4KSPP/5Y5eXlGjRoUK1ef/LkSR08eFDJyckuTubfzp8/r5ycHE2bNq1WY/zVq1e1dOlSpaSk0Hx0QnV1tbKysjR9+nQ1btz4tq83DENLly7V8OHDFR0d7YaEAFB7DeZmhnv27JHD4ah101GSYmJiNGPGDL3yyisuTFY/8+fPl8Viue7hjV8k7Ha7Vq1aVeumoySFhoZq1qxZWrZsmYvT1Z2v1F2Sli9frkmTJtX6UiOLxaLJkydry5YtKi8vd3G6uvGlum/fvl3x8fG1bjpKUkJCgsrLy/Xll1+6MFn9+Ert8/LyVFhYWOumoyS1b99ePXr00ObNm12YrH58pe7V1dVas2ZNrZuOktS4cWPNmDGDMd5Jb731Vq2bjtLXY/y0adO0YcMGVVRUuDhd3fhS3XNzc9W5c+daNx0lKTExUaWlpTp+/LgLk9WPr9T+xIkT+uqrr2rddJSkuLg4denSRVu3bnVhsvrxlbpXVlbqgw8+qHXTUZLCwsL08MMPKzs728Xp6s5X6i5J2dnZtW46Sl+P8Q8//LDWrVunqqoqF6cDgLppMI3HTZs2acqUKXXerkOHDoqIiFBlZaULUjmnc+fOys/Pr3kcPHjQ05FukJOTo+Tk5Drf6LtRo0bq2rWrjh075qJk9ecLdS8sLFR0dHS97mE3adKkmstQvYkv1N0wDOXn5+uee+6p87ZDhgzRgQMHXJDKeb5Q+927d2vUqFF13q5Dhw4qLi6Ww+FwQSrn+ELdN2/erIceeqjOY3zjxo3VqVMn5eXluShZ/flC3fPz89WuXbt6LRzz0EMPadOmTS5I5RxfqLthGLpw4cItbyfwXZKSkrRv3z4XpHKeL9R+7969Gj58eJ2369SpkwoLC+WNF3j5Qt03bdpUrzE+LCxM7du317lz51yUrP58oe5nzpxRfHx8rZuO37BYLHrooYe88oQqgIatQVzjVFxc7NTN7B988EG9/vrr+slPfmJiKucFBQV57Vm6b1y6dKneKzv26tVLy5cvV8eOHU1O5RxfqHtubq4mTpxYr21DQ0N17do1kxM5zxfqvnv3bvXr16/e2zdr1kyXLl1S8+bNTUzlPG+vfVlZmVOrOt53333Kzc3V0KFDTUzlPG+vuySVlJSoadOm9dq2X79+WrFihdctNuMLdd++fbsmT55cr23Dw8NVVlZmciLn+ULdd+7cqYEDB9Z7+yZNmjj1f8ZVvL32JSUlTi0Uk5iYqB07dtRptqQ7eHvdpa9/v9a39gMHDtTy5cvrNfHDlXyh7h9++KEmTZpUr22bNGmiK1eumJwIAJzTIGY8pqenO3UPL2+9Se/x48fVrl07dejQQdOnT/e6S3iOHz+uDh06OLWPRo0aed1lv95ed4fDIYvFooCA+v/37tWrl9fNzPD2uktfX+7rzKrsSUlJ2rJli4mJzOHttd+0aVO9ZsJ8Izo6WoWFhSYmMoe31/2LL76o18yvb1gsFgUHB3vdFQXeXne73a7AwMA6z0D6b926dfO6WT7eXnfp65mmd9xxR723Hz58uFfORPL22m/evNmpMb5t27YqKCgwMZE5vL3un332mbp27Vrv7S0Wi4KCglRdXW1iKud5e92rqqoUFBTk1BjfuXNnff755yamAgDnNIjGY0hISJ2nqn9bfWftucqAAQOUkZGhtWvX6l//+pcKCgqUmJioixcvejpajU8//VS9e/d2ah933XWXTp06ZVIi5/lC3YuLi51embpjx446c+aMSYmc5wt1l3TL1atrKzAw0OtuxN5Qan+rVWk9xRfqfuTIEadX6o2Pj9fZs2dNSuQ8X6j7+fPnFRMT49Q+7rnnHp04ccKkRM7zhbpLzo8TQUFBTp0UdAVfqH1AQIDTiw0yxtfd8ePH1aVLF6f20b59e50/f96kRM7zhbqfO3fO6Ykb3bp188r7hgNouBrEpdZmfMjztmbAtxfJSUhIUHx8vDIzM/Xzn//cQ6lu5MzZOkmKjIz0qnuA+ULdzbqMy5vuh+QLdZfMqZk31V3yjdp7W83M4At1N0NkZKRXfeHzhbp746W6zvKFukuMNZ7C71bPMKNmkZGRunz5stq1a2dCIuf5Qt398XM8AHjXaVcvZhiGfve7392wEpqrH3a7vVb5IiIidO+999707JZhGFqxYoXbsz/55JNO172srEwDBw50e/baXnbxXXWXpIsXL7o9e8eOHXXhwgWna/+LX/zC7dn/+c9/1mqRj9vV3TAMt2e3WCz66KOPnK77m2++6fbc/fr1q/UH1NuNNd8sJuXOh81mc7ruBw8e9Mh7praL2tyu7kuWLHF7djO+pJWUlKhXr15uz3769Gmn6y59PfvQ3dm7dOliSrP2ueeec3v2f//737Uaa25X929uKeLux969e52ue1ZWlttzDx061LQxfuTIkW7Pv3DhQqfrvn//fo+8Z8wa4202m9uzP/vss07Xvbi4WN26dXN79tpeWn+7sebs2bNuz96jRw999dVXTtfeYnFu8gcAmKlBNB5LS0udXrH0ypUrevHFF2UYhlsftZ1pWV5ers8//1xt27a94WcWi0WTJk1ye/bs7GynL5M+deqULl686Pbs8fHxTtdd+vr+oO7OXllZ6fTCAZcuXdLf/vY3t2f/0Y9+VKsZyreru8VicXt2wzDUp08fp+ouSVOnTnV77t27d9f6A+rtxppVq1a5PX9KSooMw7kz+126dPHIe6a2M/JvV/cZM2a4PXtWVpbTK5aePXtWV65ccXv22l6qfLuxpnXr1m7Pfu3aNRUXFztV98LCQr322mtuz/7II4/Uaqy5Xd0DAgLcnt0wDH3ve99zqu6GYXjk/+qWLVtMG+M3bNjg9vyzZs2SYTg3xnfv3t0j7xmzxnir1er27P/617+cPpFdVFSkq1evuj17bRePud1Y065dO7dnLy0tdfqepPn5+V67RgGAhqlBNB6Tk5O1adOmem9fWVnp9Id8s82bN09btmzRiRMn9OGHH2rKlCkqKytTamqqp6PV6NOnj3bv3u3UPoqLi9WsWTOTEjnPF+oeHBysiooKp/aRk5OjIUOGmJTIeb5Qd+nr1WJLSkrqvf2+ffucvmee2Xyh9gMGDNCOHTvqvf21a9ecvn+Y2Xyl7jt37nRqH1euXHFqtVqz+ULdQ0NDde3aNaf2sXXrVg0ePNikRM7zhbpLX9femRN7e/bscfre12bzhdr37dvXqSsKysrKnL4PsNl8oe6JiYnKzc11ah9lZWVO32ffTL5Q9/DwcJWWljq1j3/84x9asWKFDh06ZFIqAHBOg2g83nvvvU6t3rhq1SqlpaWZmMh5Z86c0YwZM9S5c2dNmjRJjRo10q5du5xaUddsFotzK5bm5eU5fQN9s/lC3SXnVix1OBwyjNrPtnUHX6n78OHDnTrJcezYMXXs2NHERM7zhdrfcccdys/Pr/f2Gzdu1MiRI01M5DxfqLvFYlFgYKCqqqrqtf3x48fl7A30zeYLdZecW7HUbrfLYrF41SInvlL3ESNGaOPGjfXePi8vz+uOyRdqHxMT49SCdxs3btSIESNMTOQ8X6h7QECALJba3/bp244cOaK7777b5FTO8YW6S18vvHbs2LF6bVtdXa24uDgFBQVp5MiRSkhI0Ouvv27K5dsAUF8Ww9lrF3zE8uXLFRsbq759+9Zpu6tXr+qvf/2rXnzxRRcl82+lpaV6//33NXny5DptZxhfX8Y3Z84c7lFSTwsXLtTs2bPr/OVy7dq16tu3r1q1auWiZP5t5cqVGjJkSJ1n6n7xxRe6ePGiBg4c6KJk/m3v3r0KDg5W9+7d67RdfccofK2kpEQbN27UQw89VKftvhnjU1JSXJTM/y1cuLBevyNXr16tgQMHchlePb3zzjsaNmyYIiMj67Td4cOHdeXKFfXv399Fyfzb7t27FR4erq5du9Zpu/qOUfjapUuXlJubqwcffLBO2zHGO6++Y/y7776rpKQkRUZGqrq6Wh988IHS09O1YcMGjR8/XlarVcOGDfOqk08A/F+DGXEmT56s3NxcffHF4zcA4QAAIABJREFUF7XeprKyUn/84x/19NNPuzCZf4uIiFCXLl20efPmOm23fPlyjRkzhqajEyZMmKDFixfX6b5Iu3btUnR0NE1HJyQnJ+vdd9+t0+V4Z86c0eHDh2k6OqF37946c+ZMrReGkqSKigplZ2dr4sSJLkzm35o2bapOnTppy5Yttd7GMAwtXbpUY8eOdWEy/5ecnKwlS5bUaYzfvn272rVrR9PRCQ8++KDefvvtOl3unpeXp6NHj9J0dEK/fv10/PjxOt07/Nq1a1q+fLkmTJjgwmT+rXnz5oqNjdW2bdtqvY1hGHrzzTc1fvx4Fybzf+PGjdOyZcvqNMbn5uaqQ4cONSdGgoKCNHbsWL311ls1Y9DTTz+t+Ph4zZ8/XydPnnRRegC4XoOZ8QgAAAAAAKSoqCh973vfk9Vq1aRJkxQWFubpSAD8VIOZ8QgAAAAAAKSzZ8/qhz/8oRYvXqw777xTjz32mHbt2uX0KvIA8G3MeAQAAAAAoIE6e/asFi5cKJvNpsDAQFmtVs2ZM0dt27b1dDQAfoDGIwAAAAAADZxhGNq+fbtsNptWrFihwYMHy2q1avz48QoJCfF0PAA+isYjAAAAAACoUVpaquXLlys9PV2HDx/WrFmzZLVa1aNHD09HA+BjaDwCAAAAAICbOnbsmDIyMpSRkaHWrVvLarVqxowZatGihaejAfABfr24TGFhoZ544gnFxcWpUaNGat26tUaMGKH169dLklasWKH7779frVq1ksViUU5Ozg37qKio0E9+8hNFRUUpPDxcDz74oM6cOePmI/Edc+fO1fjx4294fs+ePbJYLDp58qQk6cknn1Tfvn0VGhqquLi4G15fXl6uuXPnqkePHgoODlZSUpJrg/s4s+qek5OjCRMmqG3btgoLC1OPHj2Unp7u4vS+y6y6Hzp0SMOGDVPr1q0VGhqq+Ph4vfDCC6qsrHTxEfgms+r+37788ks1adJEERERLkjsP8yq/cmTJ2WxWG54rFu3zsVH4JvMfM8bhqGXX35Z99xzjxo1aqS2bdvqueeec2F632VW3efPn3/T97vFYtGFCxdcfBS+x8z3+/vvv6+BAweqSZMmioqK0oQJE/TFF1+4ML1vM7P2y5YtU8+ePRUWFqbY2Fj97//+rwuT+z4zvrceO3ZMDz30kFq1aqWmTZtq2rRpOn/+vCn5OnbsqN/+9rc6efKkfv/732vbtm2Kj4/Xww8/rHXr1slut5vy7wDwT37deJw8ebI++ugjvfHGG/riiy+0evVqPfDAA7p48aIkqaysTImJifrLX/5yy3387Gc/0/Lly7VkyRLl5uaqpKRE48ePZ3B1ksPhUGpqqlJSUm76c7vdrtDQUP34xz/WuHHj3JzOf92u7jt27FD37t311ltv6dNPP9Xjjz+uxx57TIsXL3ZzUv9yu7qHhIQoNTVVH3zwgY4cOaKXX35Zb7zxhn7xi1+4Oal/uV3dv1FZWanp06dryJAhbkrm/2pb+3Xr1ik/P7/mMXz4cDcl9E+1qfvTTz+tV199VS+99JIOHz6sNWvW8N530u3qPm/evOve5/n5+Ro6dKiSkpIUHR3t5rT+43Z1P3HihCZMmKD77rtP+/bt04YNG3Tt2jWNHTvWzUn9z+1qv3btWs2cOVOPPfaYPv30U7366qv661//qn/84x9uTuo7nP3eWlZWptGjR8swDG3cuFHbt29XZWWlkpOT5XA4TMsZGBio0aNHa8mSJTpx4oSGDh2q//mf/1FcXJxefPFFHT161LR/C4D/CPJ0AFe5fPmycnNztX79eo0YMUKSFBsbq379+tW8Zs6cOZKkoqKim+7jq6++0htvvCGbzaZRo0ZJkrKyshQbG6sNGzbo/vvvd/FR+K9XXnlFkvSnP/1JH3zwwQ0/Dw8P12uvvSZJOnDggC5fvuzWfP7qdnV/4YUXrvv7448/rs2bN2v58uWaOXOmWzL6o9vVvVOnTurUqVPN32NjY5WTk6Pc3Fy3ZfRHt6v7N5599ln16NFDQ4cO1ZYtW9wVz6/VtvYtW7ZUmzZt3BXL792u7keOHNErr7yiAwcOqEuXLjXP9+rVy20Z/dHt6h4REXHdbOrTp08rNzdXWVlZbsvoj25X948//lhVVVX6wx/+oMDAQEnS888/r+HDh6uoqEhRUVFuzetPblf7rKwsJScn64knnpAkxcfH6/nnn9dLL72kH/3oR7JYLG7N6+3M+N66fft2nThxQnv27FHz5s0lSZmZmWrevLk2bdqkkSNHmp67efPmeuKJJ/TEE0/o4MGDstlsGjRokDp37iyr1aqpU6dyJQkASX484/GbD3krV65UeXl5vfbxzQeW0aNH1zwXExOjLl26aMeOHWZFBbxaSUlJzQcYuMfRo0e1bt06DR061NNR/N57772n1atX6+9//7unozRIkyZNUnR0tAYNGqS33nrL03H83rvvvqv4+HitW7dO8fHxiouLU2pqKpf7utkbb7yhZs2aafLkyZ6O4tf69u2r4OBg/fvf/5bdbteVK1eUmZmpfv360XR0sYqKCoWGhl73XOPGjXXmzBmdOnXKQ6m8lxnfWysqKmSxWK6re2hoqAICArRt2zazot5S9+7d9Ze//EWnT5/Wz3/+c7399tuKiYlRWlqacnNzxbISQMPmtzMeg4KClJGRoUcffVQLFixQr169NGjQIE2dOlUDBgyo1T4KCgoUGBh4w4eT1q1bq6CgwBWx/cK6detuOLtl5hR/3Jwr6r569eqayzVwc2bWPTExUXv37lVFRYUeffRR/f73vzcjol8yo+75+fl69NFHtWLFCjVp0sTMeH7NjNpHREToT3/6kwYNGqSgoCCtXLlSDz/8sDIzMzV79mwz4/oNM+p+/PhxnTp1Sm+++aYyMjJksVg0b948JScna+fOnQoI8Nvz0fVm9u9Wh8Oh9PR0paSkqFGjRs7G81tm1D0uLk7r16/X1KlT9aMf/UgOh0O9evXS2rVrzYzqd8yo/f33368nn3xSH3zwgUaOHKmjR4/qz3/+s6Svf/fe7r7LDY0Z31sTEhIUERGhZ555Ri+99JIk6bnnnpPdbld+fr4r418nJCREEydO1MSJE1VQUKBFixbpBz/4gaqqqmS1WpWSkqI777zTbXkAeAe//oQ5efJknTt3TqtWrdIDDzygHTt2KCEhwekv84ZhcInAdxgyZIj2799/3YN7BLqe2XXfvn27Zs6cqb///e/q37+/iUn9i5l1X7p0qfbu3avFixdrzZo1NR8ccSMz6j579mw9/vjjSkhIcFFK/2RG7aOiovT0008rISFBffv21W9+8xv94Ac/0B//+EcXpfZ9ZtTd4XCooqJCWVlZGjJkiO677z5lZWXpo48+0u7du12U3LeZ/bt17dq1On36tB555BETU/ofM+peUFCg73//+0pJSdHu3buVk5OjJk2aaNq0aZwQ/w5m1P7RRx/VT3/6U02YMEEhISFKSEjQ9OnTJanmsndcz9nvra1atVJ2drbWrl2rJk2aKDIyUpcvX1bv3r09VvM2bdpo3rx5+uyzz7Ro0SLl5eWpR48eGjNmjJYtW1bv2Z0AfI/fznj8RmhoqEaNGqVRo0bpl7/8pR555BHNnz9f8+bNU0hIyHdu26ZNG9ntdhUVFalVq1Y1z1+4cIEbsX+HsLCw6+5XJ4l7NLqBmXXftm2bxo4dq9/85jd6/PHHzYjnt8yse0xMjCSpa9eustvteuSRR/TMM88oKMjvh+o6M6PumzZt0pYtW/TrX/9a0tcnlRwOh4KCgvTqq6/qscceMy2vP3HVGD9gwADZbDan9+OvzKh727ZtFRQUpLvvvrvmubvuuktBQUHKy8ur9cyahsTs9/uCBQuUmJioe++919lofs2Muv/zn/9UeHj4dSc0Fi1apJiYGO3YsUODBw82Jau/MaP2FotFL730kn7/+9+roKBArVq10saNGyWJ2Y7fwZnvrZI0evRoHTt2TEVFRQoKClKzZs3Upk0bdejQwQ3pb81isWjAgAEaMGCA/vKXv+jtt9/WggUL9MQTT2j69OmyWq3q3bs3E3sAP+bXMx5vpmvXrqqurq7VGZY+ffooODhY69evr3nuzJkzOnz4sBITE10ZE/CYrVu36oEHHtCvfvUr/exnP/N0nAbL4XCourpadrvd01H81sGDB6+b0fGb3/xGjRs31v79+zV16lRPx2tw9u/fr7Zt23o6hl8bNGiQqqurdezYsZrnjh8/rurqasXGxnowWcNw7tw5vffee3r00Uc9HaVBuHr16g0zvb75OzMe3SMwMFDt2rVTSEiIlixZooEDB7KSex3U5Xvrf4uKilKzZs20adMmXbhwQQ8++KCLEtZdWFiYZs2apQ0bNujjjz9WdHS0pkyZop49e+rll19WYWGhpyMCcAG/nUZz8eJFTZ06VWlpaerRo4eaNGmiPXv26I9//KNGjBihpk2bqri4WHl5eTVn8Y4ePVpzZqhNmzaKjIzU97//fT3zzDOKjo5Wy5Yt9fOf/1w9evRwycpgDcnRo0dVWlqqc+fOqbKyUvv375f09S/Yb87oHTp0SJWVlSoqKlJpaWnNa3r27Omx3L7udnXPycnRuHHj9MQTT2jWrFk19zINDAy8btYv6uZ2dc/KylJoaKi6d++ukJAQ7dmzR88//7ymTJnCPcCccLu6d+vW7brX79mzRwEBATc8j7q7Xe0zMzMVHBysXr16KSAgQKtWrdI///lPbi/gpNvVfeTIkerdu7fS0tL08ssvS5J+9rOfacCAAerbt68no/u02nymkaT09HSFh4dr2rRpnorqV25X93Hjxumvf/2rfv3rX2vmzJm6cuWKXnjhBcXExKhPnz4eTu/bblf7oqIiZWdnKykpSRUVFbLZbMrOztaWLVs8nNw7mfG9VZJsNpvuueceRUdHa+fOnXryySf11FNPqXPnzp48vFuKjY3VL3/5S/3iF7/Qli1bZLPZNH/+fI0YMUJWq1Vjxozhqh/AXxh+qry83Hj++eeNvn37Gs2aNTMaN25sdOrUyXjqqaeMixcvGoZhGDabzZB0w+NXv/pVzX6uXbtm/PjHPzZatGhhNG7c2Bg/fryRl5fnoaPyfqmpqca4ceNueH737t2GJOPEiROGYRjG0KFDb1r7b35uGIYRGxt709fgRmbVPTU19aY/j42Ndd/B+BCz6r548WKjV69eRkREhBEeHm507drV+N3vfmdcvXrVjUfjO8wcZ/6bzWYzwsPDXZjc95lV+4yMDKNLly5GWFiY0aRJE6NPnz5GVlaWG4/Et5j5nj937pwxZcoUIyIiwmjVqpUxc+ZMo6CgwE1H4lvMrLvD4TDi4uKMxx9/3E3pfZeZdV+yZInRq1cvIzw83IiKijLGjx9vfPbZZ246Et9jVu0LCwuNhIQEIzw83AgLCzNGjBhh7Nq1y41H4lvM+t767LPPGq1btzaCg4ONu+66y/jzn/9sOBwODx1V/Vy+fNlYsGCBMXDgQKNNmzbGM888Yxw6dMjTsQA4yWIYrG0PAAAAAAC8w+HDh5WRkaGsrCzFxsbKarXq4YcfVmRkpKejAagjGo8AAAAAAMDrVFdXa926dbLZbNq4caOSk5NltVqVlJSkgIAGt2QF4JNoPAIAAAAAAK9WWFio//znP7LZbCopKdHcuXOVmprKaumAl6PxCAAAAAAAfIJhGNq3b59sNpuWLFmi733ve0pLS9NDDz2ksLAwT8cD8C00HgEAAAAAgM8pLy/XypUrZbPZ9OGHH9asEN6/f39ZLBZPxwMgGo8AAAAAAMDHnTlzRgsXLpTNZlNwcLCsVqvmzJmjNm3aeDoa0KDReAQAAAAAAH7BMAxt27ZNNptNb7/9tu677z5ZrVaNGzdOISEhno4HNDg0HgEAAAAAgN8pLS3VW2+9pfT0dB05ckSzZs2S1WpV9+7dPR0NaDBoPAIAAAAAAL929OhRZWRkKCMjQ23atFFaWppmzJih5s2bezoa4NdoPAIAAAAAgAbBbrdrw4YNstlsWrduncaMGaO0tDSNGDFCgYGBno4H+B0ajwAAAAAAoMEpLi7WkiVLZLPZdP78eaWmpmru3Lnq1KmTp6MBfoPGIwAAAAAAaNAOHDggm82m//znP+rSpYusVqumTJmiiIgIT0cDfBqNRwAAAAAAAEmVlZVavXq1bDabtm3bpkmTJslqtWrQoEGyWCyejgf4HBqPAAAAAAAA35Kfn69FixYpPT1ddrtdVqtVKSkpateunVP7dTgcCggIMCkl4N1oPAIAAAAAANyCYRj68MMPZbPZlJ2drQEDBshqtWrChAlq1KhRnfZVXl6uhQsX6siRIxo+fLjGjRvnotSAd6DFDgAAAAAAcAsWi0UJCQl6/fXXdebMGc2aNUuvv/662rVrp5/85Cfat29frfdVVFSkU6dOqaioSMnJyZo6daqKiopcmB7wLGY8AgAAAAAA1NGJEyeUmZmpjIwMNWvWTFarVbNmzVJUVNR3bldVVaWysjJ17txZjz/+uJ599lk1btxYdrtdgYGBbkoPuAeNRwAAAAAAgHpyOBzKyclRenq6AgIClJmZecuFaKqqqhQcHKx3331XaWlpeuedd3TffffV/Pz8+fNavny5Dh06pOTkZN1///3uOgzAJWg8AgAAAAAAmKC6ulqBgYG3bDx+s7DMqFGjFB4ergULFig6OlqSlJOTo2effVb5+flKSkrSunXrNHr0aGVmZjITEj6LezwCAAAAAACYICgo6JZNR8MwFBAQoMLCQu3YsUMPPvhgzWXZDodDP/3pTxUTE6OVK1dq4cKFys7O1o4dO/T++++78xAAU9F4BAAAAAAAcDGHwyFJWrBgge644w7169dPAQFft2XeeustHT58WPPnz1fPnj0lSUOHDlVlZaUOHz583faAL6HxCAAAAAAA4GLfXC69cOFCjRkzRrGxsZKkiooK2Ww2jRkzRt26datpMJ4/f14tWrSQ3W6XpJomJeBLgjwdAAAAAAAAwF9VV1frtddeU5MmTdSqVStduHBBY8eOVdOmTSVJ165d09atW5WZmSnp60uyJWn37t1q3LixmjdvXvP8rS7jBrwVjUcAAAAAAAAXCQgIUGlpqZ566inZ7XYFBQXp0qVLNStcHzp0SAEBAerWrZuk/z8zcuvWrTIMQ0OGDJEkmo7wSczTBQAAAAAAcJGAgAA999xzqqqq0tatWzVu3DjNnj1bqampKikpUVVVlZo1a6YTJ07UbPPJJ59o165d6tu3rzp37uzB9IBzmPEIAAAAAADgBoMHD9bgwYNVXl6ujz76SE2bNlViYqI6dOigzZs3a+TIkTpz5oyeeuopORwOzZkzRxKXWcN3WYxvbh4AAAAAAAAAt/mmobhy5Ur98Ic/lCS1bNlSZWVlevfdd9W9e/ebblNYWKjo6Gh3xwXqjMYjAAAAAACAF3j//fdVXV2twYMHKzIyUg6H44bVrA3DUOfOnRUZGam0tDRNnz69ZgEawNvQeAQAAAAAAPAhdrtd69evl81m0/vvv68HHnhAVqtVI0aMqFmcBvAGNB4BAAAAAAB81MWLF7VkyRLZbDYVFhYqNTVVc+fOVceOHT0dDaDxCAAAAAAA4A8++eQT2Ww2/ec//9G9994rq9WqKVOmKDw83NPR0EDReAQAAAAAAPAjlZWVWrVqlWw2m7Zv367JkyfLarUqMTGR1bHhVjQeAQAAAAAA/FR+fr6ysrKUnp4uwzA0d+5cpaSkqF27dp6OhgaAxiMAAAAAAICfMwxDu3btks1mU3Z2tgYOHKi0tDQlJyerUaNGno4HP0XjEQAAAAAAoAEpKyvTihUrZLPZdPDgQc2YMUNWq1W9evXydDT4GRqPAAAAAAAADdTx48eVmZmpjIwMtWjRQlarVbNmzVLLli09HQ1+gMYjAAAAAABAA+dwOLRp0ybZbDa99957GjVqlKxWq0aPHq2goCBPx4OPovEIAAAAAACAGpcvX9abb74pm82mM2fOKCUlRVarVXfffbeno8HH0HgEAAAAAADATX322WfKyMhQVlaWOnbsKKvVqmnTpqlp06aejgYfQOMRAAAAAAAA36mqqkpr166VzWbT5s2bNWHCBFmtVg0ZMkQBAQGejgcvReMRAAAAAAAAtXbhwgUtWrRI6enpunr1qqxWq1JTU9W+fXtPR4OXofEIAAAAAACAOjMMQ3v27JHNZtPSpUvVu3dvpaWlaeLEiWrcuLGn48EL0HgEAAAAAACAU8rLy/XOO+8oPT1dH3/8saZNm6a0tDT17dtXFovF0/HgITQeAQAAAAAAYJq8vDwtXLhQNptNjRs3ltVq1ezZs9W6dWtPR4Ob0XgEAAAAAACA6RwOh3Jzc2Wz2fTOO+8oKSlJVqtVY8eOVXBwsKfjwQ1oPAIAAAAAAMClrly5omXLlslms+no0aOaPXu2rFar7r33Xk9HgwvReAQAAAAAAIDbHDlyRBkZGVq4cKHatWuntLQ0TZ8+Xc2aNfN0NJiMxiMAAAAAAADcrrq6WuvXr1d6errWr1+vsWPHKi0tTcOHD1dAQICn48EENB4BAAAAAADgURcvXtTixYuVnp6u4uJipaamau7cuYqPj/d0NDiBxiMAAAAAAAC8xv79+2Wz2bR48WJ169ZNVqtVkydPVnh4uKejoY5oPAIAAAAAAMDrVFRUaNWqVbLZbNqxY4emTJkiq9WqgQMHymKxeDoeaoHGIwAAAAAAALzauXPntHDhQtlsNlksFlmtVs2ZM0d33HGHp6PhO9B4BAAAAAAAgE8wDEM7d+5Uenq6li9frsTERFmtViUnJ6tRo0aejodvofEIAAAAAAAAn1NWVqbly5crPT1dn332mWbOnCmr1aqePXt6Ohr+D41HAAAAAAAA+LRjx44pMzNTGRkZioqKktVq1cyZM9WyZUtPR2vQaDwCAAAAAADAL9jtdm3atEk2m01r1qzR6NGjZbVaNXr0aAUGBno6XoND4xEAAAAAAAB+59KlS3rzzTdls9l09uxZpaSkyGq16u677/Z0tAaDxiMAAAAAAAD82qeffiqbzaZFixbprrvuktVq1bRp09SkSRNPR/NrNB4BAAAAAADQIFRVVWnNmjVKT0/Xli1bNHHiRFmtVg0ZMkQWi8WpfZ84cUKffPJJzSXdhmEoLCxMw4YNa7CXedN4BAAAAAAAQINz/vx5LVq0SOnp6SovL5fValVqaqpiYmLqtJ9t27bp/PnziouLU58+fa772eXLl5WTkyO73a4RI0aoWbNmZh6C16PxCAAAAAAAgAbLMAzt3r1bNptNy5YtU58+fZSWlqaJEycqNDT0O7fLzs5W//79FRcXd9t/Izs7WwMGDFBsbKzJR+C9aDwCAAAAAAAAkq5du6a3335bNptNe/fu1cMPPyyr1aq+ffvecCl2dna2hg8frpYtW9Z6/2+//bYGDRqk6Ohos6N7JRqPAAAAAAAAwLecOnVKmZmZysjIUHh4uKxWq2bPnq3o6Gjt3LlTrVu3Vnx8fJ32aRiGlixZopkzZ7ootXeh8QgAAAAAAADcgsPh0NatW2Wz2fTuu+9q2LBhSkpK0pNPPlmv/e3du1eRkZHq2LGjyUm9T4CnAwAAAAAAAADeKiAgQElJScrMzFReXp4GDRqku+++u9776927t/bt22diQu9F4xEAAAAAAACohaZNm6pTp04aM2aMU/sJDAw0KZF3o/EIAAAAAAAA1FJgYOANC83UVXBwsBwOh0mJvBeNRwAAAAAAAKCWzFguJTAwUHa73YQ03o3GIwAAAAAAAOBGVVVVCg4O9nQMl6PxCAAAAAAAANRS69atdfr0aaf2UVlZaVIa70bjEQAAAAAAAKil/v3766OPPqr39ufPn1d0dLSJibwXjUcAAAAAAACgliwWi4KDg1VRUVGv7bdt26bBgwebnMo70XgEAAAAAAAA6mD06NFaunRpnReaOXDggO644w4FBDSMllzDOEoAAAAAAADAJKGhoRo3bpwWLVpU69WpP/nkExUWFmrgwIEuTuc9LIYZa4ADAAAAAAAAwH9hxiMAAAAAAAAA09F4BAAAAAAAAGA6Go8AAAAAAAAATEfjEQAAAAAAAIDpaDwCAAAAAAAANzF37lxZLJYbHgkJCSooKFBUVJT+/Oc/X7fNZ599ptDQUC1dulSSlJOTI4vFoqKiIs2fP/+m+/vvx8mTJz1wpK7BqtYAAAAAAADATcydO1dnz55VVlbWdc+HhISoRYsWWrZsmVJSUrR371517dpVVVVVSkhIUKdOna5rPA4bNkyFhYUKDQ1VaWlpzX6SkpI0fvx4zZs3r+a5Vq1aKTAw0D0H6GJBng4AAAAAAAAAeKtGjRqpTZs2N/3ZtGnTtGLFCqWkpGjXrl367W9/q3Pnzmn9+vU3fX1ERIQiIiJq/h4UFKSIiIhb7t/X0XgEAAAAAAAA6unVV1/Vvffeq1mzZmnFihV655131KJFC0/H8grc4xEAAAAAAAC4hXXr1tXMVPzm8eyzz9b8vEWLFvrDH/6gZcuWacaMGRo3bpwH03oXZjwCAAAAAAAAtzBkyBAtWLDguueaNWtW82eHw6GMjAyFhYVp9+7dKi8vV2hoqLtjeiVmPAIAAAAAAAC3EBYWpk6dOl33iIqKqvn5yy+/rAMHDmj37t0qLS3Viy++6MG03oXGIwAAAAAAAFAPn3/+uV588UW98sor6tq1q9544w397W9/0/bt2z0dzStwqTUAAAAAAABwCxUVFSooKLjuucDAQDVv3lwpKSkaO3asZs2aJUkaPXq0HnnkEVmtVu3fv19hYWGeiOw1mPEIAAAAAAAA3MKGDRvUtm3b6x69evXSH/7wB506dUqvvfbada//05/+pOrqaj3//PMeSuw9LIZhGJ4OAQAAAAAAAMC/MOMRAAAAAAAAgOloPAIAAABDdaPMAAABFElEQVQAAAAwHY1HAAAAAAAAAKaj8QgAAAAAAADAdDQeAQAAAAAAAJiOxiMAAAAAAAAA09F4BAAAAAAAAGA6Go8AAAAAAAAATEfjEQAAAAAAAIDpaDwCAAAAAAAAMB2NRwAAAAAAAACmo/EIAAAAAAAAwHQ0HgEAAAAAAACYjsYjAAAAAAAAANPReAQAAAAAAABgOhqPAAAAAAAAAExH4xEAAAAAAACA6Wg8AgAAAAAAADAdjUcAAAAAAAAApqPxCAAAAAAAAMB0NB4BAAAAAAAAmI7GIwAAAAAAAADT0XgEAAAAAAAAYDoajwAAAAAAAABMR+MRAAAAAAAAgOloPAIAAAAAAAAwHY1HAAAAAAAAAKb7f7MePbIzPLtEAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "show_map(room_graph_data)" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "{'H10': [40, 48],\n", " 'H11': [50, 48],\n", " 'H12': [60, 48],\n", " 'H13': [70, 48],\n", " 'H14': [80, 48],\n", " 'H15': [90, 48],\n", " 'H16': [100, 48],\n", " 'H17': [110, 48],\n", " 'H18': [120, 48],\n", " 'H19': [130, 48],\n", " 'S10': [40, 48],\n", " 'R11': [50, 58],\n", " 'R12': [60, 58],\n", " 'R13': [70, 58],\n", " 'R14': [80, 58],\n", " 'R15': [90, 58],\n", " 'R16': [100, 58],\n", " 'R17': [110, 58],\n", " 'R18': [120, 58],\n", " 'R19': [130, 58],\n", " 'S19': [140, 48],\n", " 'EXIT': [165, 38],\n", " 'H20': [40, 73],\n", " 'H21': [50, 73],\n", " 'H22': [60, 73],\n", " 'H23': [70, 73],\n", " 'H24': [80, 73],\n", " 'H25': [90, 73],\n", " 'H26': [100, 73],\n", " 'H27': [110, 73],\n", " 'H28': [120, 73],\n", " 'H29': [130, 73],\n", " 'S20': [40, 73],\n", " 'R21': [50, 83],\n", " 'R22': [60, 83],\n", " 'R23': [70, 83],\n", " 'R24': [80, 83],\n", " 'R25': [90, 83],\n", " 'R26': [100, 83],\n", " 'R27': [110, 83],\n", " 'R28': [120, 83],\n", " 'R29': [130, 83],\n", " 'S29': [140, 73],\n", " 'H30': [40, 98],\n", " 'H31': [50, 98],\n", " 'H32': [60, 98],\n", " 'H33': [70, 98],\n", " 'H34': [80, 98],\n", " 'H35': [90, 98],\n", " 'H36': [100, 98],\n", " 'H37': [110, 98],\n", " 'H38': [120, 98],\n", " 'H39': [130, 98],\n", " 'S30': [40, 98],\n", " 'R31': [50, 108],\n", " 'R32': [60, 108],\n", " 'R33': [70, 108],\n", " 'R34': [80, 108],\n", " 'R35': [90, 108],\n", " 'R36': [100, 108],\n", " 'R37': [110, 108],\n", " 'R38': [120, 108],\n", " 'R39': [130, 108],\n", " 'S39': [140, 98],\n", " 'H40': [40, 123],\n", " 'H41': [50, 123],\n", " 'H42': [60, 123],\n", " 'H43': [70, 123],\n", " 'H44': [80, 123],\n", " 'H45': [90, 123],\n", " 'H46': [100, 123],\n", " 'H47': [110, 123],\n", " 'H48': [120, 123],\n", " 'H49': [130, 123],\n", " 'S40': [40, 123],\n", " 'R41': [50, 133],\n", " 'R42': [60, 133],\n", " 'R43': [70, 133],\n", " 'R44': [80, 133],\n", " 'R45': [90, 133],\n", " 'R46': [100, 133],\n", " 'R47': [110, 133],\n", " 'R48': [120, 133],\n", " 'R49': [130, 133],\n", " 'S49': [140, 123]}" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "xnode_label_pos" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\n", "\n", " \n", " \n", " \n", "\n", "\n", "

\n", "\n", "
def show_map(graph_data, node_colors = None):\n",
       "    G = nx.Graph(graph_data['graph_dict'])\n",
       "    node_colors = node_colors or graph_data['node_colors']\n",
       "    node_positions = graph_data['node_positions']\n",
       "    node_label_pos = graph_data['node_label_positions']\n",
       "    edge_weights= graph_data['edge_weights']\n",
       "    \n",
       "    # set the size of the plot\n",
       "    plt.figure(figsize=(18,13))\n",
       "    # draw the graph (both nodes and edges) with locations from romania_locations\n",
       "    nx.draw(G, pos={k: node_positions[k] for k in G.nodes()},\n",
       "            node_color=[node_colors[node] for node in G.nodes()], linewidths=0.3, edgecolors='k')\n",
       "\n",
       "    # draw labels for nodes\n",
       "    node_label_handles = nx.draw_networkx_labels(G, pos=node_label_pos, font_size=14)\n",
       "    \n",
       "    # add a white bounding box behind the node labels\n",
       "    [label.set_bbox(dict(facecolor='white', edgecolor='none')) for label in node_label_handles.values()]\n",
       "\n",
       "    # add edge lables to the graph\n",
       "    nx.draw_networkx_edge_labels(G, pos=node_positions, edge_labels=edge_weights, font_size=14)\n",
       "    \n",
       "    # add a legend\n",
       "    white_circle = lines.Line2D([], [], color="white", marker='o', markersize=15, markerfacecolor="white")\n",
       "    orange_circle = lines.Line2D([], [], color="orange", marker='o', markersize=15, markerfacecolor="orange")\n",
       "    red_circle = lines.Line2D([], [], color="red", marker='o', markersize=15, markerfacecolor="red")\n",
       "    gray_circle = lines.Line2D([], [], color="gray", marker='o', markersize=15, markerfacecolor="gray")\n",
       "    green_circle = lines.Line2D([], [], color="green", marker='o', markersize=15, markerfacecolor="green")\n",
       "    plt.legend((white_circle, orange_circle, red_circle, gray_circle, green_circle),\n",
       "               ('Un-explored', 'Frontier', 'Currently Exploring', 'Explored', 'Final Solution'),\n",
       "               numpoints=1, prop={'size':16}, loc=(.8,.75))\n",
       "    \n",
       "    # show the plot. No need to use in notebooks. nx.draw will show the graph itself.\n",
       "    plt.show()\n",
       "
\n", "\n", "\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "psource(show_map)" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [], "source": [ "def tree_breadth_search_for_vis(problem):\n", " \"\"\"Search through the successors of a problem to find a goal.\n", " The argument frontier should be an empty queue.\n", " Don't worry about repeated paths to a state. [Figure 3.7]\"\"\"\n", " \n", " # we use these two variables at the time of visualisations\n", " iterations = 0\n", " all_node_colors = []\n", " node_colors = {k : 'white' for k in problem.graph.nodes()}\n", " \n", " #Adding first node to the queue\n", " frontier = deque([Node(problem.initial)])\n", " \n", " node_colors[Node(problem.initial).state] = \"orange\"\n", " iterations += 1\n", " all_node_colors.append(dict(node_colors))\n", " \n", " while frontier:\n", " #Popping first node of queue\n", " node = frontier.popleft()\n", " \n", " # modify the currently searching node to red\n", " node_colors[node.state] = \"red\"\n", " iterations += 1\n", " all_node_colors.append(dict(node_colors))\n", " \n", " if problem.goal_test(node.state):\n", " # modify goal node to green after reaching the goal\n", " node_colors[node.state] = \"green\"\n", " iterations += 1\n", " all_node_colors.append(dict(node_colors))\n", " return(iterations, all_node_colors, node)\n", " \n", " frontier.extend(node.expand(problem))\n", " \n", " for n in node.expand(problem):\n", " node_colors[n.state] = \"orange\"\n", " iterations += 1\n", " all_node_colors.append(dict(node_colors))\n", "\n", " # modify the color of explored nodes to gray\n", " node_colors[node.state] = \"gray\"\n", " iterations += 1\n", " all_node_colors.append(dict(node_colors))\n", " \n", " return None\n", "\n", "def breadth_first_tree_search(problem):\n", " \"Search the shallowest nodes in the search tree first.\"\n", " iterations, all_node_colors, node = tree_breadth_search_for_vis(problem)\n", " return(iterations, all_node_colors, node)" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [], "source": [ "from ipywidgets import *" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "ee99c7cffe2f4d5d8f885d527ca2746c", "version_major": 2, "version_minor": 0 }, "text/plain": [ "interactive(children=(IntSlider(value=0, description='iteration', max=1), Output()), _dom_classes=('widget-int…" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "9534af2b7304468da07fcd89d4dee75a", "version_major": 2, "version_minor": 0 }, "text/plain": [ "interactive(children=(ToggleButton(value=False, description='Visualize'), Output()), _dom_classes=('widget-int…" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "all_node_colors = []\n", "room_problem = GraphProblem('R35', 'EXIT', room_map)\n", "a, b, c = breadth_first_tree_search(room_problem)\n", "display_visual(room_graph_data, user_input=False, \n", " algorithm=breadth_first_tree_search, \n", " problem=room_problem)" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [], "source": [ "def tree_depth_search_for_vis(problem):\n", " \"\"\"Search through the successors of a problem to find a goal.\n", " The argument frontier should be an empty queue.\n", " Don't worry about repeated paths to a state. [Figure 3.7]\"\"\"\n", " \n", " # we use these two variables at the time of visualisations\n", " iterations = 0\n", " all_node_colors = []\n", " node_colors = {k : 'white' for k in problem.graph.nodes()}\n", " \n", " #Adding first node to the stack\n", " frontier = [Node(problem.initial)]\n", " \n", " node_colors[Node(problem.initial).state] = \"orange\"\n", " iterations += 1\n", " all_node_colors.append(dict(node_colors))\n", " \n", " while frontier:\n", " #Popping first node of stack\n", " node = frontier.pop()\n", " \n", " # modify the currently searching node to red\n", " node_colors[node.state] = \"red\"\n", " iterations += 1\n", " all_node_colors.append(dict(node_colors))\n", " \n", " if problem.goal_test(node.state):\n", " # modify goal node to green after reaching the goal\n", " node_colors[node.state] = \"green\"\n", " iterations += 1\n", " all_node_colors.append(dict(node_colors))\n", " return(iterations, all_node_colors, node)\n", " \n", " frontier.extend(node.expand(problem))\n", " \n", " for n in node.expand(problem):\n", " node_colors[n.state] = \"orange\"\n", " iterations += 1\n", " all_node_colors.append(dict(node_colors))\n", "\n", " # modify the color of explored nodes to gray\n", " node_colors[node.state] = \"gray\"\n", " iterations += 1\n", " all_node_colors.append(dict(node_colors))\n", " \n", " return None\n", "\n", "def depth_first_tree_search(problem):\n", " \"Search the deepest nodes in the search tree first.\"\n", " iterations, all_node_colors, node = tree_depth_search_for_vis(problem)\n", " return(iterations, all_node_colors, node)" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "b38b32787e854a26ba01383161a2033e", "version_major": 2, "version_minor": 0 }, "text/plain": [ "interactive(children=(IntSlider(value=0, description='iteration', max=1), Output()), _dom_classes=('widget-int…" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "97b3eed4494d4b10b53b93b266c13268", "version_major": 2, "version_minor": 0 }, "text/plain": [ "interactive(children=(ToggleButton(value=False, description='Visualize'), Output()), _dom_classes=('widget-int…" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "all_node_colors = []\n", "room_problem = GraphProblem('R35', 'EXIT', room_map)\n", "a, b, c = breadth_first_tree_search(room_problem)\n", "display_visual(room_graph_data, user_input=False, \n", " algorithm=depth_first_tree_search, \n", " problem=room_problem)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.6" } }, "nbformat": 4, "nbformat_minor": 2 }