{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# LEARNING\n", "\n", "This notebook serves as supporting material for topics covered in **Chapter 18 - Learning from Examples** , **Chapter 19 - Knowledge in Learning**, **Chapter 20 - Learning Probabilistic Models** from the book *Artificial Intelligence: A Modern Approach*. This notebook uses implementations from [learning.py](https://github.com/aimacode/aima-python/blob/master/learning.py). Let's start by importing everything from the module:" ] }, { "cell_type": "code", "execution_count": 29, "metadata": {}, "outputs": [], "source": [ "from learning import *\n", "from notebook import *" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## CONTENTS\n", "\n", "* Machine Learning Overview\n", "* Datasets\n", "* Iris Visualization\n", "* Distance Functions\n", "* Plurality Learner\n", "* k-Nearest Neighbours\n", "* Decision Tree Learner\n", "* Random Forest Learner\n", "* Naive Bayes Learner\n", "* Perceptron\n", "* Learner Evaluation" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## MACHINE LEARNING OVERVIEW\n", "\n", "In this notebook, we learn about agents that can improve their behavior through diligent study of their own experiences.\n", "\n", "An agent is **learning** if it improves its performance on future tasks after making observations about the world.\n", "\n", "There are three types of feedback that determine the three main types of learning:\n", "\n", "* **Supervised Learning**:\n", "\n", "In Supervised Learning the agent observes some example input-output pairs and learns a function that maps from input to output.\n", "\n", "**Example**: Let's think of an agent to classify images containing cats or dogs. If we provide an image containing a cat or a dog, this agent should output a string \"cat\" or \"dog\" for that particular image. To teach this agent, we will give a lot of input-output pairs like {cat image-\"cat\"}, {dog image-\"dog\"} to the agent. The agent then learns a function that maps from an input image to one of those strings.\n", "\n", "* **Unsupervised Learning**:\n", "\n", "In Unsupervised Learning the agent learns patterns in the input even though no explicit feedback is supplied. The most common type is **clustering**: detecting potential useful clusters of input examples.\n", "\n", "**Example**: A taxi agent would develop a concept of *good traffic days* and *bad traffic days* without ever being given labeled examples.\n", "\n", "* **Reinforcement Learning**:\n", "\n", "In Reinforcement Learning the agent learns from a series of reinforcements—rewards or punishments.\n", "\n", "**Example**: Let's talk about an agent to play the popular Atari game—[Pong](http://www.ponggame.org). We will reward a point for every correct move and deduct a point for every wrong move from the agent. Eventually, the agent will figure out its actions prior to reinforcement were most responsible for it." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## DATASETS\n", "\n", "For the following tutorials we will use a range of datasets, to better showcase the strengths and weaknesses of the algorithms. The datasests are the following:\n", "\n", "* [Fisher's Iris](https://github.com/aimacode/aima-data/blob/a21fc108f52ad551344e947b0eb97df82f8d2b2b/iris.csv): Each item represents a flower, with four measurements: the length and the width of the sepals and petals. Each item/flower is categorized into one of three species: Setosa, Versicolor and Virginica.\n", "\n", "* [Zoo](https://github.com/aimacode/aima-data/blob/a21fc108f52ad551344e947b0eb97df82f8d2b2b/zoo.csv): The dataset holds different animals and their classification as \"mammal\", \"fish\", etc. The new animal we want to classify has the following measurements: 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 4, 1, 0, 1 (don't concern yourself with what the measurements mean)." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "To make using the datasets easier, we have written a class, `DataSet`, in `learning.py`. The tutorials found here make use of this class.\n", "\n", "Let's have a look at how it works before we get started with the algorithms." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Intro\n", "\n", "A lot of the datasets we will work with are .csv files (although other formats are supported too). We have a collection of sample datasets ready to use [on aima-data](https://github.com/aimacode/aima-data/tree/a21fc108f52ad551344e947b0eb97df82f8d2b2b). Two examples are the datasets mentioned above (*iris.csv* and *zoo.csv*). You can find plenty datasets online, and a good repository of such datasets is [UCI Machine Learning Repository](https://archive.ics.uci.edu/ml/datasets.html).\n", "\n", "In such files, each line corresponds to one item/measurement. Each individual value in a line represents a *feature* and usually there is a value denoting the *class* of the item.\n", "\n", "You can find the code for the dataset here:" ] }, { "cell_type": "code", "execution_count": 30, "metadata": {}, "outputs": [], "source": [ "%psource DataSet" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Class Attributes\n", "\n", "* **examples**: Holds the items of the dataset. Each item is a list of values.\n", "\n", "* **attrs**: The indexes of the features (by default in the range of [0,f), where *f* is the number of features). For example, `item[i]` returns the feature at index *i* of *item*.\n", "\n", "* **attrnames**: An optional list with attribute names. For example, `item[s]`, where *s* is a feature name, returns the feature of name *s* in *item*.\n", "\n", "* **target**: The attribute a learning algorithm will try to predict. By default the last attribute.\n", "\n", "* **inputs**: This is the list of attributes without the target.\n", "\n", "* **values**: A list of lists which holds the set of possible values for the corresponding attribute/feature. If initially `None`, it gets computed (by the function `setproblem`) from the examples.\n", "\n", "* **distance**: The distance function used in the learner to calculate the distance between two items. By default `mean_boolean_error`.\n", "\n", "* **name**: Name of the dataset.\n", "\n", "* **source**: The source of the dataset (url or other). Not used in the code.\n", "\n", "* **exclude**: A list of indexes to exclude from `inputs`. The list can include either attribute indexes (attrs) or names (attrnames)." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Class Helper Functions\n", "\n", "These functions help modify a `DataSet` object to your needs.\n", "\n", "* **sanitize**: Takes as input an example and returns it with non-input (target) attributes replaced by `None`. Useful for testing. Keep in mind that the example given is not itself sanitized, but instead a sanitized copy is returned.\n", "\n", "* **classes_to_numbers**: Maps the class names of a dataset to numbers. If the class names are not given, they are computed from the dataset values. Useful for classifiers that return a numerical value instead of a string.\n", "\n", "* **remove_examples**: Removes examples containing a given value. Useful for removing examples with missing values, or for removing classes (needed for binary classifiers)." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Importing a Dataset\n", "\n", "#### Importing from aima-data\n", "\n", "Datasets uploaded on aima-data can be imported with the following line:" ] }, { "cell_type": "code", "execution_count": 31, "metadata": {}, "outputs": [], "source": [ "iris = DataSet(name=\"iris\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "To check that we imported the correct dataset, we can do the following:" ] }, { "cell_type": "code", "execution_count": 32, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[5.1, 3.5, 1.4, 0.2, 'setosa']\n", "[0, 1, 2, 3]\n" ] } ], "source": [ "print(iris.examples[0])\n", "print(iris.inputs)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Which correctly prints the first line in the csv file and the list of attribute indexes." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "When importing a dataset, we can specify to exclude an attribute (for example, at index 1) by setting the parameter `exclude` to the attribute index or name." ] }, { "cell_type": "code", "execution_count": 33, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[0, 2, 3]\n" ] } ], "source": [ "iris2 = DataSet(name=\"iris\",exclude=[1])\n", "print(iris2.inputs)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Attributes\n", "\n", "Here we showcase the attributes.\n", "\n", "First we will print the first three items/examples in the dataset." ] }, { "cell_type": "code", "execution_count": 34, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[[5.1, 3.5, 1.4, 0.2, 'setosa'], [4.9, 3.0, 1.4, 0.2, 'setosa'], [4.7, 3.2, 1.3, 0.2, 'setosa']]\n" ] } ], "source": [ "print(iris.examples[:3])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Then we will print `attrs`, `attrnames`, `target`, `input`. Notice how `attrs` holds values in [0,4], but since the fourth attribute is the target, `inputs` holds values in [0,3]." ] }, { "cell_type": "code", "execution_count": 35, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "attrs: [0, 1, 2, 3, 4]\n", "attrnames (by default same as attrs): [0, 1, 2, 3, 4]\n", "target: 4\n", "inputs: [0, 1, 2, 3]\n" ] } ], "source": [ "print(\"attrs:\", iris.attrs)\n", "print(\"attrnames (by default same as attrs):\", iris.attrnames)\n", "print(\"target:\", iris.target)\n", "print(\"inputs:\", iris.inputs)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now we will print all the possible values for the first feature/attribute." ] }, { "cell_type": "code", "execution_count": 36, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[4.7, 5.5, 5.0, 4.9, 5.1, 4.6, 5.4, 4.4, 4.8, 4.3, 5.8, 7.0, 7.1, 4.5, 5.9, 5.6, 6.9, 6.5, 6.4, 6.6, 6.0, 6.1, 7.6, 7.4, 7.9, 5.7, 5.3, 5.2, 6.3, 6.7, 6.2, 6.8, 7.3, 7.2, 7.7]\n" ] } ], "source": [ "print(iris.values[0])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Finally we will print the dataset's name and source. Keep in mind that we have not set a source for the dataset, so in this case it is empty." ] }, { "cell_type": "code", "execution_count": 37, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "name: iris\n", "source: \n" ] } ], "source": [ "print(\"name:\", iris.name)\n", "print(\"source:\", iris.source)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "A useful combination of the above is `dataset.values[dataset.target]` which returns the possible values of the target. For classification problems, this will return all the possible classes. Let's try it:" ] }, { "cell_type": "code", "execution_count": 38, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "['versicolor', 'virginica', 'setosa']\n" ] } ], "source": [ "print(iris.values[iris.target])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Helper Functions" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We will now take a look at the auxiliary functions found in the class.\n", "\n", "First we will take a look at the `sanitize` function, which sets the non-input values of the given example to `None`.\n", "\n", "In this case we want to hide the class of the first example, so we will sanitize it.\n", "\n", "Note that the function doesn't actually change the given example; it returns a sanitized *copy* of it." ] }, { "cell_type": "code", "execution_count": 39, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Sanitized: [5.1, 3.5, 1.4, 0.2, None]\n", "Original: [5.1, 3.5, 1.4, 0.2, 'setosa']\n" ] } ], "source": [ "print(\"Sanitized:\",iris.sanitize(iris.examples[0]))\n", "print(\"Original:\",iris.examples[0])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Currently the `iris` dataset has three classes, setosa, virginica and versicolor. We want though to convert it to a binary class dataset (a dataset with two classes). The class we want to remove is \"virginica\". To accomplish that we will utilize the helper function `remove_examples`." ] }, { "cell_type": "code", "execution_count": 40, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "['versicolor', 'setosa']\n" ] } ], "source": [ "iris2 = DataSet(name=\"iris\")\n", "\n", "iris2.remove_examples(\"virginica\")\n", "print(iris2.values[iris2.target])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We also have `classes_to_numbers`. For a lot of the classifiers in the module (like the Neural Network), classes should have numerical values. With this function we map string class names to numbers." ] }, { "cell_type": "code", "execution_count": 41, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Class of first example: setosa\n", "Class of first example: 0\n" ] } ], "source": [ "print(\"Class of first example:\",iris2.examples[0][iris2.target])\n", "iris2.classes_to_numbers()\n", "print(\"Class of first example:\",iris2.examples[0][iris2.target])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "As you can see \"setosa\" was mapped to 0." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Finally, we take a look at `find_means_and_deviations`. It finds the means and standard deviations of the features for each class." ] }, { "cell_type": "code", "execution_count": 42, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Setosa feature means: [5.006, 3.418, 1.464, 0.244]\n", "Versicolor mean for first feature: 5.936\n", "Setosa feature deviations: [0.3524896872134513, 0.38102439795469095, 0.17351115943644546, 0.10720950308167838]\n", "Virginica deviation for second feature: 0.32249663817263746\n" ] } ], "source": [ "means, deviations = iris.find_means_and_deviations()\n", "\n", "print(\"Setosa feature means:\", means[\"setosa\"])\n", "print(\"Versicolor mean for first feature:\", means[\"versicolor\"][0])\n", "\n", "print(\"Setosa feature deviations:\", deviations[\"setosa\"])\n", "print(\"Virginica deviation for second feature:\",deviations[\"virginica\"][1])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## IRIS VISUALIZATION\n", "\n", "Since we will use the iris dataset extensively in this notebook, below we provide a visualization tool that helps in comprehending the dataset and thus how the algorithms work.\n", "\n", "We plot the dataset in a 3D space using `matplotlib` and the function `show_iris` from `notebook.py`. The function takes as input three parameters, *i*, *j* and *k*, which are indicises to the iris features, \"Sepal Length\", \"Sepal Width\", \"Petal Length\" and \"Petal Width\" (0 to 3). By default we show the first three features." ] }, { "cell_type": "code", "execution_count": 43, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAGFCAYAAABg2vAPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzsnXl0Y2d9979X+2LL+76P7ZnMTMazhsxkZpKGlJI0ScsBQk/btFAonBzOW07ghVMKvIVyeIH29FCatyyH80JeSMoL4U0IKQ0hG2Qhs2a2zFiWF9myZdmWJVvWZi13ef9wn5srWbKupHuvvDyfc3wgGlnPlaV7n+/9Ld8fIwiCAAqFQqFQKDsWXaUPgEKhUCgUSmWhYoBCoVAolB0OFQMUCoVCoexwqBigUCgUCmWHQ8UAhUKhUCg7HCoGKBQKhULZ4VAxQKFQKBTKDoeKAQqFQqFQdjhUDFAoFAqFssOhYoBCoVAolB0OFQMUCoVCoexwqBigUCgUCmWHQ8UAhUKhUCg7HCoGKBQKhULZ4VAxQKFQKBTKDoeKAQqFQqFQdjhUDFAoFAqFssOhYoBCoVAolB0OFQMUCoVCoexwqBigUCgUCmWHQ8UAhUKhUCg7HCoGKBQKhULZ4VAxQKFQKBTKDoeKAQqFQqFQdjhUDFAoFAqFssOhYoBCoVAolB0OFQMUCoVCoexwqBigUCgUCmWHQ8UAhUKhUCg7HCoGKBQKhULZ4VAxQKFQKBTKDoeKAQpFBQRBAM/zEASh0odCoVAoBTFU+gAolO0Gz/NgWRarq6tgGAZ6vV780el00Ol0YBim0odJoVAoIlQMUCgKQUQAx3FiZAAAWJYVn0OEgF6vh8FgEMWBXq+nAoFCoVQMRqBxTAqlLARBAMuy8Hg8aG5uhtFoBACkUikwDCNu8oIgrPsBID5HGkEgUQTp71MoFIpa0MgAhVIigiCA4ziwLAue5zE8PIz6+nqYzWYIgrBuE8+1sUuFAcuySKfT4nMYhoFOp4PBYMhIMdA0A4VCURoqBiiUIiEpgHQ6Ld7d63Sl1eLmEwjSdRKJhPhvNM1AoVDUgIoBCkUmZHMmkQAgczPX6XSKdA9IIwMAoNfrxfXJTzqdRiqVQjqdhtfrRX9/vygOaJqBQqEUCxUDFIoMsosDc4XqGYZRtZUw18aeTqcxOzuL/v5+MVJB0wwUCqVYqBigUDYglwjIlxJQWwxstCaJHgDFpxmkUQQKhbIzoWKAQskBKegjIoDclW+0YWaLgVQqBaPRqPkmW0yagTyPYRiaZqBQdjBUDFAoErI7BOSIAAIRA9FoFKOjo/D7/dDr9aiqqkJ1dbX4v3a7veSCw1xrkuMudIyFuhnS6XTGa9E0A4Wyc6BigEJB/g6BYjc9t9uNQCCAjo4OnDhxAizLIhqNIhKJYH5+HuPj4+A4Dna7PUMkVFVVif4ExVDuplyom4EII4JOp0MikYDRaBRFDU0zUChbHyoGKDuaQh0CcmBZFlNTU0gmk0in07jttttgt9vFMHx1dTXa2trE9RKJBCKRCKLRKJaWljA9PY1kMgmLxZIRQaiqqoLZbJZ1LHIiA3LJLkCUriEIAtxuN6qrq9HR0ZHRSZHPdpmKBApl80PFAGVHIjX62ahDYCN4nsfs7CzGx8dhtVphNpsxMDCAqqoqcXPOLihkGAZWqxVWqxXNzc3i46lUSowgRKNRLCwsIB6Pw2g0rksz2Gy2imyw0pSJTqeD0Whcl2aQdjTQNAOFsnWgYoCy4yimQyAXgiBgcXERLpcLgiBg7969aGlpweuvvy5GF4rFZDKhvr4e9fX14mMcxyEajYoiwev1IhqNAoCYWrBareJzlapDKIRU4JSSZiDFikQg0DQDhVJ5qBig7BhIJIBsTsUUBxJCoRBcLhdisRj6+/vR1dUlbsJKb2Z6vR41NTWoqanJeA/xeFyMIASDQQDAa6+9BpvNti7NYDKZFD0mORRKMwiCgFQqlZHaoGkGCqWyUDFA2faU0yFAiMfjGB0dxeLiInp6enD06FEYDJmnjxY+AwzDwG63w263A1gzHXrttddw/PhxUSSEw2HMzs4ikUjAbDavSzNYLJaKphmkFJtmILbLVCBQKMpCxQBl20JEwNzcHAwGA2pra4sOR6dSKUxMTGBmZgbt7e04ffo0LBZLzucyDFNymqBcTCYTbDYbGhsbxcfS6XRGmiEQCCAWi4ntjlKRoGS7YzHITTPcuHEDPT09cDgcNM1AoagAFQOUbUd2h8D8/DxsNltGPr4QHMfB4/HA7Xajrq4OJ06cQHV19Ya/UwkHwo0wGo2oq6tDXV2d+BjP84jFYmKawefzIRqNgud52O32dWmG7OiHFuRKM0SjUVE4FJNmqITAoVC2IlQMULYN0nCztE2wmAFCgiDA5/NhbGwMJpMJhw8fRkNDg6zfrZQdcTHodDpUV1dnCBtBELC6uipGEJaWluDxeJBKpWC1WtelGSoleHJt7oXSDNkCgaYZKJTcUDFA2RZsNEhIp9PJCt8HAgG4XC6k02ns3r0bbW1tRW0alYwMlLMuwzCw2Wyw2Wzr2h1JBIGYJsXjcTAMg3g8jlQqJYoEtdsd872/QmkGlmVFZ0VprQhNM1AomVAxQNnSSEUAkLtDoNAmHQ6H4XK5sLKygv7+fnR3d2cM/pFLrgiEkmZAuVDztU0mExoaGjIiIyzL4tq1azAajWBZFtPT04jFYmJhY7btcil/x3zIfa9KdjPQNANlp0DFAGVLIjUMKtQhoNPpRLEgZXV1FWNjY5ifn0d3dzcOHjxYdiveVowMFIPBYIDRaERtbS26uroArAmyeDwuRhD8fj8mJibAcRxsNtu6NEMptstKvL9iuxlCoZBo8kTTDJTtDhUDlC1FrjbBQiHe7MhAOp2G2+2Gx+NBS0sLTp06BZvNVvaxFVObsJ3Q6XRid0JrayuAtc8pmUyKaYZQKASv1yu2O2YXKhZqd1QrwrJRmsHtdqO7uzvDRyI7zZDtiUChbFWoGKBsCcoZJERqBniex/T0NCYmJlBdXY1bb701w9CnXLZCAaFWMAwDi8UCi8WCpqYm8XHS7khEwuLiIuLxeM7pjjabLSNMr9V7lU6CJJEQ8t/SNIMUmmagbHWoGKBsapQYJASsmQa99tpr0Ov1GBoaQmNjo+Kby1YtINRyrVztjhzHIRaLiSKBtDsKgiBOd+R5HpFIBGazWbN2x+xohJw0AxEJtJuBstWgYoCyadmoQ0AuS0tL8Hq9SKVS2LdvX8akPaWhkYHS0Ov1cDgccDgc4mOk3ZFEEARBwNjYGIaHh8U6BBJBqK6uVsV2WU5qYqM0A/n+btTNQNMMlM0CFQOUTUe5g4SANZMal8uFpaUl1NXVQafTobOzU6UjXmOnRAa0QNru2NLSgunpaRw9ehR6vT4jzTA3N4fV1VWYTKZ1dQhWq7WsDZZ890o5dgDrOimKTTOQKAKFogVUDFA2Dbk6BIq9Y0okEhgfH4fP50NnZyfuuOMOzM/PY3FxUcUjX0MqBrQKBe+UzYLcpZvNZpjN5nXtjlLbZY/Hg2g0KhY2Zrc7yt3glS5alJNm8Pl8CIVCGBwcpGkGiqZQMUCpOKV0CGTDsiwmJycxNTWFxsZGnDx5UhzmI9d0qFxoZEBd8n0fyNyJ2tpa8THS7kgiCPPz8xgfHwfHcWIdglQk5KpDUNsjAlgvEDiOQyqVgl6vz5tm2GjCI4VSKlQMUCpGOR0CBJ7n4fV6MT4+DpvNhmPHjmUUpwHabdKVEgPbfRMo5W8qbXeUvk4ikRAjCMvLy5ienkYymYTFYlmXZuA4TvO/Lc/z4jmQL83A8/w63wwiEAwGgygOaJqBUgxUDFA0h0QCIpEITCZTSXPrBUGA3+/H6OgoBEHA/v370dzcnNd0SKvIQKWmFm7nwkVp6qUcGIaB1WqF1WrNaHdMpVIZaQa/349YLAYAcLlcqK2tzWh3VPO9EzGQ7/hpNwNFLagYoGgKCX2yLItXX30Vd9xxB6xWa1GvEQqF4HK5EIvFMDAwgM7Ozg3zwFpt0tkXWHrBVRa1/p4mkwn19fUZUy05jsOrr76K+vp6pFIpeL1eRKNRAFg3/rmqqkox2+ViUxOldDPQNAMlF1QMUDQhX5tgMXe0sVgMo6OjCAQC6O3txdGjR2X1nGvlDJgtOrS6W9/uF/FKpF7I5t7W1iaKVUEQMuoQ/H4/3G430uk0bDbbujRDKe2OG0UG5FKomyFXmiGRSMBkMokFljTNsPOgYoCiKqRDgGVZAJm91vlmBmSTSqUwPj4Or9eL9vZ2nD59GhaLRfYxaBkZ2ClpgkqgdWoil+mQ3W4XC1PJ85LJpJhiCIfDmJ2dFW2XswsV5dguq+VauFGawe12w+FwoKOjI+O50giCdLojFQnbDyoGKKqQq0Mg+yJSKJfPcRympqYwOTmJuro6nDhxAtXV1UUfi5aRAVpAqDyVFDpyTIeI7XJjY6P4OLFdJiIhEAggFouJtstSkSBtd1QiMlAM5JzkeR5GoxFGozFnmoH8HWiaYftCxQBFUaQioFCHAGmfyvUas7OzGBsbg9lsxuHDhzP6youlEq2FHMdhZmYGHMfB4XCgqqqqpGl9ctkqdsTlrKflZiO1vi6FXLbLPM8jFouJaQZiu8zzvDj+ORaLwWq1gmVZzWyXybFJBzIBmWkG8hlkpxlI9IR2M2x9qBigKEIpMwSyN2lBEBAIBOByucBxHG666Sa0trYqUkWuZc3A3NwcRkdHodfrYTab4fV6M9rXpD9K2OjulAvuVuxgkKLT6cTPXbrO6uqqGEFYWlpCLBbDwsICrFbrujSD2WxW7HikFIpISCMDUorpZqBphs0NFQOUsiAXAlIcCMh335OKgXA4DJfLhXA4jP7+/ozRseWiVWQglUphcXERwWAQg4ODaGlpAcdx0Ol0SKVS4h1hJBIRbXSzx/mSCz69WL5NJdIEWkUjpLbLzc3NSCQSqKqqQltbW8b3ZX5+HvF4HCaTaV2aQYl2R57nS+qIKNTuSNMMWwcqBiglU+4gIZ1Oh0QigWvXrmF+fh49PT04dOiQ4uF0tQv7VldXMTo6ivn5edjtdhw/fhwGg0EsmgTW2tcaGhrW2ehKL/iLi4uIxWIwGo3rBEIhn/3tXEBYiTSBNMWlJeQOPd/3RZpmmJ6eRiwWEwsbs22Xi9nciWhVgo3aHaURRABYWFiAyWRCY2MjTTNUGCoGKEWzUYeAXNLpNJLJJIaHh9HW1obTp08X7TcgF7UKCFmWhdvtxtTUFFpbW9HX14d4PC4712swGHKO8yXiIBKJYHp6WvTZJ8JAaoCzk+6otnqaQA6k2DYXBoMBNTU1qKmpyXh+PB7PMEyamJgAx3HidEfpdyaf0Fa7cDE7zUCESigUQlVVFU0zbAKoGKDIRk6HQCF4nofH44Hb7YYgCOjv78fAwICKR618ZIDnebHA0W6349Zbb0VNTQ2mpqZE5zqybrHo9fqcF3xyRxiJRDA7O5thgMNxHPx+PwAUNYhnq7Cd0wTZFLspS22XW1tbAbzd7kgiCKFQCF6vV2x3zPZDsFgsmncxEEh6IrtYsVCagYyAJlGEnSSK1YKKAUpBlBgkJAgC5ubmMDY2Br1ej6GhIUxNTakyhz4bcpFTYvBMIBDAyMgIeJ5fZ4GsVqFivsIzYoAzMjKCpaUlzM7OioN4pEWKSjrkEbb7XfpGd+hqosR3VNruKLVdJu2ORCQsLi4iHo9Dr9eDZVl4vV7U19eLdQhaiAOO49Z9N+WkGRKJhPhv0lkONM1QOlQMUPKSq0OgFAUeDAbhcrmQTCYxODiIjo4OMAyDmZkZTQr7pD3cpW6K0WgUIyMjCIVCGBgYyFngmC0GyN2NGkgNcMbHx7F79244HA4kEgkxghAIBDA5OZnhkCcVCGq2OiqN1hd1LSYW5kLNO/Rc7Y4kLfXmm2+KLb3RaBSCIOSsQ1C63TGXGMhFvjRDoW4GIg5omqEwVAxQ1lFKm2AuIpEIRkdHsby8jF27dqGnpyfjxNey/x8oLdycSqUwNjaG2dlZdHV1YWhoKG80o1KmQ9L1ySCe5uZmAGvvmXQyRCIRhEIhzMzMqNrqqDSVShNUKjKgZbher9eLEaeBgQGYzWax3ZFEELJFZXYdQjnfGbliIB+FuhnIXAbp82maITdUDFAyKLdDAFjzOR8fH4fP50NXVxcOHDiQ84KhlRiQRgbkwnGcWNtQX1+P2267LWMcbi42owMhwzAwm80wm80ZDnlSgRCNRjd9q2MlIgOVyqFXooMBePs8kbY7trS0iM+T2i5HIhH4fD6srq7CZDKtq0Mo1P0iXVuNFFahNMPi4iLcbjcOHjyYM80gjSLsFKgYoABYOylXV1cxNzeH9vZ2US0XA8uymJycxNTUFJqamnDq1CnYbLa8z8/nQKg05ISWs5YgCFhYWIDL5YLBYCjK/bCSkYFi1y2l1ZFc6IlQ1IqdFBmoRK0COS8KbcpEVGZ/Z6S2yx6PR+x+yY4g5CpuLTcyIJfsNAOpgzIYDBumGSYnJ/HMM8/g7//+77e9MKBiYIcjNQxKJBK4ceOGmNOXC8/z8Hq9GB8fh91uxy233ILa2tqCv7fZ0gShUAgjIyNYXV3NqG0oZp3NFhkoBrmtjmQgj9/vz9nqqDSV2Ji3Y81APqRmYcViMBhQW1ubcb6TdkciLOfn5zE+Pi4Wt0pFAsuyFYnAsCwrFhhulGYYGRnBz372M3zxi1/U/Bi1hoqBHUquDoFii4PIXfTo6CgYhsHNN9+MpqYm2RcVuVMLy4XkCfMJD2Ia5Pf70dvbi76+vpIKpdQ2N9oItURIrlbHy5cvw+FwwGq15mx1lNYgKNXquJn6/dWkEukJIkCUer/SdkeCIAhIJBKisFxeXsb09DR4nsfVq1fF+R1EJKidmtooIiEVCLFYrKThaFsRKgZ2GCRnlk6n1w0SIhugHDey5eVluFwuxONxDAwMoLOzs+iLmE6nW1fgoxa57tqzTYNOnTpVlvFR9sVru4YVSetae3u7+Ji01ZHY50rvBstpddxpaYJKiQE1kRa3knZHjuPwyiuvYHBwUOyC8fv9YmoqO82ghO0yQe4gqEgkAofDociamx0qBnYIcjoEyAWB47i8bWexWAyjo6MIBALo6+tDb29vye1GWqUJstcSBAFer3edaVC5VDJNUGk7Ymmro9T8Jl+rozRcLKfVcSelCSoRBdEib59rXQBoaGjIWJ/juAzbZa/XmxF5koqEUj005NYqhMNhGhmgbB/kdgiQx3Nt0MlkEhMTE/B6vejo6MDp06dhsVjKOi4txQDZMKWmQfv27UNLS4tiF99KpQk2awRCqVbHSkUGKpHLrsS6Ss4lKHZdYP38B71eD4fDkXFHLo08RaNR+P1+uN3uDA8NqUgo1O5IigcLQSMDlG1BLhFQ6KTX6/UZeXyO4zA1NQW3242GhgZZLXZy0apmgOB0OhGNRtHf34+enh7FL4DZd+ibdZOuJKW0OlosFnAch8XFRc1aHStVtFjJmgGtISJEzt9ZGnkiZAvLcDiM2dlZ0XY5O81gsVjEtViWlWW6RcUAZUsj7RCQFgfJOemIGCBuZGNjY7BYLDh69Cjq6+sVPU4tIgOpVArj4+NIpVKora3F7bffrpqxTq5wvVYbitZ3z0q/r41aHRcXFxGJROB2u9e1Ohbb1y6XSogBafpO63UrJQbKNRzKJSyJ7TIpVgwEAojFYtDr9WJqIRqNorq6uuB7j0ajYlRru0PFwDZCiRkCDMMgGAzi+vXr4DgON910E1pbW1W5QKnpM0AGIk1MTKCurg5WqxXd3d2qOuxt9dbCzQZpdWQYBouLi7j11lvXtTpK+9qzBUI5rY6VyN1XamyyVr3+Wq2by3ZZOuwrGo2Kkx59Pt862+WqqioxhRCJRGjNAGXrsFGHQDGsrKwgnU7D7XZjcHAwp/++kqgRGchnGvS73/1O9SiEWqOS5bCdTYCkd+lypjpmF5yV0upYycjATkkTaFm4mD3sKxqNorW1FbW1taK4XFpagsfjQSqVwre+9S2wLItEIoHp6Wn4fD60tbUp/p3o7e2Fx+NZ9/jHP/5xfOtb31J0rUJQMbCFUWqGQDwex9jYGBYWFmA0GjE4OIjOzk41DjkDpcXARqZBWty108hAZSg01bGUVkeaJlCfSkUkyNoGg0G0XZamAlKpFFZXV3Hu3Dk8++yzeOqpp/Dtb38bTU1NOHToED772c/izjvvVOQ4Lly4kFE3df36dbzrXe/CAw88oMjrFwMVA1sQ6azvcmYIpFIpuN1uTE9Po7W1FadPn8a1a9c0uzAoJQbkmAZpUZ+wleyItxKlbMzltjpWwhmPpCZ2khioxLpk7XzdBCaTCffeey/uvfdePPvss/je976HO++8E9euXcOVK1dk25PLQTpiGgC+/vWvo7+/H3fccYdia8iFioEtRikdAtlwHIfp6WlMTEygtrYWx48fFytms7sJ1KTcDZqYBnk8HrS0tGxoGrSdIwM7ASU2yGJbHXU6Ha5fv54hEtSsOalUO+N2qxmQA7Ej3ghBEMRuArvdjhMnTuDEiROqHVMqlcLjjz+OT33qUxWJ9lExsEUgkQCWZQG8nQ4o5ksjCALm5uYwOjoKo9GIQ4cOZVThAltDDGSbBr3jHe8oaBq0nSMD2z1NoGbIPl9F+uTkJJaWlsTKcy2mOlbKAnknpwkKEY1GNWstfPrppxEKhfChD31Ik/WyoWJgk5OrQ6CUUGIwGITL5UIqlcLg4CDa29vzGg9tZjFATIM4jivKNGg7iwFg+6cJtEav18NsNqO3t1d8jLQ6kp9cUx3LaXWsZCHfThID5JpaaG2e5zUVA9///vdxzz33ZNh8awkVA5sUMlJzaWkJDoejpDZBYK01xuVyIRQKYdeuXejp6dnwJNBqrDBQ3AYdjUbhcrmwvLxckmnQdk4TbPfIALA5BhXJmepIWh1JT7tUJBTy1q+kGJBjwKPGupVKTwCFRzZHo1EIgqCIVXkhPB4PXnzxRTz11FOqr5UPKgY2GdIOgVQqhXPnzuGd73xn0bnKRCKBsbExzM3NoaurC0NDQ7JeQ+s0QaG1iGmQ1+tFZ2cnDhw4UFLethKRgUQigWAwCIfDkeF+pgY0MqD8mnJNupRqdaxkzUC51uKlrruZxUAkEgEATSIDjz76KJqbm3HvvfeqvlY+qBjYJJAOgXQ6LW5a0imCckmn05icnITH40FTUxNOnToFm80m+/e1ThMAue+Isk2DyrVB1jIywLKsaOFssViwuroKvV4vbgAOh2OdPepWQ8vjrpQ1cKlrym11HBsbA8/zYqsjmW2h9SZZyTSBmgWZ+SCdIoXecyQSgc1mU/2z4Hkejz76KD74wQ+WPPRNCagY2ARsNEhI7p06z/OYmZnB+Pg4qqqqcMstt6C2trboY9Hr9UilUkX/XimQk0x6Mco2DcpV5FgKWg5Fev3112E2m3Hs2DFRiOULJWcP5ikl17wTuhgqIQaU3CDztTqurq6K341gMIhkMolXXnllXatjdXW1ahvFTqsZkLsucR9U+7v34osvYnp6Gh/+8IdVXacQVAxUEBIJIJt9ruLAQmKAbJ6jo6NgGAYHDhxAU1NTyV9grdMEwNtmK8Q0KB6PY/fu3RmmQeWi9oa5srKC4eFhAMDAwAA6OjrEtjWdTrduChspTiICYXp6WlGBsJ3YzGmCcmAYJsP0pqqqCjMzMzhw4EDOVker1bquk0GJO+ud4EAohWVZ2RMLtbAi/oM/+INNIeapGKgA2YOENuoQ2GhzXl5exsjICBKJhLgBlXtSVyJNEI/H4XQ6RdOgY8eOKX4XpFZkIJlMYmxsDD6fD11dXVhZWRFtSzc6wYsVCFVVVWJ6IVsgaB0ZqKQd8XZek2zKxU51lHYxlNLquNnv0Cu1rlaRgc0CFQMaUsogIb1eL3oLEKLRKEZHRxEMBtHX14fe3l7FNk8tuwmI6Dh//jxaW1s3NA0qF5KPVQppTUNDQwNOnToFo9EIj8dT8maZTyDEYjGEw+GcAqG6uhqpVAqpVKoiG9h2ZbONEt5oqiP58fv9JbU60jRBbsLh8I4ZXwxQMaAJ5QwSkkYGkskkxsfHMTs7i46ODtx+++0wm82KHqsWaQKpaRAAHDhwAG1tbaquqVTEQxAELC4uYmRkBDqdThyEBEAUbUqKjlzFaNnV6slkEm63G1NTUxmbgMPh2BYphkrdpWu9URUrQJRqddxpdsSbLU2wWaBiQEWUGCRkMBjE9rrJyUk0NDSUXVm/EWoX2gUCAbhcLrAsi3379uH69euw2+2qrUfQ6XRIp9NlvUY0GoXT6UQ4HBaHOUkvZuRzVTuMni0Q4vE4mpub4XA41rWzMQyzrgahUL/7ZmSnpAnKXbOUVsdkMonl5WWYTCbZUx2VYLNHBqLRKBUDlPLZqEOgmNdIpVIYHR1FVVUVjh07lnEXoAZqRQbymQY5nU5NahTKyatLvQ66urpw6NChnCYtWomBXEg3fUK+TWCrCYTtWkCYjVp36IVaHUdGRrC8vIzZ2VnwPI+qqqqMKEKuqY5KUEkxICcyQNMElLJQYpAQCUW7XC4kEgk0NTXh4MGDmlyclBYDhUyDtKpRKCXiwfO8mM6oqakpGJHJJQaICFHzs8sndOSkGKQCIbtIcbMIhEoVEG6mmgGlkbY6ulwu7N27F3a7PaPVcaOpjkq0Olaym0BuAaESbc1bBSoGFCJXh0Ap0YCVlRWMjIwgGo1iYGAAkUgEJpNJs4uhUrl1uaZBWvX/F1tAGAwG4XQ6wfO87HZNkgKSbsybragvn0CIx+NikWK2QJAaJRVjYKUkOyFNUCkHQiJCslsdyTElk0lRICjV6khSqJWKDMiptYpGo9i1a5cGR7Q5oGKgTErpEMhFPB7H6OgoFhcX0dPTgyNHjsBoNIpDebSi3Dt1qWmQXq8vaBqklRjQ6XSyws3xeBwjIyNYWlratDMQcq1ZDjqdTgwNE4hAyBVBkK7pcDhUjyDspDRBJQSIIAh5N2WGYWCxWGCxWIpudSRCIVerI7mmVaqAUE6dUiQS0WQuwWaBioESKadDQEoqlcLExARmZmYNCcSUAAAgAElEQVTQ1taG06dPZ/iE6/V6JJNJRY99I0hkoJSLIYlqxGIxscCu0GtslsgAy7KYmJiAx+NBe3s7Tp8+XVKnRqXcAJVeUyoQSKcHEQjXr18HwzDw+XxwuVwZEQSp576SG9tO2ZgrkZoAit+Uy211JOtt5gLCSCSiWqH2ZoSKgSJRokMAWPtCejweuN1u1NbW4sSJEzkrV3P5DKgJOUmKEQOrq6sYGxvD/Pw8ent7cfToUdn5xEpHBgRBwOzsLMbGxmCz2XD8+PGyioa2YmRALkQgmEwmtLa2orW1FYIgZNQg+Hw+ccBLriLFUja7nRQZ0NqbXsk79GJaHcl6ExMTmteoFNNNQAsIKTlRokNAEAT4fD6MjY3BZDJl9KnnwmAwaJ4mAOT1ALMsi8nJSUxNTaG5uRmnT58u2jRISzGQvc7y8jKcTidSqRT27t2LlpaWsi9GUjGg9TCfSkCiAtIIwkYCIVeRYqHv2U5yIKzEmoB64fp8rY6Li4tiTY7cqY5KIcdnQBAEmiagrIeIgLGxMTQ0NKC2trakLyjpsU+n09i9e7doW7sRWs4KAN6+KHAcl3fGufRu2mq1ljwUiayndZogkUjA5XLB7/dj165d6O3tVSxcmR0Z2EzFg0pRSHjkEwjSIkWfzyfOi89VpJh9fu2UkH2l1tTy76vT6WCxWGA0GrFnzx4AG091VLrVsZg0AY0MUABkdggIgoBAIACbzVZ0r384HIbL5cLKygr6+/vR3d0t+8tcCTGwUX49GAxiZGQELMsqcjetdWSAmDe1tLSsq89Qgu2cJigHaStbtkCQRhCyBUJ1dTUSicSOmYewEwQIsH5DljPVMbvVMbuTQW6KRa7PABUDlJwdAgzDwGAwFJW/l+bSu7u7cfDgwaKnjGktBvKtmc80qFy0EAOCICAUCom5SjXNm7ZLAaEW5NsAsu8QV1ZWIAgCLl68qHoImbBT0gT50oEpLoX/89b/wcmOk9jftF+zdaVs1OpIuhhKaXWU4zOQSqWQTCapGNipSEVArg4Bufn7dDoNt9sNj8eDlpYWnDp1quT+7GIFiBJIxUAh06ByUXtKYjgchtPpRDQahdFoxPHjxytiAKQmWyEyIJdcAmFychLhcBgtLS0ZIeTsCIKSAqFS+fvNEhm4vHAZr8+8jlAihD0Ne2DQKbtVlOo+KG11bGpqEh+X2+pot9shCELByACpcaFiYIcht0Og0MbM8zymp6fFCtlbb7217AKUSkQGiI//5ORkQdOgclHLgVA6Wri3txd9fX1wOp2azKinkQHlMRqNYgcDkD/HLAgC7HZ7RpFiKQJhO9kRF1oze1NOcSm8OPkiWIHFcGAY1/zXcKT1iKLrKm1FXEyrIwDcuHEj4ztisVgyPu9wOAy9Xl8xk61KQMUA1r40ZJPfqE0wnxgQBAHz8/MYHR2FXq/H0NAQGhsbFbmYaC0GiAnJ9evXYTQaC5oGlYvSkYFco4VtNhuWl5c12TCVHpUsd83tTvZ73CjHTIoUs4vQpEWKhQTCTq4ZuLxwGaPLoxioHcB0eBovTr2IoeYhRaMDWrgP5mp1jEajOH/+PJqamhCJRDA1NYVYLCZOdWRZFpcvX0ZjYyOqq6srUk9RKagY+C/keAXo9XokEomMx5aWlsQZAoODg2hvb1f0C0TunLW4ayCmQclkEp2dndi3b5/qF0QlpgkCG48WJuto1bVQCbZzZEDue5PmmLMFgjSCMD4+Do7jMlIMDocjQyDs1JoBEhXQM3pYDBZ0VneqEh2o1PhiYE0kdHZ2iv8tndfx5ptv4tFHHxW/IydPnsThw4dx5MgRHDlyBIcPH1bsOGZnZ/G3f/u3+NWvfoXV1VXs3r0b3//+93H06FHF1igGKgYgf6OQRgai0ShGR0cRDAaxa9cu9PT0qGIYQl5TzZMnkUhgdHRUNA0SBAF1dXWaXJiU2KSj0ShGRkawsrKSc7QwoF34vlJpgu1MORuzVCC0tLSIrycVCAsLC5iYmMgQCOl0GolEQtPQ/WaIDJCoQI+jBwBgM66FyZWODlRqYmGu4kHpvI729nbcf//9+OUvf4kvfvGL+PjHP45Lly7hsccew7e//W28+eabihzH8vIyTp48iTvvvBO/+tWv0NzcjImJiZJbtJWAioEiMBgMSKVSuH79Onw+Hzo7O3H77beXZFsrF6kJUL6+/1LJZxp08eJFzVIT5YiBdDqN8fFxzMzMoKurCwcPHsz7N9ostsdqrbndixaVtjYuJBA4jsPY2BhcLte6IkWpna6SbIYCwt94foNIKoLJlUnxMZZnMbo0CmfQiQNNBxRZt5Lji+WsG4/HUV9fjwcffBAPPvig4sfxj//4j+jq6sKjjz4qPtbb26v4OsVAxYBMWJZFIBDA8vIyTCYTTp48KWvYRbmQwUdKbs6FTIO0rFPQYrQwoN0mnct0iEYKykOriI5UIMzNzWFoaAhGozGjAI1EEEifO6lBUEIgbIYCwlOdp3Cw+WDO57baWxVbV+7kQKWR6zEQDodV7SR45pln8O53vxsPPPAAXnnlFXR0dODjH/84PvrRj6q2ZiGoGMDGdx1k4xkfH4fRaITValU0byQHJecTyDENUrvdL3sttUcLk3VIcSRtLSyPnWQAlCuCkEgkEIlEEA6HNxQIdru9qLvfzVAzcKrrlCbrVmp8sRyPAWCttTDXrBilcLvd+M53voNPfepT+NznPofz58/jE5/4BMxmM/7yL/9StXU3goqBPAiCAL/fj9HRUQiCgP3798NoNOLatWuaH4sSd+rZpkEbuSCq1e6XC7nCIx6Pw+VyIRgMlmR6pFVhmFQMJBIJeDwemM3mdQVqSrPdow+bZTYBwzCwWq2wWq0ZRjhEIOSLIEiLFPOdd5uhZkArKlVAuFmsiHmex7Fjx/DVr34VAHD48GHcuHED3/nOd6gY2EyEQiG4XC7EYjEMDAyIBWmRSERzAyCgvGFFpZgGaZkmKCQ8lBwtDKi/aRJx43a7xYKgUCiE8fHxnD78So/63Y5s9kFFcgTC4uIi3G73OoEg9drf6kZHsXQMdqO81GklCwjlWhGrOb64ra0N+/bty3hs7969ePLJJ1VbsxBUDODtjSIWi2FsbAyLi4s5R/GScL3WF6dSNmdpv32xpkGbIU1ApjuOjo4qMlqYXPDUDk+Sokaz2YwjR46gurpaFCDSHvjsUb9EHDgcDlit1qK+XzuhLmGr9fzLEQjEa59lWdjtdvA8D7/fj/r6+rKH8chFqbHJK8kV/OuFf8VdvXfhZOfJgs/f7AWE0WgUPT09qh3HyZMn4XK5Mh4bHR1VdU1CPB4Xayf0ej10Oh30ej0VA8DaBdzpdGJmZka8+8w1wEba5qfl3PFiagYEQcDCwgJGR0eh0+lKMg3S6/VIpVKlHGrR5BstTPwObrrpJrS2tioyWhhQLzIQj8cxMjKCSCSClpYWDA0NgWEY0UMhXw886W8Oh8Pwer2IRCLQ6/UZoeVcDmm53tt2pRI1CmoI/o0EQjgcxo0bN7C8vAyv1wuWZWGz2dYVKSq9gXIcp4i9+Buzb+CtxbfACzyOth6FxbDxALBKioHNMKTok5/8JG677TZ89atfxQc+8AGcP38e3/ve9/C9731PtTXPnj2Ln/70p5ifn4fZbBbHiQPAiRMnqBgA3t5sT5w4sWHRSCXFgJw7dWIaFIvFxH77Ui5oleomkI4W7uvrQ19fn2IXDGlkQElISmBychLt7e1oaGhAXV2dWLC4EblG/RIDFBJBIA5pBoMhQyA4HA6YTKZtLwQA7dME5HPTYk0iEMiGfODAARgMBnEYTzgczoggKC0QlEgTrCRX8PLUy6i11GIiNIGLcxcLFiJWsoBQTppRbTFwyy234Oc//zn+7u/+Dl/+8pfR19eHb37zm/jzP/9zRdch586FCxfw8MMPIxAIYGhoCMvLywiHw0gkEpicnEQymaRiAFjb/A4cKNw/q9PpoNPpZH+hlKJQzUC2aVB2eqNYtE4TcBwnjhYmfgdqjBZWsr2QRGBGRkZgNpvFORSXL18u605WaoBC4DhOHOMaDofhdrsRi8VgMplQXV2NVCoFi8WCVCql6BCpjdjKPgOF0FIMELJnomQP45FO64tEIggGg+vG+RKRUIxAUEIMvDH7BnxRH/Y27IUn7MGLUy/iWNuxDaMDmz1NEIlEyp4rU4j77rsP9913n6prsCwLo9GI//iP/wDLsrh06VJekUPFwH8hN+9a6SmCUvKZBimxnhbdBIIgYGlpCalUCn6/X9XRwoByufVoNAqn04lIJILdu3ejo6ND3DhyrVHuna1er0dNTU3GxYllWVEgeL1eLC8v4/XXXxc7F6R3j0qbVWlNJdIEQGUESL6NWY5AWFpawtTU1DqBQH5ybYLlbsrSqIBep0dndSfGl8cLRgcq1U2wWQoItYKc+zqdDkePHhWFQPY5xTAMFQPFUikxIF2zkGmQEuupHRmQjhZmGAYnTpzQZA5COSIn2/Hw0KFD6zZarYr5DAYDamtrUVtbi9XVVTAMg76+PjF6QIoUE4mEOOddOqVNyzRXuWzHNAEvrH0PdUxm+qrYwlE5AsHj8SCVSuXsYig3MvDG7BuYjc7ipvqbwAs8DDoDzHrzhtEBMip+s0YGBEHQJDKgNktLS4hGo6itrcVdd92Fxx57DE8++ST+8A//UCwa1Ol04ndu61wRVGazRwZIQZ/UNEip4rps1LTulY4W7unpwd69e3HmzBnN8rOlbNSks4FY025UW1JJ06FcU9rS6bQoDkKhEGZmZpBMJmGz2TIiCFpVr28FCt2lK8EvRn8BhmHwnt3vAfC24ZAShbK5BEIqlRK/B1KBoNPpMDs7i3Q6LQoEuUJREAScnT0Lg86A8dB4xr8FV4NwLblyuhmSa8tmFQPAWvRPzZoBLfjc5z6Hf//3f0d3dzcaGxtx5swZPP7447j77rvR0tKC6upq1NXVQRAE/Mmf/AkVA8WipBugXAwGAyKRCC5duoSlpSVxMJJaJ5MakYF8o4UTiQQEQdDE/KQUkbOysgKn04lEIoF9+/bldGyUUqk2v3xrGo3GdXPepcVpJLRM2tuyc8/lfiaCIOA3nt9gsH4QXY6ukl9jO0UGvBEvzvnOgWEY3NJ2CzqqO1T9/jMMA7PZjKamJlEgAGvfg4sXL8JsNmcIhFxFirkEAsMw+NCBDyGWjq3/NzAYqBvIeTyVFANy0gQkMrDVxcBf/MVf4Oabb0Y8HkcoFMI73vEOBAIBzM3N4dKlS4hEIkgkEpiamsLhw4epGCiWcgyASiGVSmFxcRHLy8vo6uoq2XSnGJQUA3JGCwPaOKEVs1GnUimMjo7C5/Oht7cXu3btknXHtBV6/s1mM8xms9hySkLL5M5RapCTyySpmPfnDrnxsudleCNePHjzg2JYvFgqVcynBmdmzyCcCgMAzs6exftuel9F3AfNZjMYhkFHR4cYTZKmGJaXl9cJBOmPwWBAX21f0euSa8tmdSCMRqMQBGHLpwlOnjyJkycLez4QqBj4L+Se+FqlCXiex/T0NCYmJmA2m1FTU4P9+/ervi6gXDeBnNHC5MTUomBRTmRAEATMzMxgbGwMtbW1YgRDLltxaqE0tCztf5dO8Zufn8fY2Ji4js/nA8dxcDgcsNlsOc8fQRBwzncOK8kVOINOTCxPYLB+sOjj206zELwRL96cexNtVW0QIODi/EUc7ziOKr6qIm2i2SI8WygCmQIhFAphenp6Q4FQCFI8WAkjKTligJiBbfXIADmHbTYb3ve+9+Hhhx/GyZMnkUqlxL+92WzGv/7rv+IDH/gAFQPForYYIDMRXC4XdDodhoaGwHEcJicnC/+yQpTbTZBdaDc0NJS35U2t/v98a220zvLyMoaHh8FxHIaGhjJCqnKpVN+/0htmvjG/8XgcV69eBcMwYh0FwzAZGwJxUXSH3LgRuIFdtbvgi/pwZvYM+uv6i44OVCJNoHZUoKtmLWVyI3oDZ2fP4p0t76zInbKciJwcgSCtRSkkECpZPAigoGCJRCKwWq1bqsg2F+QcBoBf/vKX+PznPw+dTreubfszn/kMfv/3f5+KgWJRUwxkmwZ1dHRAp9NhcXFR09QEiQwUe1GUjhZ2OByyRwtXarwwQWp21N/fj97e3pIvzNL3okRBmNw1tYBhGNjtdhiNRrS1taG5uRk8zyMej4sphpmZGUSjUeh0OrwRewP+pB+NTY1osbRgODhccnRgO4gBaVSA0FrViovzF7HHtmfTioFc5BII0iJFqUDI7maptBiQExmorq7eFoZeX/rSl2Cz2WAymfCf//mf8Hg8sNvtovvg/Pw86urq0NjYSMUAoZg0QTKZVHTtQqZBWjoCkvWA4i6KpY4WBtTtXthoHVLUOD4+jqamJkXMjiqRJgAqN7VQp9OJLooEnufx1uxbmL86j0ZjI4LBIFLJFGZTs3gi/gT+ZM+foMZRA4fDIav+pRJpAjU25rf8byGajiKSjmAhtrC2FgQwYDAcHEavrlfxNTeCFO4qtTGbTCY0NjauEwikWFUqEBiGwfXr1zVtdyXpiUKfrdrji7Xk4sWLiEajiMVi+MlPfgKj0QiWZcWbvfn5ebznPe9BfX09FQPFomQ3gVzToEqJATnGIOWOFga0EwPSyAApamQYBkeOHMkoalRqjZ2KTqfDjfANxPVxmC1mcODA8zyqE9WY4+YwvjSOukCd6KKYbZKUK6W0HSIDh1oOocXekvPfTAkTVhdXFV9zI8g5p2ZEwmQyretm8fl84h1qrgiC9EdJwyyWZWW7D26XyMA3v/lNJJNJPPzww/jkJz8Jo9GIRCKBZDIJnufR2tqK22+/HQAtICwaJboJijUN0rqdkVwcOI7LezKyLAu3242pqamyRguT9bSKDCQSCbFFc3BwEF1dXYpeDCvlM1Apb4N8dFR34N7+e9f/HhgMtQ2hraoNHMeJeWdSpLi6ugqLxbIurKwlaomBtqq2jBSBlPn5eczqZhVfcyO0EAO5IK2OfX1vdyKQCIJ0aJfSAkFueiIcDm/54kHCwMBae+dzzz1X8L1TMfBfaNVNEAwG4XK5kE6nZZsGGQwG8DyvWSEVqfTNdRHOHi1MPPnLXU/tCz7HcVhdXcXo6Cg6OjpUa9HM3pi3w91FKdzRfUfef+N4Dr+e/DX66/oxWDe4ziRJuinMzs4ikUggGo1iZWUlwwNBrbAyMQDSkkq0FlZKDOTalHNFELIFAvkuWCyWjPSCXIGw06yICZFIBF//+tfR3d0Nk8kEu92Ouro6NDQ0oLa2Fna7HTU1NVQMFEupYiAWi8HlcpVkGiQN22tV4ZqroyAUCsHpdCo6WhhQNzIgHSjEsix6e3uxZ88eVdYCsG5aoRZ37FtNcEytTOH64nUsJ5bR6+iFUf/2hdxoNKK+vh719fXiY5cuXUJVVRWMRmNGaxsxSVJ6xK/SovtnIz9DjbkGf9D3B3mfUwkBwnEcGIbZFGIgF0oLhJ3kPiglmUziJz/5CSYnJ2G32+FwOLC6uopQKAQAaGtrw+DgIBUDBLUiA6lUChMTE5iZmSn5jrRSYoDcrZMCx4WFBcVHC5O11BAD2QOF/H6/6oZNm82BcLPB8Ryu+q+CEzjMhGcwEZrATQ03bfg7ZNRze3u7+JjUJIlM8JO6KEoFQrGbnZJiYDYyi386+0+wGW24tf1W1JhzR9G0MN3aDGsC5bUW5hIIJJoUDofXCQRpu2sqlZJ1/dxOaQJg7fy5//77sbCwgA996ENoaGjAysoKnn32Wbzyyiv42Mc+hpdeeomKgWKRKwakpkE1NTUb+tkXgoTttRydrNPpkE6nMTExAbfbjebmZpw6dUqRqYjZKF2Bz7IsxsfHMT09nTFQKBAIqL5pbsb8/WZiamUK7pAb3Y5uLMQWcHnhMvpr+zOiA9nk2pyz7XUFQUAikRA3Bb/fj4mJCdFFUVqkaLPZNtwElQzZP3b9MYSSIawkV/D/Rv4fPnLwI6qvKZdKiQElOxiA3NEkqUCQDu3S6XR46623MkRCdgQhEokoVlBcSch5Mzw8jN/97nf41a9+ldHpcdddd+HLX/4ynE4nfvrTn1IxUCykgDDf3UMu06BSzGvyrasFgiBAEAS89dZbsFgsqo8WVioyIK1nsNvt6wSYFoWKOyEyUMxa1xevo8nWhBZ7ixgVYMDAYrCgraoNnhWPrOjARvACj+cnn8eh5kNobW5d56JINgSpi6J0M6iurs5wUVQqMjAbmcWTridhM9jA8ix+dP1HeP9N788ZHahEmmArRgbkkksgjI2NIRaLweFwZAgEEkG4fv06zGYzwuFwRnHjVoV8j+fm5hAIBHIWqZtMJpw5cwYALSAUkXsibhSyz2capARatReS0cLJZBKdnZ3Yt2/fph8tDKwd9/DwMBKJRN56Bi02atpa+DaBeADnfOfQam/FPf33iFGBjuoOAIBJb4JJbyoYHdhoc2Z5Fl/53VfgWnJhtncWHx76sPhcqYtia2ur+FpSkySv1yuO0SbigIjhckUBiQq0V7WDF3jMRefyRgcqlSaolPlPPkdStbHb7ejp6RH/W1qweuHCBTz77LPw+Xx46aWXcOnSJRw9ehRHjx7F8ePHFbsh+tKXvoR/+Id/yHispaUF8/Pzirw+gXx3+/v7Ybfb8dBDD+HTn/407HY7rFYrLl26hGeeeQbHjx8HQMVA0RABIK1MlZoG9fT0rDMNUgK12wulg3l6enogCAJqa2s1614oVQykUimMjY1hdna24EChSkQGNvNoZrUZCY5gJbmCJJvEdHgazqATq+wqZsIz4nM4nsNCbAFT4SkM1uV2JtxoU37e/Tx+PPxjmHQmVJuqcVfvXeit6c17TMRF0W63o61trc2P53nEYrGMSY6JRAKvvfaaKBCi+iiMFiP2tuwt+Jm+OPUiRoIjYlRAx+igY3Qw6ox5owOVEANyfETUWrdSEwuz06zSCMI3vvENfOMb38Ddd9+N2267DS0tLbh48SJ++MMf4gtf+AI++MEPKnYs+/fvx4svvij+txp/D/I9PXz4MD7zmc/gn//5n/GRj3wEbW1tSCQSuHz5MoaGhvC5z30OHo+HigEpci6qDMOIG7PUNKipqanooTbFoFZkQDpauL6+XnwPFy9e1MxJr5RNOnug0MmTJ2G32zf8HS3cATfrxqw1gXgAriUX2qvasZRYwo3FG9jbsDfvRt1iy23GQ8i1AbM8i/999X9jJbmCKmMVfBEfXpp6KSM6IAedTiemDdrb2zE3Nwefz4fBwUGEw2Esryzjm299E9eWr+G97e/Ffb33iSLB4XBk3OXG0jF85uXPYC46B4POgCpTleg2yPEcvBEvnnI9hb8a+quMY6A1A+ojV4TEYjG84x3vwAMPPCA+pvQ5bTAYxGiV2uh0Onzwgx/E0NAQnn32WXi9Xuj1enzsYx/DfffdJ34HqBgoAb1eD5/Ph9nZWU1y6oA6NQOLi4twOp3Q6XQ4dOhQRnGJlq6HxYqB5eVlOJ1OsCyLAwcOiDliOetonSbgOE71O7DNWEA4EhxBNBVFe1U7zHozPCse7G/aj5ubbi76tfJ9Zs+7n8dV/1XYjDak+TSWE8s45ztXMDogZz2dTidu9jPMDKb5aYytjuF/ef4X3j/0fiRWE/D7/YjH4zCbzaI4eHr2aczH5sHyLJrtzdjXuC/jtRkwsBvXi9ZKbJDbuWYg37qFIraCICASiazzTlH6HBsbG0N7ezvMZjNuvfVWfPWrX8WuXbsUXSObw4cP4/Dhw3n/nYoBCXLu6oLBIFiWhdfrxd69exXrtS+EkpuznNHCWhgBSdeSIwakLY67du1Cb29vUReVfEZKSkK+QyRyMTo6Kra8kc3F4XDAbrcreiHeTB0Mi7FFXPFfEa13LQYLwAA3Fm+g29Fd9NTCXOuRqMAqu4pGWyOSbBL+uB91kbqiowMvTb2EydAk/vrQXwPIvEtneRbPjD2DyZW1qaFxNo5f+n+J/37rf1/7d5YVc84LSwv47tXvgud4mBgTQvEQPjH4Cext21vQe5/neUWtd+Ww2e/QlaYYO2I1WwtvvfVW/OhHP8Lu3buxsLCAr3zlK7jttttw48YN1boYfv3rX+OFF15AKBSCxWJBTU0N6uvrodfr8Ud/9Edr6VVVVt6GENOgYDAIk8mE3bt3izlHLVBCDEhHC3d2dm44Wlit3v9cFBIe2QOFSm1x1CoykE6ncfbsWaRSKdx8882wWq2IRqMZLW88z4stb+THarWWJCw3W2TgZ66f4SnXU7hn1z1YNi0DANJcGlMrU5gJz6CnpqfAK2SS6zN7wf0CrvqvQq/TI8klIQgCoukoZsIzRUUHYukYvnH+GwisBnC66zT2NOzJqFG4MHcB533nEVgNiL/zz+f+GQ8deQh2ox0GgwF1dXWoq6vDr5d+jRVuBdXmajBgEElH8IPhH+Cvlv8qY7yv1BxHOhRsJ9UMVGpduQ6Eag4quueee8T/f+DAAZw4cQL9/f344Q9/iE996lOKrUMiP08++SS+8IUvQK/Xo7W1VRSvyWQSk5OT6OnpoWJADtmmQbfffjuuXr2q+WS6cgoIpfl1h8Mhy/Ngs6QJAoEAnE6nIgOF1C4gTKfTmJ2dRSQSQX9/vxj2S6fTsFqtGT3x8Xg8w4edjP2V5qLlTvUjr7kZSLAJXJm/giSbRIJL4ETTiYx/txiKnwqZXUDI8zyeGHkCaT4Ni94ifqZGvREJLoEGa8Oa7wCbwKPXHsXv9/5+3rHJvxj7BTxhDziew2PXH8NX7viKuJ40KsCAgYC1v3GMjeG7l74rRgeANVHx7UvfBgMGBv3aZdXIG/Hy4sv4H+/6H2iztokdDEtLS/B4PBkuitFoVDzntLpr3mlpAjmRgXQ6jUQiUbbFejHY7XYcOHAAY2Njir4u+XwfeeQRHD9+HP/yL/+y4U8HwAwAACAASURBVAwcKgYkZF9w8pkGlTufoBRKrRkIBoMYGRkBx3FFjRbWMk2QS+hIpyEODAygu7u77AuXWgWEZPCUy+WCxWJBVVUVBgfXNh+WZddt1NKKdlJERCraiYua2+3OmOpHfpSe5KY053znsJxcxq66XfBFfbip4SY02hoL/2IBpN9ZlmdhMVhwvP34uucZdUa8f8/70Vfbh1enX8VrM68hySXxibpPrEtPxNIxPH79cRh0BtSYavDC1Av4i5v/AlZhLUJzYe4CzvnOZUQFCNLoAAD8+MaPMRedA8MwiKQi4vPCqTC+e/m7+NrvfS1jvK8gCEilUuLnHQwGxcJFklIiwlDplBJhp4kBOetGImufnZYOhMlkEk6nE6dPn1b0dck5k0wmcffdd4tCINvTgvx/KgaykGMapKUBEEGv1yOdTst+PtlMA4EABgYGih4trNfrkUqlSjnUopHesXMch8nJSUxOTqK1tVXRgUJqpAmk/gb79+8HALjd7pKOjYSOOzrW+vCl+ehwOCyapFit1gyBsJmiAr+a+BWSbBK763bDueTEb6Z/gwdueqDwL29A9vszGUz4zt3fKXgsL0y9AF7gcdV/Fc6AE/ub9mc85xdjv8B0eBrt9nYYdAZ4wh48dv0x/HXPX4NhGHgjXviivpyvH2Nj+MHVH+Bvjv0NAECv06O/rj/nc4269eKNTO4jLorRaFS02ZW6KI6Pj0MQBFRVVWWkGOx2e9npoUrVDFSyVqFQmiAcDkOn0xXsTCqHT3/607j//vvR3d0Nv9+Pr3zlKwiHw4q2LgJvtyt+9rOfxYsvvoihoSHs3bs37z5AxYCElZUVDA8PIxqNYmBgIGdhHVCZyIBer0cikSj4vOzRwrfffntJm6nWaQKO48SBQkajseBY51JQMjLAsizGxsYwMzODnp4e9Pf3w2AwwO/3K7aGNB9NIINaSD/81NQU0uk09Ho9RkZGRIFQyHJXDc75zuHN+TeR4lIIJUOot9TjZc/LuLP7zqKjAxzPwbXkwp76taFSxW58533n4Q65sbt+N9whNx678Rj+9vjfos6y9reURgWI2VGtuRYvTL2AO2vvRJuxDe/f83781vNb/Hb6t+teX8foMlIeHx76MD489OGijlEKuUu3Wq2wWq15XRR9Pp949yoVB6XUnFTiDl0QhIp1TshZl9QLqHnueL1e/Omf/ikCgQCamppw/PhxnD17NsMMSQlIuuupp57C448/jrNnz+LEiRNobGyEw+FAXV0dzGYz3vve98JsNlMxICUWi6GmpgZHjhzZUEEaDIai7tKVoNDmrPRoYS3TBOl0GsvLy1haWsLu3bvR2dmpSlGcEpEBQRAwNzcHl8sFu92O2267LWPcqdo+A9mDWgRBgMfjgd/vh8FgWGe5K40gWCwWRf6uud5fgk3g2fFnEUqEkObTmF6Zxv7G/XAtu/Cb6d/g3v57YTPK9+C4OH8RTzifwJ/t/7Oi/54kKmDWm2HSm1BrrsXPXT+HntHjf97xPwEAvxz/JaZWpgBANEESICCWjuGZ6Wfw0MBDYBgG33r3t4pau1TyhezzuShKTZKya06kImGjz7wSHQzkmlKJYkmgsLlPOBxWfXzxT37yE1Vfn0A+99raWnzkIx/B/Pw8zp8/j1gshng8jtXVVfj9fiwtLVExkE1HRwdaWjY2PwHWxMDq6qoGR5S5Zr5ohBqjhbXoJmBZFhMTE5iamoLZbMbJkydVvTiVGxmIRqMYHh5GLBarqOVx9npGoxEmkwkDAwMA1m8W09PTiEajMBgM6wRCdjfJq9OvwhP24MH9Dxb1HXItuTAWGkM0HYVJb8LEygQ4gUOVqQovT70Mf8yPewfulVXhn+bSoovfS1Mv4QR/oqhjIVGB/tq1sP1sdBaRVAT/Of6f+Oihj6K3phfNtua8I4XbmXZNNitnwInWqlbUWeqKyt+TKY5VVVXrXBRJBGFqagqxWEz8zLNNksi5sFk3ZaUh1045kQGHw7HpOnTK4ZFHHsn7b6lUSrwGUDEgoZj5BJVIE2Tfqas5WljNNIH07tpms6G/vx9LS0uq36WUGhkgosXj8aCrq2vDyNFmmFqYa7PgOC6jQFFqmEM2CZ1Vh5+7fo6V1AqOdxzPaw+ci/7afgzUDqDKWIVORycmQ5PYXb8b793zXpz3ncdV/1U02ZrQ4+gpeJ5dWrgEV9CFmxpuwnBgGE2mJhxgDsg6Do7n8LLnZcTSMUyEJrDKruKa/xpMehOWEkv4wdUf4Mu3fxl39tyJO3vuzPka4+PjqgvhQDyA//b8f8M72t+Br/3e18puLZRGBQjZn3l2UWo8Hhdrg7SaFcBxHBiGqYgI0ev1Bb970WhU1bbCSjE9PY0zZ87AYrHg3e9+NywWCwKBQEahJBUDJVCpmgGyOXMch6mpKVVHC6vVhkcGIcXjcezZswdtbW2Yn5/H4uKi4mtlU+x7EgRBrGOwWq2yWjKzBYdWdxiFBIherxc3fQLLsuKdZDgcxgtvvYCr81eh0+nw2JnH8NEDH0VNTQ2qqqoKXrydQSei6SiGmoewklxBik0hGA9iJbGChdgCWuwtGA4MY2plCn21+SfCkaiAjtGh3lqPwGoAb4bexP38/bL+DjpGhzu678CxtmMAgOfcz2F8eRwdVR2IpCK4OHcR0+FpdDu6AQATyxNotDVmzApQamrhRjwx8gS8ES8iUxE4A05Vphbm+sw5jssoSg0EAvD5fKIolKYY1BDnm93oKBwObzsxcObMGXz+85/HysoKrly5Ap/PB51Oh3/7t3/DwMAAHnzwQQBUDJREpboJWJbF/Pw8XC4XjEajqjbISkcGUqkUxsfH4fV61w1z0sIMCCjurj0Wi8HpdCIcDmPPnj1ob2+XdbHeSrMJDAaDOKQlkorA6/eiu6UbFlgwEhnBlZkrqJmsAcdxGQZJPM9nvMcUl8Kr06+C5VlE01FcmruEufgc0kIaT4w8AZvBhv1N++EKunBh7gJ6a3rz/i1JVIAYE3VWd+LK4hXcWLqBO+rvKPieGIYR7/h9ER++f/X76KvpQ4u9BbzAw7Xkwi9Gf4G/OfY3CCVC+PvX/h4Hmg7gnv57sJxYxu91/57qBkCBeABPOJ+Aw+RALB3Dj67/CPeb7tfkblmv16O2tha1tbVYXFxEW1sbmpqaRHEgHe1rtVrXmSSVO4Ctkh4Dcg2HtGwrVJvl5WV86UtfQnd3Nx544AF86EMfgtVqhV6vR1NTE37wgx/gwQcfhCAIVAxIkavMKxEZSCaTSCQSGB4exu7du9HR0aHq3YtSYkBqeFRTU5NzoJBWxYpyIgMcx8HtdmNychKdnZ04ePBgUXdIW3Vq4eve1zETnsFNDTdhPjqPGGKYMc/g3uP3IpFIZGwUq6uruHHjhigOVg2riCQiaLA2YDY8i7n4HFieRTAeRJJNiptze3X7htEBEhVIckmssqtYZdfqcpJCEq94X8HJXSdh0Mm/ZD0z/gzmYnPoqu5CKBECAJj1Zrw49SL+ePcf4w3vG3CH3AiuBvH85PNIsAn8xwP/ofrd6xMjT2Axvoiu6i6YUia8NPUSDnQcwH7d/sK/rCDkfebqWkmn0+JnHgqFMDMzI7ooSiMIVVVVRf2tNrPHAKC++6DWeL1eXLlyBb/+9a/hdruh0+lgMBig1+vR2dmJ6elpAKBioFS0FAPSEb0AcPvttys+HjkXSmzQZKBQOp3e0PBIi9HCQOECQr/fD6fTCZPJVHI3RiUiA7zAYzo+jQPcAbFNrhgiqQhemHwBDrMDaT6NF6ZegElnwnnfebxr17swWDeYUc1+9uxZse02HA5jdWkVx9njEHQCnks+h05zJ/rq+nAlcAUN1gY025rB8RxsBhuSXDJvdCC4GkQ0FUWTrQkJdq2NluVZ1BpqsZJaQSgRKqpFcTgwjGZbM5JcUnzMZrTBqDfi8vxlPD32NGrMNZiNzGIpsQS70Y7/O/x/cZftLtVEHIkK2Iw26HV61Jhr4Al78Jz/OdzH3KfKmvnYqIDQaDRmdK0Aazck2W2tZO6GNIKwUVqpUlbExUQGtoMYIKmucDgMi2WtBdbv98NsNouTdRcXF8UbHSoGSkQLMUAcEMfHx1FfX49jx47h/PnzmqnqcroJkskkXC6X7IFCWs1ByJeOiMfjcDqdCIVCZbc25hIDakcHpiJTeD3wOvqCfTjYfLDo3z/vOw9vxAtBEHB54TLCyTAYhoEz6MSr06+uKyRkGAZWqxUNDQ1ob28HsHaRP+c5h/nAPFrNrYiuRBGKhBCLx2BNW2Ez22AymWAymeCNeBFYDaDOUidW/et1erRWteILJ78All87t64sXMGTrifxvtb34Z3H3rmhEOB4DmPLYxisG4Ret/Zd+6c7/wnxdDzn85+ffB6zkVn01fTBGXAiySXhMDnw4xs/xpGhI2izqDN35ImRJzAfm0ezrRmxdAzAWrTizZU3MRYaw1HHUVXWzUWxG7PZbIbZbM5wUZQKBDJ3Q5pWIukF4qK4FSID3d3dGhyRupBrTmtrK/r7+/HII4+gv79fbJu8ePEinn76abzrXe8Sf4eKAQnFdBMQEws1VO7i4iJGRkbAMIw4Wpi4AcodtlEu5MQtppiKDBSamJhAQ0OD7MLGSkUGeJ7H5OQk3G432tracPr06bKrqpWODPhjfry58Cbu7rs75+fA8RyuBa/BF/fhgu8C9jbshUmf4z1Eo9BfvQrG6QSMRvB794I/dAgwmdBX24c/3/fniKai+PLvvgyLwQJe4AEGONAor4qf0TE4GzgLk8WEnoYeQADs9Xa4l9w41nIMvcZeRKNRpBIpVOmq4J/y4wp/BReWLuA9e9+DfU1ro36JvS/Hc/jt9G/hWnKhxliD+4wb3zVfXriMf7/x7/iz/X+GW9puAbA2ByHXLIRQIoSnx55GlbEKC7EFJLgEdNCBEzgEVgN4dvZZfLTuo7Led7GcnT0Lh8khRj4AwKAzgAWLK4ErONqtnRgo9/rFMAwsFgssFkvG3A1pWknqe0EiBizLIhaLwWazaVZgK1cMRKPRbVUz0N/fj4ceegiPPPIIkskkPB4PHn74Ybz66quorq7Gpz/9aQBrexoVA1nIuZiTzZhlWUVbcqSjhQcGBtDV1SWerGRNrcSAdJqanBM2GAxieHgYDMPg8OHDRQ0U0koMSCMDgUAAw8PDMBgMirodKi0GfuL8CX47/Vu0V7XnvOufCE3AHXajx94DT9gDZ9C5/nmxGAw//jH0169DMJvB8Dz0ly+Dm5gA+8AD2FW7C7tqd+Frb3wNcTaOtqo2JLkkFuOL8MVy2/Fm4wq64Aw6kWSTcAac4uNGoxEBXQAP3foQgLdDzcFQEK+NvIYbSzcQ9Ufxxz1/jLqaOrEO4UboBm4EbqDB0oAry1fgX/XnDd+yPIvnJ5/HSHAEz08+j8MthzesLXjO/RymV6bRYm/B5YXLayFSnQGxdAwOkwPPzj6LB3Y/gB4o6wgHAN9697fE+gWCIAg4c+YM7t1zr+LrbYQatREkamS1WkXPFulgLp/Ph2QyiQsXLoBhmHUmSaVO7izETi0gBIAPfOADsFqt+P/svXd4XOWd9v85ZZo0o15t2XK3ZRtjbIwLmBB6TyGw2TeFJCzZDZuQTdlNwm/Dm1xL2uZNL1xJSAIp1FBCD2BKbGyDjS0XVav3run9nPP74+iMZ6SRNZJGIyC6r8tXwmhmnnPOnPM89/Mt9/2Xv/yFwsJC9u3bxyWXXMJXv/pVCgsLY3P8AhmYAYwHKF1kIBVrYUEQEAQho+ZBMHUoMRAIUF9fPytDoUySAUVROHr0KMPDw6xevZqlS5emdfJJJxlodbbyaser9Hn7eKLxCTYVb0o4VkVVONx7GATIlrIRZCFpdECqrkY6cQJ19Wowm3XvPa8X6dAh1E2bUDdsYCQwwqMNjyILMmbJjFky4wq6+E31b7h+1fVT/qbFWcV8YM0Hkp57tjk7dm2MnWSP1kM0J8pF5RfR7eom7NAjX11dXbg8Lh7ofYDR8Cir8lbRFeliT9seVpYk1/6v7q+mbriOtYVrqR+u52j/0Vh0IBmO9h8lz5pHt6cbb9irOxRqUQRNIKyE8UV9PNn+JGevnn7KZSo4zA4c5kRSo6oqxeZiTHJm1QAzJToUb8wVDAaxWCxUVVXh9/tjEQRDGEuSpAkyyxaLZdbP6D9qAaGB6667juuuS2zP7enpYWRkhIKCAmAhTTAjCIKQlvbC6VgLC4KQcb8A0B+iZNX06TQUMnbsc9nfraoq3d3dsUkhnQZI8TDIwHTOJapGCUaD2M2JMqhPNT2FK+RiZf5KDvce5vjg8YRdf7OzmVOjpyjPKsfv8rPIvogWZ8uE6IDQ2AhWK8QTTLsdolGEjg7YsIFfHf0Vfb4+HGZHzHXPIluoG67jyaYnef+iSxEbGhBbWig5dQqz3w/nnQdjnSFFWUVcvfJqAPq8fdQN13HR0ouSXoOwEubNnjexiBZyLbkMmgZpibSwa8MuJFHize43GRkaYVn2MjRVI0fK4cmTT1LmLWNZ0bIEB0dBEnih9QUACm2FjARGpowO3HnBnbhDbh6ofYAH6xKlYWVBJhgMMhoeTem3SwcMApXJwjpN0+almM94/kRRjAljGRjv3BmvojheA2G6z66iKClt3N6NkQEg1g5sPI+CIHDjjTeyfv16fvOb3+iRk3k+xrcdUt3ZzbaIcCbWwplUPhRFMWkkQtM0BgcHqaurS5vWgTEhzVVL1/DwMHV1dbHow6ZNm9I+hoGZkJkXW1+k2dnMpzd/OrajN6ICxbZici259Hp7E6IDRlTAF/EhI+OMOHGEHETV6MTogCTBZJGXsWt/uO8wNtlGVI3GCvgEBEyiiYPt+7ihXkRsaUHLzUXy+7EeOIDk86FceqlONOLwXMtzVPdXU2FfzBq/DWF4GM3hQFu2DCSJuuE6Wl2trMhdAcBix2KaRptiBYDPtT6HKIuU5OlmPT6vj1HzKH32PjbnbU5wcOxQOnhj4A2W5CwhFAqxyL5oyuhAtimbbFM2Xzzvi3zxvC9O+Ht1dfUEp9K5hHFfZpoMZHpMOPMOPZlzp6IoeL3eWJHi4OBggopiPEE402KfSppA0zQ8Hs+sPF3erkj2O5tMJpYsWQKwkCaYDWZKBmZjLZzJyIAxXnz43hDicblcaTUUio9CpJMMhEIh6uvrGRgYYNWqVZSUlLB37945jUAY35vqGEP+IQ50H2AkOMKJwRNsLdMLyIyowLqCdQAssi9KiA4YffiL7Ivwer16NAJNF9dBxRPW+/4B1A0bkI4cAY8HxiJPwvAw2GyoK/XQ+++v/j3dvu7Eg9PAF/axedSEuOc1/b2yTNjpJFJcTFZLC1pHB+qaNbGPNI82c6TvCCPeAfY+9v9YfyoX0esDiwV19Wr8N7yfN3vfJKJEcIfcsWvlCrp4o+cNVE2l092JoirUDtUCMBIcIdeSywnXCT5yzkdi1d7+oJ+X971MlChev5cR5wiqqjKsDvPAoQco3VJKQV7BtO1+M6FAGA/jGZuPMeeDDExnVy9JErm5uQkLdDQaxev1JhQpBgIBrFbrBJEkI6o5nQLCd0OawIhOxsPY6Brp0tHR0YSN3AIZmCGmu0uPtxYuLy+fkbVwppUPDfIRr80/WU3DbBAfGUgH4tsyi4qK2L17N1arlVBI7zefazKgaRoDvgHKHGVTvv/N3jcZCgxhla3s69rHWcVn0e3p1m1zNejxni7gGwoMxaIDdrOdT5z1CVRNZXBokPa2ds7dokvwioIYa68DUDdtQtm5E+mNN6Cjg6Cg0OSIsOaiD6CNkYEcaw451sTw6KMNj/Kro7/iTwX/yiKTCeJ3ViYTmiQhDAxAHBn4e+ff8Uf9rHZKVHe+SWPexaxZuh78fsQTJwiIQZRtNsrsZWh69QJtrja9xTB/JcVZxXxmy2f0boYxvHX4LTaetZG87Dyy5NPOh17FS0SKsLRQJwc2bESVKNaIFZ/io6GzAXOzedoOjnOtQDge80kG5sNKeLZjyrIcU1E0EIlEEmSWu7u7YyqKhg9DKBQ6Y4Tg3RQZMGrMkr0O+u8eDAZj9QILkYEkSLcKYbwpj81mm5W1cKYjA4IgMDAwwNGjR8nKymLHjh1zkk8zUhLpIAOjo6PU1taiKEqsLTN+HJjbwilBEGgPtlNfU89NG26iPPt0v7qqqtz+0u1sLdvKJzd9kiH/EAe7D1KSVUKuJZfm0WZODJ7AIlkozy6nyJbYV1+cVRwL4QNIooSEhEk0IQlSUsGhqBpFNpmI3nAD6qZNCB0dHAk28bKpk/eft4rVk9zvgUiA3x77Lc2jzfxZ2st/RVYwPnkmKApqHKE1ogKLzEXk9R2n22bilax+VmvLEbKyUJcupbiph09feRvKWHgyEA3wvwf/F5tsY03BGoqziinOSgzRe7I9nFt2bkw8xUBJdglfP//rRFTdTtwb9sbqLkyiCbvZHnNwHF+odiYHx0xHBgzykckxjXkk0+58c6UzYDKZYtLaBsLhcIIHQ2dnJ62trUlFkiRJwufzoarqO5oMGHPbrbfeysmTJ6moqMDhcMQUJvPy8sjPz8dms9He3r4QGUgHUiED6bYWzmTNgMfjIRwO09nZSVVVFeXl5XM6ccy2oyAcDtPQ0EBfXx8rVqxg+fLlExb8+BD+nCAQQK2robPlNQYDGodzKrlu3ftjf36p7SVe73qduqE6rlt1XSwqsL5oPaIgYhJN7Ovax2fO+Qy/uOIXKQ872e8y4BvgxbYXuWzZZZRkl6BWVeFfVcn+4410jvh5s+8QKwtWIQoTidFTTU/R7mon25zNX9yv8zHTYsqGh9EKC0HTkEZGwGZDq6iIfcaICiyzFkMkQoUtn2qtl1MMsYZivdiwuxs5EEIcIy4Hug/Q5m4jz5rHKx2vcH7F+eRYThNO47ea7ByNxf/4wHGeaHyCWzffSrn9NAGLd3A0MD4PPd7BMRgM4vP5Um5Hmy3mwqQolTEzTUAgswqEZrM5pqLY09PDxo0bsVqtsd99eHiY1tZWnE4nd955J+vWraO0tJSmpiZyc3Pn3MnxO9/5DnfccQef//zn+fGPf5yW7zR+z7Vr1xIIBIhEIvT09NDQ0IDX68Xr9eL3+2M6OUbKbSEykATTiQxMtkufK2vhTEQGIpEIp06doqurC1mWYyY9c42ZkoH4joz8/HzOP//8mNxmsjEgfemIBHR3Iz7xBE1db+EMHme5s5jjI/ezJXc9xYXLUFWVP9X8iWA0SJ+vj98c+w2BSIB8a35st1+aXUrTSJNeO1C6BbGmBrGmBi0nB+WCC2L5/lRR3V/NiYETFNuKuXzF5QCcHDxJr6eXdQXrqBuq47v7v8uHN3yYFXkrYp8LRALce+JeREGkNLuULncXfywf4D+HCxBPnSK7uxth+XKU889HG5MobnG2cKTvCKqm0hrqRcwKQzDIgAleUZtYIxXrhYQ5OWhjxXmBSICX2l7CJtlYkrOEhpEGDnQf4IoVV8SOJRXipqgKL7W9xInBE+zt3MtNVTed8f2T5aGNKvaRkRG6u7tpa2tL2EUaWvzpXswy1eI332PC/BoVSZKUVEVxdHSUL3zhC+zduxe/389VV11FIBDg7LPPZvv27fz0pz9NO2k6dOgQv/71r9NezGwc55e+9KVYB4GqqrF0bzQaJRKJxNIqK8fShAtkYBZIFhmItxYuLi5Ou7XwXNYMaJpGV1cXjY2N5OTksGvXLmpqauZkrGSYCRlwuVzU1NTEvA9KSkrO+P45iwxEo4jPPIPS0caBRVGU4RxKcxdTP9DEW6/+ics/cAcvd7zMicETlNvLcYVcPN7wOLsqdiFq0BHywliO3ySZqOmtZtcPHkR66SWEYBAEAa2sjNC3voWyc2fSQxh/TgO+AU4MndAL7wZPcHbp2TjMDt7ofQOHxYHD4uBgw0F6fb2IoshXdnwldn2MqEBJdgmiIJJlyuIvnv388xW3sMgLQ8eOYdu2DfOK0wRCQKCqqCqW6xdX2BGrj7J+RMCRpSK4uhDcbpQrrkAbm4gP9R6ixdXCqrxVyKJMjjmHPe172Ll4Z0J0AM5M0k8OnaRuqI7S7FIOdB9g95LdCdGBVBDv4Njf38/KlStxOByx9MLQ0BAtLS0THBxzcnJmraSX6RoFePtbCacTRhtlsnEFQaCgoICPf/zjrF+/npdffpne3l5aW1s5fPgw7e3taScCXq+Xj3zkI/zmN7/hrrvuSut3GzBa0aeDBTIwQ8iynFCQ1t/fP+fWwnMVGXA6ndTW1hKJRNi4cSMlJSWxmykTYkAwPTIQb960fPlyVqxYkdKNbxTVpP2cOjsR2tupXWKlRRmhTLGD2UyJpZD9NXvwm5Zzr+sh/EE/ZdYyiq3FdLhaye8c5JaectA0tNWrUc49F62wkKL7H0N++mnU3Fx94VQUxN5eLF/7Gv7HHoO4vKhxXuNR3V+NO+RmXcE6GkYaONZ/jDxrHr2eXtYUrGHAN0CrqxVfxMeetj1cv/p61hetT4gKGK2JBbYCutxd3N/zLF8874v4nE7UcYqNy/OWc9uW206/sEVDXHIIad8+hKEhyLETvewylAsvBIyowItYR71Y699ACIVYVFREfdFQQnRgKuKmqAp72vagobE0Zyk1gzUpRQfOBKNmwGKxUFxcnCC1GwgEEhwcGxoaYkp68QRhOkI585EmmC/DoPkgIcbzPlXKxxAcEkWRVatWsWrVqjk5nn//93/nmmuu4dJLL50zMjATLJCBcZhOmsDn8+HxeKirq8Pr9c65tXC6yUAoFKKxsZG+vr6k6YxMixxNtUhrmkZ3dzcNDQ2T2iGnY5zpQohEiEZCHGQIRdBQ0RjwjBJ0+fGYQ1Sbj9ER7qDQWkg4FEYJhzE5/bwS/DufGr2ScnMe1leqEbp8RG6+GdsTf0Mzm8Eo1pRl1EWL4wDRygAAIABJREFUEHt6kF95hegNN0w4hvhF04gKlGXrNSql2aV6CF9QUTSFwcAgL7S8gDfiRRREOtwdPHnqSaoKq9jfvZ8B/wARNUK7qz1hjKebnuZzWz+X4kURUM87D3XLFvB6ISsrQfSobriO0WMHibbUUq9EAQEGQHY4OGh/kcuXX56g+THZM2VEBZbkLEEQBErsJTOODhiYbKcuCAJZWVkJDo6TCeWYTKYJBGEyK+yFNMHcwojgTjWuQQbmkpg9+OCDHDlyhEOHDs3ZGDPFAhmYITRNw+l0cuDAASorK9myZcucFxvFRyNmg/jWu8LCwknz7OmwMU4VUy3Sbreb2tpagsFgQvRiupgLi2GtpIS+fBMuzxCyGYbFAM5wmByrSmlBBc8Pv4lf8aMKKm7cEAmiEmEwW+ZR8yA3eYoIW63kHjyI1+FgxdAQoiwjahoY5yhJIAgIoxOV8cZfByMqsNiuC7fkW/NpdbYSUSIsz1/OsH+YZmezLj0sm4mqUV7vfJ261XVsX7Sduy68K+k1yrPmnVHzPylkGZL4Pqz3WLn9uWE0tRjNiHREo4jVfVizQbgy8ZwmM2na07YHbWSYrJpeBL+f4qIiakqFWUUHptNNMJlQjlGkNr4PPp4cOBwOJEmatzTBfJGB+dA2EARhynHdbvecagx0dnby+c9/nhdeeGFCZ0w6Mdk8Gn9PJ7u/F8jANBG/kIqiOKPd6UyRjp26ocanadqE1rtk4813miDet6GyspKVK1fOinTNiQ9CXh7F517MdY904gkFiVpyqXDkYM7LJXrhtSxS6xgMDJ4+hro6xL5mtJJiLspaTWX+UlRVJaqqSC4X3iVLyD5xAo8kIY39k6NRTIJAdJLQpbF4O4NOmpxNADSONMb+bjPZWJa3jP+z5ia+/9zX0MJhKm2lSLZsRkOjDAQGeKrpKf5r+39x5Yorz3i60yJTgQBibS2C241WVIS6bh2YTNjfPMrmrijqsmXgi5ukIhG0l44Q+IoCYwvlZGh3t9NfvRex7i1ORSK6muJQPZaOLE6airl65dUTJJ5TwWxbCyVJStoHb0QPnE4nHR0dhMNh7HY7JpOJaDSKx+OJWf3ONd5uufu5RKrmbnPtS/DWW28xMDDA1q2nnSkVReHvf/87P//5zwmFQmm5NjO9fxbIwDicaRKItxZesWIF/f39GSMCMDsyEAgEaGhoYHBwMGXlw0ynCeLHitdnyM7OZteuXQntYTPFbCID9UP17O3cyyfP/mRshxwrvAQqLr6Ws51O2qurKdy4HcuFF6IuX87Hw9sSrrXkfhH58F9RF2+IvSaKIlbAtHw52rnnYv7ylzF7PESzs1F9PkSvl/6qKo4qCva33iI3Nze2w4w/H4fZweXLL0eJhhHfeBPp0CHwuNHWrEXYsBj3//smL8hPgRzG7esCi5mgzUwgGmB/134aVzeytnDtjK7PeAhdXZh+/3vE5mbQNJBllA0biHziE5PLIwsCgqbp7094eeJzWRmycduzg6jBYjSjeFRVEE50YxLCZF8/s2dzLnL4JpMp1uYG+n0TCoVwu9309vYSiUQ4cuRIzOo3PoIwF05+85WagMwLHRmdBFNhrn0JLrnkEk6cOJHw2ic/+UnWrVvHV77ylbRcl9HRUb797W9TUlISS2llZ2djt9vJzs6OvWaz2XA4HAmy2wtkIAV4vV4aGhpwOp0xa2Gn00l3d/fUH04jZrI4x3c4lJaWxtT4UoHhPZ4JxO/YvV4vtbW1+Hy+tOgzTDbOdKBqKo81PEZ1fzVnlZzFjsU78Hg81NTUEAwGOevss2PdDK0vvkjR9u1YcnIgycKirl2LlpuL0NmJNhZaFgYGdMnejRtR160j9L3vYf71r5FbW8HhIHrjjThuu42tFsuE/LQRwWlrayMnJ4dljkps99yD/Pjj+qJqsSC89SIEnuTe9WGkdWbKRav+N18YuyihFuSzPG95zGFw1lAU5PvvRzx1KuaWSCCAdOQIWn4+6o4daFlZCKOjp9MEioLgchHdtg3z//wPwugoQlUVtnEFkwbMR6qp6gygVVZCIG4ilRSEN5vwO50wvpBXURDr6xE8HtRly2KtkfHIhOhQvINjNBpFVVU2b96c4OTX1dWFx+NJcPKLL1CcDf6RyMB0HAvnkgw4HA42btyY8Fp2djaFhYUTXp8pnE4ne/bsIT8/n1AoFNMTMGAUhhvp1nvvvTd2LyyQgTMgEonQ3NxMR0cHFRUVnHXWWTEhitkaFc0E0x1zYGCA+vp6JEmaUYeDJEmEw+HpHuaMYAgqNTQ00N7ezpIlS+akDmOm3QTH+o9xvP84gUiAZxqfweF20N3ZnTR1IYwLb48vgtOWLiV6/fXIzz+P2NCgdxPk5RG9+mrUtfquXLn0UgIXX6wvljYbZGUhAHbAbrfHtB8URaGnp4fW1la8Xi89PT3ITU1sfvBBhOxsxJISnsvvwxaQuP6ZXjaUl3FnKK490e2GEYXIez7O+mXbqXCcFhGaDYS2NsSmJtTKytOFgzYbWnk50rFjRK+/nuhNNyH/+c+IbjeaLCOEQmhmM1JzM7S3o5nNWI4cYWN2NtLWrTBZdff4hVsQ9MjD+OhCezvmH/4Qsa5OHys3l+iVVxK59VaIK+6bTwVCw+q3vFwvflRVNabD73a7aWlpwefzYbFYEghCvA5/KpgPMmBsZDI9bqriUR6PZ066wDKJiooK7r//fqLRKH6/H7/fj9frxefzxf47FAoxOjpKxZhgmHGvL5CBcTDCyPE998mshY2FOZMTR6qRAZ/PR319PU6nk9WrV7NkyZIZHeNcpAk0TaPV1UqFoyLWuqZpGuFwmObmZhwOxxmtnGcLwy55OlA1leean0PRFJbalvJ64+ssCy/jpl03JT3OSVMRw8P64l5cjLp9O+HVqxFbW3UyUFkZE+OJO1hd8e8MkCQJh91Obk8Pmzs7QVVRhoaQVRVfQQEtygjPSx2I5jDn2lQ2N3pZu6wMi9WKJEkIUR/C0BChogvRCpamfE2mup+EYFDP/4+LQmkWC4LPhxAOE/6P/0DZuBH5hRcQnE7UJUuQXn8dsrNj10KJRMg6ehTTww8TueOOhO9St26F/HyE/n60scUTVUUYHkZ573sTWzDDYczf+Q7SyZOoFRVoNhvCyAjyQw+hFRQQ/fCHTx/jPHgTTHY9RVGMLfgGjPqC+BbHYDBIVlbWBIGkyXbE85W7ny/Vw1QjA4YiX6bw6quvpvX7TCYT69atm9ZnFsjAJFBVlQMHDkzouR8PWZZj6k6ZeqimWpzjzZAWL17M7t27ZyWpORfdBJ3uTp5pfIbzl57PlrIt+Hw+amtrcbvdFBcXs3nz5red7PGx/mMc7T2KJWTB4/Vgz7bTbm3Hlp1cUGoCGfD5MD34IPLrryMEAmgOB9GLLyb6oQ/pC9psoGk4fvxjznngASyqimYygdmMEIkgVVVxMm8YX7bISdnP785W+K+juvLY8OgooiDgGBlBLCrCK8s4IpFp7S7PBHXRIrT8fISBAbQ4BUthYABt8WJdP0EUUS6/HOVyXR1Rfuop5Jdf1qMJBkSRsMNB9ltvEQmFIC48rpWUEL7lFsy/+AVCc7PeuRCJoFVUEPn0pxOORzpyBKmhQS9YHCMoWnExQjCI/Mwzervm2LnPh2vhdMiHLMsxrXkD4XA4QUGxra2NaDSK3W5PIAiGg+N8RQbmS+golcjAu82x0Ph9jxw5QmtrKxaLBavVSkFBAWazmZKSkgShtgUyMA6iKLJmzRoKCgrO+LAYN1eqxSnpwGRkQNM0+vr6aGhowGq1ps1QKN3dBJqmcbTvKK2uVkxdJkxOE70dvVRUVGCxWOakUGo8pltAGFWiPHD4AQYGB6gqqqKgrIASrYT6oXoO9x5mx+IdU45hvu8+TH/7mx4RKCtDcDoxPfQQSBLRf/qncQNGERsbEVpbdeXB5ct1i+BJ7jH5178m63e/Q41E9FRCMAjhMILfT09LNQd3KkQEFb+k8MTqKB8fsLM4HEa121GHhogIAt07d9LR1kawvp6srKyE3PSM5Xfz84leeimmRx9FaGpCczgQnE40i4XolVcmhOUNaMY5xrVUaqAXFEqS3i0wDtEPfxh15Urkv/0NYXAQdf16otdem+CZAMDICChKjAjExrTbEVwu8PkgLy82kb6dyUAymM1mioqKEmR2g8FgjCD09fVx6tQpQE8zGVbCRstjJs53vqWIp8Jc1wxkCoa4WiAQ4Gc/+xlPPvkkw8PDDA8PY7fbcblcBINBvva1r/Hf//3fsd9lgQwkQXFx8ZQLhhHuyrSl8PjUhCF65PP5WLNmDYsWLUrbg53uNEGnu5O6oTrKTGUcrD2ItczKB7Z/gNzcXGprazPSxjidyIDT6eTJN5+kurcaq93KAAMMjAwA4A67+Vvz39i+aPuE651ABrq7kQ4eRC0rA6OS3GYDTUN+8UWUc84Bq1UPi5tMyH/9K9Kbb+oLF+gV+Dt2EL322kQLYQCXC/Mf/wiRCOGcHKxZWaBpehufLLM3a5BBv0KfLYxdVenPM/Hbj2zg6/UliC4XwqpVaFdcQcVFF1EhCAm7S0N+V1XVhOr23NzclMmUcuWVkJuLtHevHrrftAnlootQN29O+n51yxa0wkKE7m59MRcECIcxeb0o73lPUgJhiBuFzzvvjMeilZfrQk5eL8R1pQhOJ9qKFTHfh6lEjuYCc0E+BEHAZrNhs9koLS2NjWMIJHV0dODxeDh48CCyLMfqDsY7OKYTb3cJ5HeLfbFBLp9++mn+/Oc/c+utt3Lo0CGam5u5/fbb+d3vfoff7+eKK3SVT4OILpCBJEh195jpIkIjGmFUiBr990uXLp2TYrt0pgk0TeNg+0Fau1opFopZXLyYYGEQc5Y5NlYmyEAqBYSRSITGxka6u7tZVb6KWxbfAknm6hxzzqSe4cYY4uAggterRwTi3qOZTIh1dZjuuQfsdrT8fLSyMsRDh1AXLz69YLndOplYswZ1/frEgepqCXhGsJlMCKqqEwhJQrNa6cbN6+sdhCpycUZ6KLYVE5T9PGXt4P/897epkPN1F8G4STLZ7jIQCOByuXC73XR2dsY0KpqbmyksLDyzup4oopx/Psr550M0OpHMjINWVkbkllsw/epXemElIGkarpUrkW+aubwwgLppE+o55yDt349WXIxmtSKMjIAgEPngB2PXYT7IQKZC9vEOjk6nk6ysLJYsWZJQoGg4OFqt1gkFirOdX+YzMjBV94Wmae+aNIFxP+3Zs4cNGzbw2c9+li9/+cuYTCZuuukmtm/fzte+9jV6e3sTPrdABmaBTJMB40Hq7OykpaUFh8ORtv77ycZLxwKtqiqv17zOC9UvUFFQwcolK0GEUyOnqBuuY0vZFkRRzEjnwpkKCI10S319PXa7fcaCUvELiVZQANnZCB7P6Ta3SASxoQEhEkHNyUGIRBBaWvSFyuFAWxvX55+TA93dCC0tMI4M/LHvOWq2ufjhUyFM4TBCKARmM5okcag8Qm+ZndosLxHFxohJQ9ZMDPgGeKjpL3zpvC+ldB5GX7JR3a4oCgcOHMDhcOD3+2PqejabLSF6MCG9kOJCEr3mGtTVq5H27wePh8CSJdSYzeweX1w5XUgSoa9+FfM99yC9/roeESgtJXrDDXoEYwzzFRmYj/y9KIpJHRwNRzuDIHR1dREKhWbt4Dhffghvl9bCTMG4d71eb0wV0+Vyxa59ZWVlzEsHTkdsFshAEkzHnyCTZMDtdgPQ2trKhg0bZizJmyrSkSYYHByktraWg66D2IvsFJUU4Yq4Yn8/1HOIqsKqeY8MGIWMHo+HqqqqWWkbJESWli5F2boV6eWX9a4BhwOhtRVxZARl2TLkgwf1PL8oIgwNoRYXw/bt479wgkhPv6+fp4f24SoM8VqlwMUtCkQiehW/qrJxcQVnb7qc7r6/s8SxBGnMFbHb002bq41QNIRFnn6vuiRJiKJISUlJrIAtHA7j8XhwuVyM9PXhf+AB8o8dwyJJhLdtQ73mGhxlZXpNiN+P9NZbetRg61YY7+qpaeD365EEVdXPPV33eGEh4a98RTdO8nj0DoTxNQRjv1umuwnmWso82ZiTnaPJZIo5OBowBJLcbjeDg4MxB0dDijkVB8f5LCD8RyQDFRUVtLa2EgqF2L59O/fccw+PPfYYNpuNtrY2lixZkvD+BTIwC2SKDIRCIU6dOkVvby+CIHDOOeckSJ3OFWaTJggEAtTX1zM8PEzlikrK8sqwhqwo6unvK7QVIiDgDDkzJn08PjKgqiotLS20tLRQUVHB5spKzCdOIBw/rkvnxle2p4gEwiEIhD/1KcyyjHToEOLwMEQiqMXFsV53raAg1hIndnSgjI6ejiL4fGiCoOe14/Dc8b8w1NeMSRR5ZLPErj6RrLCCJgiQk0PFZ/4/RsRq8q35BKKB2OdyLDkEIgFqhmrYUrZl+hcwCcxms66u53Bg+fWvkV56CU1RUDUN9ehRRv/+dw5/4hOUV1ez9sEHMbvdOmEqLSVy551Er7lG/yJNQ37oIb240u8HUSQrGmVdSYlOkCYRH5outKIimESGe77SBJlut5tuauJMDo5utzslB8f5TBNMRbai0SiBQOBdQQaM3/Xmm2+msbERv9/PTTfdxPPPP8/Xv/51RkdHueCCCzj//PMT3r9ABmaBuSYD8T4IBQUFnH/++bzxxhtzNt54zGSBNpTwmpubY4qHFouF5erymNd9PAQETJKJ9uH2jEcGhoeHqa2tRRRFzjvvPPKrq5G++U2E/n4AxJwc1Pe9D/WTn0xayX6mMRJSEbm5hD/7WcS+Pl1Vz+nEdNddep7fyFFKkl48JwiIx49D+Zi1sabp7n9xqYOhR+/jhVfvpFCJkBeAulx4dXkeV+Rs0QsRo1FYtoyPLN+AN+JNeoxrCtakftH8fuQXXkA6dAhtTFaXNRM/L732GtKePfpia7cjAmIwSElzM5f87W+YH3sMIhEi2dlETSbkri64/XZao1HkLVvIHx6m6C9/QbNa0ZYtAyDq9ZJ3/Djys88S/ehHUz/mGeLdXDMwfszZLMypOjh6vV7MZjM5OTlEo1FEUSSSxhbWVJAKCfF4PADvigJCA1VVVVRVVcX++9e//jUvvfQSgiDwwQ9+cMI1WSADSZDqRDCX2v0jIyOxCvuzzz47xsjnwy8g1WpnY3EVBIGtW7cmhBmncrvLVJrAmIyOHz9Of38/q1evZunSpYidnUg//SmC14u2apVeUDY4iPTAA7og0KWXpjxG0gJUQUBbtEjvuQ8GMVmtMDQEgYBONMZsftX8fJQLL4TcXL1SftUq1A0bYpX0QksLL/z2vxhYH6VqSETUBARUnlzi4mLNjrhuHWJnJ+TmsqE4iceApiEePoz0+H16YWNVFdHduyfK9hrweLB86UvIBw/GVP2qFIVodzd861sJBYjSm2/qRCS+hsViQfB4sDz0EITDIMuYvV5MNpvuJzA0RNmePTQuW0bwuecwdXURXLECs9OJ2WRClCQiWVnY9+3LCBkw7sF/lJqBdGIqB8eenh5CoRB79+6NaeOPd3CcC6RCBtxj0aq5qr/KJIxIyC233MLnPvc5Nm/eTDQapaCggJvGCnFffPFFdu7cmXC+C2RgFpiLyEAwGKS+vn5SQ6FMkgHjAZpqFxEMBmloaGBgYCBlE6TxyAQZ0DQtVvRWXFyc4NMgHjyIMDSEVlV1OkddUgJOJ+LLL6NMRgZCIX0hz82NFclN2Y1iteo9+E8+iRCJgKqi5eWhlpRAKIR6wQV6iiIJhh+9j6eXhSgIy4iiAIpChVegpkjl9erXeU+2Q/c3GJdWGLsAyPffj+nRRyEYBFlGevVVpNdeI/zVr05UQARMjz+OfOAAamlpLL8e7ekh67nniFx9tU5cDCRbQH0+XfJYVfXrY7Ho7Y+BgJ4KkCTyXS7OPvtspKYmZIcD2W4nEong8/mIRCJYgdGhIfpaWua09U2/RJnVGIB3Rppgpoh3cAwEAkiSRGVl5QQHx0gkMqFAMV0OjqmkCTwez8w1Nd5mMM7197//PbfddlvCawauuOIKGhoaWL169enPZe4Q331IJxlQVZXW1lZaWlooKSmZ1FDI0BrIBKYiA/FpjKKiommZII3HXJMBw1TI4/FQXFzMOeeck/gGtztpsZpm7ODjcM/RezBrIp9oyUHcswe8Xl1Q6Oqr0S65JHnHgqIgNjfrhCMnB+Xii5E6O6GvT8+FiyLC6CjK9u2ok2nwA/vdJ/CaIGDRcFo1UNGL7lTYU+Jl95YtCWp68RBaWpCffBItOxtt+XL9xUgE8eRJ5Gee0d0Ex0HaswfNmCADAZ3IZGcjDA0hvf56AhlQzjtPN0fyeGLpD2FoCEFV0QoKEIaHTwsKCQKCz4cmSbHz1TZuRMjJITsQ0FMNQNjnI9TeTvi66wgGgwmtb+O7F9Kxs5wvMjAfaYL5iEaYzeYzOji63W76+/tpampC07QJBYozESZLNTLwbmgrBLj//vux2+1kZWVRXV1NOBzGbDbHjLH6+vrIzc1NiNzCAhlIiul0EwQCganfOAUGBwepq6tLyVBIluWMpglAf5jG5/hGR0djaYzNmzfHetNnM9ZckIFoNEpzczPt7e1UVlZOGo7Uli3TF714yVtN09MGcY5ibc42/njyj8j9Q1x5YBGLrCW6il1nJ9Ldd6OoKkJBQSIZcLkw3Xcf8vHj+vfLMuqaNUSvuw7xxAnEtjY0sxnlPe8h+t73nrEN78IVl7Lo539Hs1hidQyaqoLfT+nqzUT+9V8nrb6XamsR3G7UuDwiJhNafj7i/v1w880TP+tyIYx5KqBpYLUiG5PmuN9Lec97iF52GfKLL8LgIIAugGS3o5x1FvK+ffr5m0z6Z4NBWLSIyJgvgLpmDcpVVyE/+STC4CCYTJj8fkaWLaPgox9l/Zh0qtH65nK5cDqdtLe3x6R34wvXzlTZPhn+kcjA28U9MN7B0ZDHNaJ48e2NM3FwNDRZUokM5OQk1w15p+FHP/oRiqLg9/v52c9+hs1mQ5IkzGYzZrOZjo4OLrnkkglF6AtkYBaYbWTA7/dTV1c3LUOhTNcMjFdZDIfDNDQ00NfXx4oVK1i+fHlaJrK5IAMDAwPU1taSrarsWrMG+5Il1J86lXQc7fzz0c46C/HoUb26X5YRBgfRystRjGp34OG6hxn1DCL6BnmoMof/MOveAlp+vt4y+PTTiP/8zwlkwPTXvyK/8Yaui2+3QzCIWFODZjIR+dKX9B33mKfAVMi54aNccPe9iM3taLKsE4JQBEW0EPnpN1CmmsyS/X2SlIYwNIQ4PIwQDKJlZ+skxe8ny+NBy81FGa/6ZzIR/sY3UHbvRtq/X9dRKC5Gfv55MJtRtm9HPHYMwecDRUGrqCD485+jGaFKQSDyqU+hrl+vp208HrwrV3KqqIjz4jTUx7e+jZfeNSrbjRx2fARhqvTCfOTv54OAzEfP/3QIyHQdHMcrKBqLvzF3pVJA+G6JDPzyl7/E7XZz++2385nPfAZRFGPiYeFwmGuuuYaPfvSjCwWE6cRMycBsDIUySQaM8VRVRdM0Ojs7OXXqFPn5+VxwwQXYxveIzwLpJANGW6O7s5NNPT0U9fQgvPgiWnk5WcuX40mWT8/KQvn61+GBBxD27YNoFPWii1D/+Z9h5UpAjwo80/QMBUIWWkjgifw+bvR7WazpRThaYSHC4CBmt/u0OY/TifTWW3qxnFGsY7WiVlYiNTYSbW1FG/v+lJCTQ+Dhh7H8938jv/oqqCrRVas4+v73UxWfv08CZeNG5Jwc3SxoTKKWcBjB5SJ69dUTiIK0d69+XsXFukjPmN6BGIkQKStDueiiiYOYzShXXYVy1VVjgyoIqor0t7/pBZFr18LoKNry5YR+8hO0sUr0GEQRZdculF27APA7nURqas54Xsmkd+Mr210uF83NzRPSC8kK1/6RIgPvNKOiqRwcDSIY7+CYlZWV0ne/m8jAtm3bALj33ntj/z8VLJCBJJhON8F0yICmafT391NfX4/VamX79u3TbmXJZM2AMZ7L5eLEiRNEIhE2bdoU62xIJ9IhfWzUMJw6dYrSwkJ2d3djOn5c16XPykJoayOvtpbQ1VfDhg0Tv6C4GOX22+HTn9ar4rOzExbIh+seZjQwyhrbIlAHadL8PGxu4AuhMedBvx9sNtTs7NORAb8fIRRCHd8jb7NBKITg9zM9Q2U9pRH8059gZAQhEMCXm0vfoUNUpfC56Ac+gOnhhxHq6vROAEVBPesslGuvnfB+oa9P90bYtQuhowOxvx9NFPFHIghr1iT3ChgPSSL8+c8jnXWWrvzn96Ns2YJyxRWxuoAzHvMMF+dkle3RaHTSwjVjkZmPArJMRyMMM6a3S5pgNkjFwRFg7969sTSSEUEwHBzh3UUGDKK3bds2fvCDH7Bv3z6WLFnCt7/9bWRZpqGhgYqKiljNhoEFMjALTCd/bxgKeb1e1q5dO2NDoUzWDITDYaLRKLW1tSxfvpwVK1bM2QQyW9Ehp9NJTU0NqqqyZcsWigYHEevr9RD0WARDy81FOniQ7GPH4PrrJ/+yJEWQsaiArQDBZkdw5JDrDfBXayM3sYbFTkV3zbvhBlS7/TQZKCzUBYb6+vTce2enHj63WMBoNZwpCgp0V79U61YEgehNN6GuWYN06BB4vajr1uneAUlIqVZYqJ+HLKOtWoUyVuinHD6MUFFBysuX2Yxy5ZUJsr/TQbp26rIsT0gvxBeu9fb24vF4UFWVo0ePppyXni0yvUuP+Wa8C9oZkyHeY8PlcnH8+HHOPffchN+5sbERQRCorq6msbExZnM8V5Ghu+++m7vvvpu2tjYANmzYwJ133slVRgQtjRBFEZ/Px3e/+10ef/xxysvL+f3vf8/3v/99fD4f3/jGN1i1ahXf//73E85I5iF/AAAgAElEQVR3gQwkQTrliCORSIKh0DnnnDMrwQ1JkuZcw1/TNLq7u2Pa1evXr6divCVsmjHTNIFhKtTT05NYw1Bfrxv3jEtlKHl5mPr69AK2aUxMTzQ8Qb+3H4tswRV0QYGGhkw44uGvw/v4d08V2sUXo954I0JLS4wMaGYzzh07KPjud5F6e/WCPU1DCodRRBEikWmf86wgCKjnnIM6vpsiCZTdu5EffxyhuVl3ERRFhN5eojYb0YsuYvquDdPHdOymp4tkhWvDw8PU19dTUlKSNC8d/y9dxDjTrYXGZuKdliaY6ZgmkylpGsnv9+N0Ojl69ChvvfUWnZ2dlJSUcN5557Ft2zbe//73s3kSh83poqKigu9+97usGiPU9913H+973/s4evQoG5JFKWcIY3E/deoUDz74IPfddx+lpaVcfPHFMTJ8zTXX8Ic//CHh/bBABmaFM5EBY0FtbGxMq6HQXNcMuN1uamtrCQaDbNy4kebm5ozopk+XDGiaRm9vL/X19bHrm2AqZLcjiCJaJJIQzpb8fiJFRdMiAgBnl57Nv235t8QXVRUG+tl4biXK2st0saIxL3FN0/B4PJw8eRLJ6WRDKISUlYUsCHrkobwcUyCA/OyzRD71qWkdSzLMxaKplZcT/s//1F0E29t1PYSSEtovv5ySs89O+3hJj2EecviSJLF48eKE9ILRvWC4N4bD4QndC/Fh5+ngHykykGkyEI1Gk44piiJ2u533ve99vO997+O2226jrKyMG264gUOHDvHmm29SW1ubNjJw3XXXJfz3t771Le6++24OHjw4J2Sgs7MTSZLYtWsXTzzxRELLt6IoeL3e2PsNLJCBSZCKjbFBBsZPWC6Xi9raWkKhEOvXr6e0tDRtE9pckYH4CMayZctYsWIFsizT1taWkbSE0ZufyuRvmAp5vd5JTYW0NWtQKysRGhv1nnqLBQYGEDUNzwwevvcuey/vXfbeSf8+/k4ZHBykublZv5ZZWZiLiwmvXEk4ECCsqoQjEWSfD/Xpp+ncvn1yt78UIAD27m7kRx6BcFhXLdyyJbWc/hRQt2wh9LOf6ZbCkQjqmjUMHjtGaQYX6PlWA0yWl47vXujr6+PUqVMAE7oXUkkvZLpmwCAf81Eo+XatU/B6vRQUFLBjxw527Ngx58f0yCOP4PP52Llz55yMIQgCZrMZRVGwWq1kZ2cjSRKapnHs2DGWjcl9x2OBDMwC8e0rsiwTDodjIeu5yrGnW/XQ2GE3NDRgt9snRDAyaSAEZ54wJpgKbd48ecrFZkP9p39CfPxxhLY2hEgELT8f3yWX4E7WTZAmDA0N0d/fjyzLMblP7fhxhFAI88gIZk2DrCxd7S8QIFRQQFZWFiMjI7S2tqKqKna7ndzc3IQFZdKJW9MwP/UUVX/4AyazWS94lGWUnTsJf+5zkGI19RlhNqOeddbsv2cGmMs0wWTjpbJIJuuLj+9eiNflN35Lo3htfKQt02mC+egk0DRt3shAKpHNTBQQnjhxgp07dxIMBrHb7Tz++OOsH2dLPlsYv+uOHTvYuHEjH/vYxygsLERRFGpra3n44YfZv38/d955J5BItBfIwCRIJTJg3NjhcJju7m5OnTpFQUEBF1xwQcotLdNFOiMDXq+X2tpafD4f69atS7rDzlQr41RkYHh4mJqaGiRJ4rzzzkvNtbGiAvW226C9HSEcRisrI+TzoXV363/3+xHG6iK0desm2ulOA+FwmPr6evr7+3E4HOTn5+NwOPRoh6oiuN26Ap9xnvn5CLKMfOONLB9TAzSc4IxwdEdHB16vF5PJFCMG4/PVQksL1scewyuKKOvX67+f14u0bx/yhg1Ek3QJvNOQ6cjATMYzdO3tdjuLxopCx7e9dXV1EQqFEroXcnJyMt7zPx8aA/NVpzBZmmA8MmFfvHbtWqqrq3E6nTz66KPcfPPNvPbaa2knBJqmUVRUxO23386PfvQjXnrpJfx+Px/5yEdwuVx87nOf44Mf/CCQ+HsskIFZwAi1HT58GCDBUGiukI7FOV6Vb+nSpWzZsmVS9pyOlr9UEE8G4hEKhWhoaEg0FZrOhCJJsGJFLIwv+P36Tuy115B+9zuEnh4AtMWLUW65BW337mkdt6Zp9PT0UF9fT35+Prt376bt5Ely9uxB+tOf0Hw+RKcTZdky5MOH9cp/TUPo7kZdv15XHDSOLc4JzhBaiTd6cblcdHZ2xtrhcnNzWbRvH/lOJ8H41kW7Hc1iQdq//x1PBjIdGUjnLj1ZeiGZ7C5AbW0teXl5E2x/5wLzpTEAU4v/zMW4bxcyYDabYwWE5557LocOHeInP/kJv/rVr9I6jnHf7Nixg4ceeohnn32W5uZmTCYTV1xxRWzzMR4LZGCGMMx5DBa2bt26jBl/zDRNEK9zYLPZ2Llz55ShsUynCYxJQ9M0urq6aGxspKCgYFa+B+PHsba3Iz34oK6Nv2QJgC4n/MMfopSVnVbEmwLxtQsbN27UK5W9XsrvvpusEycQ7XZdp39wEM1sRisoQDOb9cLDcBjB70c+eJDoGdoc441eDBj5apfLhXNwEJPXCwUFDA0NYTabsVgsWEVRl/t9hyPTBYRzPZ7FYqG4uDi2aVAUhddee42SkhL8fj9tbW34fL5YNCj+X7oKeecrXC8IwryQkKmum1Hsm2n7YqO1NZ3fJwgCNTU1PPzww/T397N161Zuvvlmrr766gnvG48FMjAJJpsQVFWlra2N5uZmSkpKsFqtlJaWZuwmn6nOgLFweTyeaekcZNolUVXVmKlQMBjkrLPOiuVl0wFRFMl96y0YGUlwKNRWrkSoq0N49dUpyUD8PbB48eKE2gVxzx6yjx8ntHgxttJSGBgApxNhaAh13bqYM6DgdkMohPTqq/rufRr3T3y+WrziCuQ33tDV9XJzCUciBIaHsXV10b9xI77a2lh6IV0ucJnGu4kMJBsPoLy8PHYPxUeD3G433d3dsfSCw+GY9e/5j+KFAHoUNBWlVK/XO6c1A3fccQdXXXUVS5YswePx8OCDD/Lqq6/y/PPPp+X7jfv26NGj3HbbbTQ1NVFeXs4f/vAHjhw5wl133UXhmG7IZPf3AhmYBuINhbZu3UpBQQH79+/PuCLgdBZnRVFobm6mra1t6qK7JBBFMWPnJwgCLS0t9PX1UVlZycqVK9Pe1igIAubhYQSzWZfXPf0HMJkQenvB40Gor9fFdqqqEkSInE4nJ0+eBEhqKiUcPqw78Y1VkWtZWQhjxjzCmLshigKRCFphoW5/HImcNkeaJtRNm4ju3o3t8cfJMc7B6yW6bRv+G29EsVgYGBiIucDFV7rPtZhOOjAfBYSZVgOExNxtsmhQfHoh/vccb9pjtVqnJDPzVTMwH2Tg7RIZ6O/v52Mf+xi9vb3k5uayadMmnn/+eS677LK0fL+xyN9zzz1kZ2dz3333sW7dOp599lm++c1v8sEPfpDLLrtsgQzMFn6/n/r6ekZGRmKGQsbDlO7q/qlgtIekwu4HBgaoq6vDbDbPSPrYGG+uRY5AP1aj4CqV9MVMIYoigdJSaGpKFB4aC93jciF/+tMI/f0gimhLl6L8278R2bKFxsZGuru7z2zQJAgIcNr8Jztb1/bv7tZJhssF0Shafr7uf7BqVUoGRZNCkgh9+tM0KwrneL2IoRDRzZtRLrmEguJijEoCwwXOKE6MF9OJ71xIxQo4kwv0uy1NMB6p9vyPTy+Md/Uzik1lWSY3NzcWQXA4HBPI/zvRl2CmSKWA0O/3oyjKnNYM/Pa3v52z747H/v37ufXWW2Npgc9+9rP8+Mc/ZmBgADgtRb2QJpgGDLe+lpYWWltbWbRoERdeeOEEQ6H58AoA/SafzNwo3g1xzZo1VFRUzHiCm+s0QSAQoK6ujtHRUUwmE+vWrZvTcJ0gCAxt3ozW0oLQ0BCTAxZ6etCyshCrq9FMJl2bQFEQ2tqI3nUXhz/2McTKyoniRuOg7dwJL7yA4PdDfr7u0Ody6T3/mqa79RUU6ISgqEg39Jnt4mOxMLB1K4ELL5x0FxTvAhdf7R6v1R9vBRxPEFLZbc4lAgERl2vi67Ks20ekE/NFBqY7ZjJXP0NMxiB8vb29MdOe8d0L81EzMB8pqlTO1ePxALwrvAmGh4epqkp0KcnOzo61i5/pWiyQgUkwNDREdXU1FovljLvq+YgMAEkXaEVRaG1tpbW1lfLy8mm5IU6GueomUFWV9vZ2mpqaKC0tZffu3bzxxhuz33V2diK++ir4/Wjr1+uLc9wCKYoigeJilDvuQPzd7xDHqrnVLVv0Kv8jR2CsZkARRZwFBZhOnWLdwAC5H/rQlJO2+t734n/+eawHDiA0NyO0tup/EARErxdFUVCXLEFZuxb1mmsS+velv/8d089+hnTsGFp5OZFPfpLIxz8+ZT3BTBevZFr9wWAwtph0dXVRV1cX220ai0kmIwM+H7z+ehENDROnKrtd49prlbQSgvkgA+laJCVJIjc3N2GuijftGRoaoqWlJbZAnjp1alrphdng7Zwm8Hg8etFtGgqU5xvBYJD77ruPhoYGJEmioqKCjo4OTp48SUVFBRaLBYvFwsqVKyeKa83TMb/tYbSBLF68+IwPSabJgCAISXfrRj2DLMts27YttT78FDAX3QTjTYUM96zZ2hiLTz+N9L3vweio/oIso15wAcp3vxuzDzbG0DZtQvnhD1E6O/WdeUUF0he+gGazoQE+rxeX243VasWRkwOahpLKZGm1MvyZz2AqL2fFN75B7BNGbnhoiHBeHv4vflFPKUQiiKKI6ZlnsN16q15PAAjDw1i+/GXEhgZC3/kOAMPDEIlMPAZRHCuCnOUiHW8FXDZmLTx+t9nd3U0kEqGmpob8/PyEYra5WEwURcDvl7FawWo9fX7BoIDXK5DuRy/TAkBzXaMQb9pjjNfY2IjX6425fBrphfHdC7PxUBmPt3OawO1243A45jX6NVsYx75t2zYaGhpoaWmJrUu5ubk88sgjPP3000iShNfr5ZVXXplQ77RABiZBbm5uSsJBmXQRNBBPBgKBAPX19QwPD8f68NN5U6czTTCpqdAYZkUGurt1IuD1wrJl+m7a50N85RW0e+9F27oVoakJiyRhNnYKogiVlae/Y+VK1LfeYqi/H0XTKCwowGoyIfT1oaToLqhpGqrJhNjWFrMIjoegaVgfeYTwD36AOpa/UyIR7N/8pm6bbKgICgKEw5h++1vCt97KUO4Kvvc9Cy7XxN82J8fE+edPf+L2eEi6mMoyGBHTZLvNvXv3snjxYiKRCH19fTEHuPHCSLONSsFpgmO1auPEFDWCwfRP3vMRGcjkeIIgIMsy2dnZrF27FjhN+OLllQOBADabLeE3nYlUtoH56iZIhYTMdSdBJmDcQ7/85S/xeDwEg0H8fj9+v59wOIzH48Hn88VEzZL55CyQgVlCluW09oqmAqOor6Wlhebm5liYfS4qw9ORJpjSVChurJmSAfG112BkBJYvPx1Wz84Gkwn5Jz9BW7wYolFsisJZkoRQUoJ20UWxzyuKQvvateQIAo7eXizLlyMGAroD4YoVqBdemNJ5KoqiM26/X7cXTvI+wePBJMswdr5CaytSR4e+Cgtxu3xZRgiH4bXXCF6+DKcTbDaNrKzTO2S/X8DlEohGpzdJezzwyCMmxtKlCXA44MYbI0w2PwqCQH5+fqzgSlXVBCnegYEB/H5/WhaTf4QCwvlu85tOemF894LNZkvpes1HzYDxPKaSJrDb7e/oyICByvjNzTSxQAYmQTptjOcCNTU1yLIca3GcK8w2TZCKqZCBWREPv19fSMdPOD4fDA+jbd0K2dmokQjy8eNIP/0p0Y0boagoJnUsOxwU/8//YH30UcSWFjRRRN25E/XWW2EszJoMRoWuqqqoqqoLxFx7LeLDD098ryDgXLOG2mPHYhNwnhEN0LQYGYh1JGgaWK16rYGqYrGoZGWNvWdMMjsQEGPHkSqiUZ0QWCw6wTAQCAiTRgwmgyiKOBwOHA5HzOkvEolMWExUVY0tJgZBSCVP+24K24/HfJGBqRbIZOmFQCCQIK3s8Xhi6YV4/YNk6YX5SBOoqqrbhaeQJphr9cF3AhbIwCyRyW4CQ/UwEAiwaNEiNm7cOOcTyUzTBNMyFRrDbCID2saNesW+x3M6xq2qCMPDaDk5uuzw8DCyJKGYzQi9vSivv07tihX09fWxevVqKisr9S6S3btRurr0nfqiRWes9o8nAcY5CIKAcv31qBs36kJGhqri2Peo//f/UlhYiNPppLu7m2AwyO6qKvJOnkQTRQRR1MlAOKzXOlx9NZagBVEUx7iOFrvGqgqKov+3QRimc0/YbNq4AjyNUGjmi+9pImFCFAvJyyskL0+/TpFIAFXVaw+SGfkYrXDxk7dBcPSUQGLNwFxgPiIR89HmN90UTrxUtlFPoqpqQj1Jf39/Qnoh3pxpvjoYYGoJ5EyYFL0TsEAGZolMRAaMQp+mpiaKiorIy8ujoKAgI5PITHbrsZ22LE9L32A2UQht2zbUiy5CfPFFvZXPbNb/V5YhEkFobkaTZQRVJScUQrHZaDh6lHBFBRdccEGiSpkkJdYSJBtvjARoTU2IR49i8vvRli5FPfdcnYyYTASfew7z17+O9MADCKEQ6qZNRL7xDWyXX85SYOnSpYAuKOP/3//F/tGPIo+M6JEGQQBJovuOOxDGwp2iaEGSBGT5dDRCUcI4nd5YuDb+XjSIyZlkYH0+iEZPL35+P3g8AoODetRhOkEnjwf+8hcTbnfyv+fkmPnQhxJ9F4ydptvtjvku2O322EKiqmGyskwEgxMJgN2uMcUGd9p4t9cMGGOmY+4QRTH2OxmIjwiNjIzQ1tZGNBpFlmWsVmtMdCfV9MJsEI1GU5JAzoQvwTsBC2RgErxd0gSjo6PU1taiqirnnHMOhYWFHDlyJGPRiOks0ElNhUDfKqYwa8+qgFCSUL71LbQNGxCffhrB5UK98EKEgwcRT55EKy2N5ei1SATN62XRkiXkbtky7UnJyEUKr7yC+f77EUZHT7sRrl9P9HOf09MKBQWEf/EL+OlPdZXBSULiFosFy65dRA8dgvvvRzh5klB+PgNXXslgYSGuujq6u1UGBjYRCEjk5powmy34/T6GhvxYLDls3boVm41YlCI+dWEgnhhomr7wv/GGnNChEInoAYn2doGSEo0vfSmcMiGIRsHt1k8zPvUAevrB7U5MP0iSlGDkY2i1x3cueDweNm6UyMkZjaUiDJ3+udAZyHSh23xEBuYyNWEymSgsLIx1CBntqjU1NQiCQHd3Nw0NDQlEIp0Fp/EwohFTPd9er3eBDLBABmaNueomCIVCNDY20tfXx8qVK1m2bFmC6mEm/QIURTnjjskwFWpoaKCwsFA3FdI0hJdfRnjzTYRQCG3NGtQLLjjjjnu2rYVkZaH+y7+g/su/xPLv8nXXoWVlgcuFIkkokQiiqiLl5lJgs6FOgwgYJEDTNBgawvzIIwiKoqcoxqr/xRMnkJ57DuVjHzv9QUnS/02FwkKdSAAiUDb2D6C3N8yLL4oMDir8/+x9eXAkZ53ly6z7kqqkltRqdatb6tbROvpw233abLMcDpghuDZmmOG0Z8yYAY9nCHa9YAwBNtgEO8OYYw2GBRYMmJkdrmB3CAgPY4PHBh+01aoq3fdZKqnuM49v/0h9qaxSHVmlqlIa6kUo7O4uVWVVZuX3vt/v/d7b3EyD4+IAAIPBgtZWEfF4EIKQ6TZHSUE2ORBFETzPIJ0WEY/rYLWK20MMDDhO2oGbzUAoxGwThdJGFne3HgA16n+GYeTchba2NgDA/Pw8Njc30dLSuG2ks4zZWclIR9leqNRo4x9CZaCWJXs6rmo0GtHU1ITDhw/L7QWlvXI8HofZbN4lON3LcdKKRDHUNQMS6mSgAKhAqxAqXRkghGBxcRETExNobm7eXcJGbcODlNHCub6YylChU6dOSaFCggD2scfA/sd/gDQ2AkYjmF/9CrrJSQi33w5sl8dzvVbFPA3oDba1FXxnJ5KRCAyhEPQuF4JWK1wmk2ob4J2S/M5nrhsbA+P3Z4QdwWgEDhwA+9vfQnjb2yQNQ4VgNhvR0KBDKBQFz6fR3GyHyWQCx3Fg2QSmpycxNxeWF0mn05nTXpiSAZ1Ouq55ngAg22+BbEc0MDCbRcTj+clfrcAwDIxGI45sp0sCO0p3OrlAY4CVIrZycxf+UKYJ9kOnQF8zX3shEokgFApltBeULaOGhgZYrVbV56eU+OLDhw+X98Z+j1AnA3sE3aVX4iYSCoXgdrvB8zxOnz4t+5Bno9ZJgsBuMsDzPKamprCwsLArVIiZngbz4osgx47tiPna2gC3G+wzz0CsBRnYPsa1vj40PPccmBMnYNj+PMWXXgJpaoJ47lze311flxKAlTtrgIGFC+HQb34K9umnJQvjnp4MUkFYVso5qLBR09paAIuLIiwWoLe3CXq9RDQSCQOSSSvOnLmApqY0QqEQQqEQ1tfXMTExAQBoaGiQyUFjYyOMRiMsFsDp1EEUWUjRExIpIAQwmQgAcfvf0uB5pqj2oFrIRTxyKd2Vo400dyF7p+lwOIoef50MVAfFFmaDwZDTDZNWD1ZWVuT2QvZESr72gloy8PvgM1AJ1MlAAaitDADSwlOuY1c6ncbk5CRWVlbQ1dWFrq6ughexTqermbcBvWkIgiC/P5/PB4/HA7PZnDtUaHVVajwr/55hgKYmMOPjBV+L47iKHPfGxgbcbjfsN96IG9bXYXrxRcDv3z4UBsm3vx3Grq6cv7u+DnzgA3qFH75EBHoiL+ITE2+HgVmTdtKJBNj5efBvfSvgcklZBhsbEG69tewUwmxwHIfJyUl4vQEYjTehtdWaUXAQxR31v9Fo3BVmQ9XeoVAIk5OTiMVisFgscDqdOH++GdeutaO1VQe7fWcBlDoeLGIxqi/YmZZQVknUhuzsBWoWZ4ZhYLfbYbfbd+UuZO80c402Kp9/P1IL62RgN5RumLRllO1nMTU1ldFeUE4v0CmveptAPepkYI9QBgeVSgYIIbKgxul04sqVK6pdD2OxWFnHWyrkUTlByAgV6uvry2/VbDaDAUAEQZKrR6OAxQIkEiCtrQVfa68Vj1QqBa/XC7/fj76+Pimk6coV8M88A2ZiArBY4OZ5nPrjP0a+JkEiQRAKSTtkavDDijzu+d174UyuQTjQAJ1J0gEw4TB0P/oRxFtukd5fVxfE7cSwvYKmTjocDvT03IjZWQfm5jK7DxwnySNCIeDgwczfZxhGFt3RMijHcTI5WF31Ixw2IJnk4XDoYTabZO/ydFoPnU4iGEajKO++x8bGoNPpYDQad00uiCK7PY++W2cg/V15KGennit3QTknT214DQZDRqyzIAh1zUAVUAlhZi4/i+ywrYWFBXAcB5vNtk1kJUJcSFMSjUarGl/8ckGdDOwRNCugVN1AOByGx+NBMpnE0NAQWltbVd8UatkmAKQv4eLiIhYXF2W3w0LKX9LXB9LcDPb//l+JDNAIZKsV/K23FnydskcLFSLGAwcOZDoymkwgV6/KjoOJJ56AmKPisyOyk0rmViuRd8y9vmfRnpxDnLXDSG9qDodUM4jHIXZ0gFy4AOHKFaklsgek02nZYrqvrw/t7e1wuxmkUtI4nZIvSlxLEv6pgcFgkEvsLhdw8qQefr+AdDqNra000ukYeD4EnU6H5mYWPl8UZrMdoVAI09PTsFg60dnZhWCQzRRUAkinBdhsAiIRJkNvILUYgIYGVUMlGaiUPiHXnLwgCIhEIvJOc3l5GalUCuFwGPF4XCYIpfSpS0W9TbA35CJ99BwuLi4ikUjg+eefl+2ylT8mk0kmC7nsef/QUCcDBVDKeKHaxZmWfZeWlnDs2DF0d3erKmUpUUsyEAwGIYoi1tbWMkKFCsLplO78q6uSip5uZdNpMBMTILfemtPIp1wyEI1G4Xa7kUgkdkSMBZCr/aMsfRPCIttI2MqFwRIBAqtTPpFU8QAg/umfSsmHewAhBGtra9u90RZ0d18BwxixtiZ1OHhe+qmUfq+pCfiv/5Xf5mqG7R8beJ5HJBJBIhFEKrWB558PbZsGOfHII4eRTLLQ6w27FpTGRoIPfziBxkaS0Vag0OsBq5WFKKrXHlSzh6/T6eB0OjNCvV588UVYLBbo9Xqsrq5iYmIiQ/BWyGWvHPwhkYFavKZyIiUUCsHhcODEiRNyeyEcDsuakk984hNobGyEXq/H7OwsYrFYwXjycvDggw/iBz/4AcbGxmCxWHD58mV85jOfkXMhtIQ6GagA1EwU5PLnL5eN1oIMKEOFdDodBgcH1REBAAiFwMzPQ7xwAYxeDwgCiMMhTRm89BLEpSVAoQ6nyEkGpqfBejxAMAjS0SGN8W0v9kqXwyNHjuDcuXOqiJXydZTjdrR/m+umNdd0FimdFWYhDkBx3uJxEJcL4h6/3MlkEl6vF+FwGAcPDuJ//a9DGaFEoRDg9zMIBhkcObJjtsPzkjyh3BHt3B4CehDixMJCGNPTEXR0dKCjowOTk0mEwyxYNgpCktDp9DAYDDAajRAEE0IhAywWA1pbdxwSsz9f5XVLRYn7JU7MBbrw0zI07VPnctnLHm0s5/j/EDQD9LzvhwOhwWDI216455578Mwzz8Dj8eCTn/wk/uZv/gZDQ0O4cOECPvvZz1akdfDkk0/i/e9/P2666SbwPI97770Xr33ta+HxeCpOPPaKOhmoAIqRgUgkAo/Hg3g8XtSfXw2qaYGcTVquXLmCF198sbQnCYWk+nVrK4jygud5wOcDEwqB5CAD2QZHzAsvgP1//0/qxVssknnQSy9B/C//BQG7HaOjo2BZtiSXQ0BahOgCRX/oYqQ8L4nEzu9E0Y6fHboNb1h4BGw4CJiNYFIpQKcDd9ddZbvf0PbG5Oi6MiIAACAASURBVOQk2tracPnyZfj9BoRCzHYokfQ4sxloaSFgWeDyZYEmMiMWA3w+BokEg5WVzOc2GkmhSAUAQDC408WhiMfjGB8fByEpXLhwVjYFamtrhN1uQHOzDVYrQTqdRiqVQjqdQDQaQShkwLVrs4jFzPJ4o9lszphIASC3FpRkgUJ5HmjPdz+DipQLCQXVXeTKXVASBDWjjfsRmVxrYyV6fveDDOTLvtDr9Xj961+P17zmNXj44YcxNzcHnU6H3/72t3juuecq1jb42c9+lvHnb3zjG2htbcULL7yAV6gIP6sl6mSgAPbqQqgcv+vs7FS9c1XzetWoDOwKFRJF6J56CgcmJyG2tQF5Rh13obkZaGwEAoHMRTIQkPrseZ4nozIQjYL5938H0emA/n4AABFFEK8XK//0T3APD+PEdp5AqbsclmXB87z8GWaTAJOJwGwmCIUYxUQB8IWWT8BvOoT3kkdh3FqH2NcH/s47JU+BLPh8QDq9+/oxGgktbCAWi8Hr9crtjQNZK7fVCijvSWazJBikCccAkEoBIyMsPvUpwy6DQ6eT4GMf4/ISgmAQ+NKX9HIFghCCSCSCYDAEu70HR4824uLF3NcZyzIwm00wm03ysbGsiPb2JERxc1f2ACUHDkd+Y6Rc1QNKHKiwr9o7WjU7daXugv5OPB6XCQJ97yaTaddoY/aCqCZIp5KoxQRIvtesNRlQM00Q2Y7tpNfn4cOH8Za3vKVqxxTavqFUM1yuXNTJQAWQTQYIIVhfX4fX64XVas09frcHVLpNsCtU6PRpmL71Lei+9S0gGMSJVArsD34A5t57QV796uJPaLNBfOUrwX7veyBLS9LYXTgMZnMT4h/9UV6BnZIMMKurUshQT4/876FIBBvxOCzz87jy9rfDmi2fLwIqENTpdBgbG4PL5ZLn75VqY4ahpffs5jyLX/S8D294+Ha0NvF5TYV8PuC//3djBpEAdnKHPvzhFJLJZczNzaG9vR19fWdx4EDhG6VOJx1TMskgEJDEhIBUGSCEgdUqQtH6RiIhVQzm53ceS2EySRWDdFpyGTSbCfR6Dj6fDywroK+vFYSYEYkwSKfVXWdSlIIObW1tOHxYYjuCIMiTC8FgEPPz8+A4Tt5BF6oe8DyPxcVFrKysoKenZ1d7QVk9qCTKqUQwDAObzQabzZYx2khNdOh7pyY6SmMk5chuLbAfZEBJumsJNa0JSgZqISAkhOCDH/wgbr75ZgwNDVX99UpFnQwUQCnqfkoG6O46Eomgr68Phw4dqngZsJJkIFeoEPOLX0D35S+DGI1AdzdSW1uw+f3QP/AAuO5uoLu76POKf/zHAMOA+eUvwfh8gN0O8S1vgfimN+X9nYxePstKfv+iCE4Usby8jEQigY7mZjTYbBBLJFdK5fuZM2cQDAZlM5OxsTGwLCsTg1isGcnkAbhcjDxaCADxOINkEkil2YLugum0VFEwmyH/fioFjI+zSCSAD30oBpPJjsbGKzAaTWhsJPjoRzkUkmRYLMDZsyI2NxncdRcnVxfW1hg89BADpzPT1iGZlCoG999vQJaBJZxOgvvv5+TPJZUKIhj0obnZhebmZrAsi2hUeo5ckCYFSI6/y4ROp8tpJBMMBhEKhbCwsAC32w2DwZBBDihZS6fTOHfuHBoaGna1FbKvfzWhTGpQqbK9Xq/flbtATXRCoZAcAQxADu2hJKES1cN82C8ykF19qwXUVgbUmFFVAh/4wAcwMjKCX//611V/rXJQJwMVgF6vlwV3c3NzqiN7ywXtre9FCJQzVIjahf70p1J/f9spkDEYwB06BMPKCtgnnoCoggxAr4f4xjcCr341sLUltQ2KGHtktAk6OiAePIjwyAiWTCY0Op3o6e6GYWoK5OxZ1T16pSf/xgYBx7FgGDOAg7DZDsJmA44eFWAy7eziJic3sbnJwuUSYTDoYTIZYTQaQYg+p7/++joyYn9XV6XROotFzCjzp1IceF5Ec7MOhw41gmHYbU8DZrulkL3AZr8XiRQcOLBTXBGE3LxEEGg2EskgGfE4EAwySKUYpNNRrK8nYben0NV1ZJftdTZMJoLGRkkSkss3oLGRuhfmBsMwSCYtYFkLXK52uFzS4iRNLoQQCm1hdnZW3i23trYikUhsOyZactoqqwllAtQvftXSKOQz0bl27ZrsG7K6uopkMgmbzZbRXqhU7gJ9zVqLNfdDPKj2dcPhMBwOR9WJyl133YWf/OQneOqppzRrfVwnAxVAKpWC3++H3W4vWcxWDijbLWdcJ2eoUFazmVlfz3TQYxh5mWK2tko7WJtN9cKtJAPhdBozra1web04DsASDgORCMiJE1LgkQooxwU3Nxl88pOmDIU+hdOpx8c/zqKzsxGdnZ1wuRi4XDrY7SkwTBLRaBTpNIdUyoBEworFxQ3Y7dIN2+/X4e67jRnPm0wCk5MMbDYdrl4VoNOlsbERgiA4YTYbceiQIYMXKYWKgDQZ0NgokYTsf2tsJCVNDlgsmboD6fUIFhYWsLIyB5PpLA4fboHFUvw6amkBPvOZdAbxUcJkIgVlJYEA8IUvGBAM7vpN2GyN+M//eQt6vR4DAwMApP7q4uKiXLlSZi5k76ALhTJRqKke1FKwyLKsPCdPFwg6Ix8Oh7G2tobJyUkA2DXaWG7CX61G/LJfc7/IgNrKQLXOOSEEd911F374wx/i3//939GVx/VUC6iTgQIodoHE43F4vV5sbm7C4XDg4sWLNbmR0C9Wqf1GGiqUSqUKzuOTwUEwo6Ny8h/DMCA8L5GCKl7MVNg3Pj6O+fl5HDtzBoevXoV+ZgZiPA40NUkagiLkIte4IM+zuxT6wM5OOXtnrtOxsFjMsNvN8nMGAjw4TjKqGRmZBsdxiMUOYGHhFHQ6HUwmHXQ6HQiRogliMWB1NQqTKQir1Qmz2QRCGACZJe5kElhZYTLifd/5Th4cJ0UCK4/XYMB2JQFoby/dcIDjeAQCEfh8Ppw+fRq/+Y0LySRB9vqQXZWgkBb78owO0mlJtGixEEXrgsDni2F8PITXvtaKS5eG5Bt4tjkQ1R8sLS0hmUzCbrdnZC5YrdY9Vw/2O7XQZDJlWEorLXjD4XCGBa9ycsFut6ta5PfL12A/yADP86o0A9XMJXj/+9+P7373u/jxj38Mh8OBtbU1AJJgsVglrtaok4EyIAgCZmdnMTs7i/b2dpw4cQKBQKBmNxF6A1M7XpgdKnTixImCXxLxrW8F+8tfgpmeBjlwAPpoFPpgEGR4GOJrXlOpt7ELoVAIPM8jEAhkiC4LWRgrobzhr6xInv0MI+0G19cZxGL5dsqZf45EpIUrlVI65jEADLBajRgYGMDhw/1IJpP41a/imJ01IRbTUe60TQaka+G3v7Xh6lULGEYPQWAgCFJbIRqVnnVrC3j+eRZ/+7cGbLeXZaRSgNfLoK2NIHuD43AA//t/78wEZr+H7D8TQrbjYqMwGp04e/YsGhpYuQKRSx9QahVCLSwW6fh5nt+e2+dx4EAbenvbcjoU5jIHSiaTGeTA6/VCp9PJxID+FKoeKMlCrsfUYtEs9jq5ZuQ5jpPJwdaW1FoRRTFDnEhHG7PvSb9P7oOFoHaEstpk4JFHHgEAXN12P6X4xje+gfe85z1Ve91yUCcDJWJjYwNerxd6vR433XQTnE4nVlZWqjb3nw9qRYRFQ4VygAwMgH/oIegefRTM2BgYQhC6+WY4P/Yx7FqxKgBqv7u+vg4AuHDhQsnESikQXFtj8Nd/Lanhd14DmJ9nYLUCr3udsIsQUIRCwOOP6zA3x2BpidnVjz94UNoV0x6ww2EDoNu2pQYAyc5YWl8YJJMsxsaS0OsFhMMmRKM6/Ou/6uWduCBIxxYOM/hP/0nIaB/4/ZIWQa/HrkmBSET6b0MDgdNJEAxmthRSKamKkE4DW1scAoEACCGw21vB80bodBycToL3v5/f5TNAYTRmvm7lQBAOS9UJu92OI0cOIhjUA1AfUkVd5pT9d6V6f3l5Wa4eKMmBzWbLWT3gOA4zMzPgOC4jd6Fc7YFalLM4GwwGNDc3yyZgNHeBjjYqcxeUkwsNDQ37skvfr9YEANVtgmqhlnHfe0WdDBRApgFNQvaL7+3txZEjR+R/V+NAWGkU8xpQHSqUB+T8efA33QSsr2NxeRlRoxHOY8cqcOSK1yBEVvM3NTXh/PnzeOaZZ0p+DuUuj2VZpNMsIhFpZI5W4pJJaTY+nZYW4HzgOEkZb7VK/09PqyhKv+dw5BfJMYwU/avTMRAEBoQAPK/D2pp1exadgSgCqRSBxSKAZRkAUvVCFKXFW0lSaPVAmkrIfC06LnjgAPCxj3G7PA22toD/8T/0CATiWF+PwWqVRt94noHTSeT3UJ3FPj8EQcD6ug8sG8PBgwdht9uxLarfE1iWlRf8zm3hayqVkqsHyqmR7OpBPB7H6OgojEYjzp8/D4vFUrB6UKnJBaAyDoTK3IX29nYAma0V6tPPcRxMJhN4nsfq6ioaGhqqmrtAsR+VAXo/VlMZqCcWSqiTgSIghGB2dhbT09NySE+2s1itg4MKvaYoipifn8fU1JSqUKGCYBgpCi+RgJA9NL9HxGIxuN1uxGIxDA0Noa2tDentLaooitja0uUsXUtOfNL/02rA+rq02DOMtENfWZFm663WHXkBy0qz+jRIkd4jcvXGbTbgTW8SMkrksZjUq/+rv9oZ66MghJYl6Y1d6WAHOBwsWBbg+Z1yvHQDJiBEBMBAFAmi0RgcDhZGo6mkBULyvskkKA5HBH/2ZxNIpRj09vbC4TABkG6Q1Geg1tjY2MDaGkFbmw5Hjx6r+gJhMpnQ2toqa2NEUZQjnYPBIFZXV5HYLqc4HA60t7fLi3N29UBZecqnPSiHIFTLgTC7tUIDfBYWFuDz+bCysrKdgcFmCBMrmbtAsV9WxGrGGatdGXg5oU4GCkAURfzHf/wHCCG48cYb5ZnhbOxHZSAXGQgGg3C73RBFUX2okApUIlqYQhRFzM7OYmZmBh0dHbjhhhvkUh69ia6vi/joR027VOd0gb/nHh4ul3RD9vuB++83IZFg5MU7mQSmpxmYTAyGhkSYTFK5nGGk3f7aWmbKn9NJdhkM2e2Zu3SjUVr0lYuo5Ni3AUJaQYgBEglgtsmB9BiaZWQwAIIgtTD0eqCpiYHBIB3H+rpkHJRMiggGI9tx2HpEIjYIQgPicR5msw6UZCQSyJtSSD/fubk5HD9+FN3d3duf6/6VK2kbaHo6CpfrJjgclgwSlq1vqBaUgUNNTU0YHR0FwzA4cuQIUqkU1tbWMDExAQC7qgdGo3FPtsr5UKtsAhrg43A4EI1GccMNN8jkiHofrK2tIZFIwGq17hpt3Msx7hcZUOPXEIlEZKOoP3TUyUABsCyLwcFBNDQ0FPwy7BcZoK+pDBXq7u5GV1dXRW8w2ZkB5SIYDGJ0dBQAZL2FEvSYEwmyrTrfKY/H45LQLpUC5ub08sKfSklaAIMBOH9ehNlMd/uSU9/zz+sy+vOCAGxssHjggRSogaEaD38Knw+IxRikUilMTU1hbo5DR0crlpYYGI0Eej2BIEgagO0BjAwQAnAcg40NqWogtRIkAjE11YhLlxywWoXtSQVJBDk5qYNOJ26LIQFCpEVmYyPT/ykcDsPtdsufrxbKnxsbG/B4PGhsbMTlyzfi+nUrgsHdBMDpLD9sqRQQQrC4uIjJyUkcOXIEx48f31UFiMVisjHS+vo64vE4rFZrhjGSzWYryVY5X/Wg1tkESs2AkhzR0cZ0Oi2LE30+H6ampkAI2TXaqCZ3Iddr1gpqJgkAKfFUC98TLaBOBoqgqamp6EKo1+v3bAJUKigBob3QhoYGXLlyBdbs5nIFsNc2CM/zmJiYwPLyckGyQm+K9PNWevNLC7k0AtfQIMJsZsAw0qLCslIv3mzeeTxV9QPZY3PSbryxETh0qLTdciwG3HOPEaFQGomEAIOhFyxrxcqKRFLocYjiTmWAZXcIQT4tEa0kJJPA5iYDi0UPQL/9ewz0eh30ekYuUQuCAEFg8OKLHjQ0SDPo4XAYy8vL6OrqqjgZLAeUoPp8PvT19aG9vR0MI7kn5hIsGo1V0aZmIJlMwu12Ix6P4+zZszn94ZXq/SPbYVrpdFrWHvh8vozZf6X3QTnVg1qTgWJiPqPRuCt3gY42hkIhOf7XZDLtGm3Mt/hqvTJQJwMS6mSgAqAXHc/z5ffnSwQhknGMIAgVSUIshL20CdbX1+W4zsuXLxeM7aQ7JuUNk6pxpYVQ2uVbrYxcMWCYnR02hU4n/RACCAKTsTvfdjguimwtQTwOJBIc1tY4mEwcOjqsMBqNSKWApSUAIDh+nMBslloS09OSC2FjIwHHZYoRAWn0kB6zwSC9j2PHCD75SQ6HD0v/cO0ai9tvN8rVAPp+dTqAZQmOHTsInl/C2NgYRFGEXq9HJBLB/Pw8nE4nGhoa9mW+m1pc2+12XLp0KcPUqtoLfi5IEyZrGBsbQ2trK06fPl2S5a/RaMyY/acLJK0eTE5OIhaLybHGlBzY7fa81QNBELC0tASO47ZFr+maRDqXumFhGAZ2ux12uz0jd4FWD5S5Cw6HI6OCYDabwTAMBEGo2X2RQm1loK4Z2EGdDFQAtDdYCzJAPQ78fj8cDgcuXbpU9aCTctoEyWQSXq8XW1tb6O/vV53RQI1fgJ1JAUloJ/27MrGv8PPsPFb5+HQaWFpi8N3vsrsiFg4cEHHxItk1e08I2VZlB6HTtaO93Qq7XXpSmw04fVpEIMDgM5/h0NFBEAgAn/qUAc89x0IQdqYCRFHyLbDbCU6dIhkmjxxHwPMMDh0iOHJEerM8L+LECQK7nWTkC9DRQotFGs/r6uqCydSJra3EtnNdBOHwJDiOg91ux4EDNhw/bs+4QVcDPM9jcnISq6ur6O3tLXmCpRrgOE6+DgcHB/MabZUC5QJJy+s01jgUCmFjYwNTU1MQRRENDQ0Zxkgmkwkcx8kVihtuuAF2u12+1svVHqhFJaqX1DUxO3NCOblAx6/ptAb1Ralm7oISaqsR9crADupkoAjU3MykGfPqTxQoQ4Xa2tpgMplqknhWynujPdmJiQm0traWPM1AtRBUoS85wlHCpe45aKmeYQCDgWToC2i2wEMPGXc9H8MA/+f/JPEXf8HLAr1oNIqJiQnwPA+n8yQ+/nHL9gjhDkwm6efQIYLOToLOTuB//s80lpczEwOlUCEDWlvJrlCiaBQ5bHql47dYSIbpIs8LSKeT2Nrawmtecx7xuAN/8zdGhEI2ADviB1EUwfM8zOYUPvCB6zAaR+VIYaWtbyUWma2tLdnP4uLFi1VpV5UKv98Pt9u9rVe4XFWinivWOBaLyQRhenpanv2nu+jBwUE4nc6Mzz+XMVIlQ5mq0b9X5i4oXSPp5AbVH6ysrMBms2VMLlQyd0EJNcSDRnZX2z7+5YI6GagQqikiTKVSGBsbg8/nk0OFpqenkcrOpq0S1LYJlHbHZ86ckW+MFKur+ZPwzGagvR1yWZEQcVtkJpX5Y7Gd8n48vvP/icROj56W9unfZaNQcYP27f1+Fo2NQoYqv6urE93d3VhaUv91OXAAOHAgkzTMz1OfAtVPk3WMdIFJw2Cw4/Tp03A4GGxtMXIUcabDKYNEwoBk0ojBwRtx+DAvL07UuU4QBDgcDpkcOJ3OksRhgiBgamoKy8vLOHHiRIb/xn5BEARMTExgdXW1asmhxaCsHnR0dIDneXi9Xvh8PrS2tkIQBIyMjOz6/Gn1plqhTLXq3yvdIP1+Pw4dOgSXy5UxuTAxMQGGYXaNNlaCtKl9n9FotN4m2EadDBSB2ptINciAcpedHSpUS2+DYm0CQRAwPT2Nubk52e54bU2H6emdx2xsAPfeq0c8zuRUjTscBF/5ShoGgwGzs14ApxAImBGNGqDT6bYFetKCHYnslPA5bqcVEIkw27t/aeGX9AGMLFjL/rhyCfo2NyVbZLfbDZZlc6ryi1n/FkMuQpSPJNF/43kB0WgEDAOYzY3gOD1YNg3lyGAuq2Xlc+eKFI7H4/Lc/czMDKLRKMxmszyjXsj3no6yGgwGXLhwoaAepFagx2Q0GnHp0iVN+L/TKRqLxYIrV67I32Hl50/FedFoFCaTKYMcVDKUSRTFmlQTlaALc77cBWX1IB6Pw2KxZBAEtbkLuV6zEGhloN4mkFAnAxVCpckAHRNLp9M5Q4VqTQaoKjqbHNHWhcFgwMWLF9HQ0IDlZeDtbzfIvXJA6tUvLkoz9ufOSSOAFPG4FMgTj4s4e/YswuEwWlvXsLkpqZjpCBTPN8FqtaOzM9NS1u+XyAD9iJaXGXzkIwZYLCKUFcCFBeDatcI3iJWVDTz//O/Q3d2No0ePZtyETCaChgaCcHi3l39DAykY31vs93M9h9ks6QX8/hTS6TRMJut2z1mqMJjNe/MOYBgGNpvkTEjFYdT3PhgMZvS+s1sLCwsLWFhYQHd3N44dO7bv1QBRFDEzM4P5+XkcP34cR48e1cQx7Xg+7D6mXJ8/Fecpqzc8z8uL416rB4Ig1PxzyTfBoJzcoKDXXygUgt/vx8zMDERRlMWJ9PrLTlrNBs/zRYlgIpEAz/P1NsE26mSgQqgUGVAbKqT0Gag2lDPR9FjS6TTGx8extraGnp6ejBtdMin1wE0myIu+ZAcs7cZNJkl4R0f/RJEgkZBuVrl2D5FIBMFgEMGgD8HgBObmOLm06nQ6MTzcCLfbgslJ6fV9Psmnn+el1yhFwZ5MJnHx4sWcu9yDB4EvfSl3hK/JRGTfgnw4eBD4whcKRwArn8NiCeLOOychCEb09PTAZmMASGUOs5lg23m2osjle69Uzo+NjSGZTIJlWTQ3N8NgMCAWi1Wt96sG0WgUo6OjIITg/Pnzmij7UotjnudLOqZc4jyaOxAKhTA3NydrD0qpHoiiiEQiIavn0+l0RW2VC6GU1kSu6y8ej8vTC/T9m0ymDHLgcDgyXkPNa0a2fbDrlQEJdTJQBLVsE6yvr8Pr9cJisRQNFSqWTVBJKGenWZbF6uoqxsbG0NjYiJtvvjknA+d5adGnH1/2rD0VCNIyN70pZTvlKb3kjx49KiuXJXIglbZffFGH++67GaJIb2g7ccAMA/T1ibDbcwv0snH48BHYbNLnurqKvAt/uQuxtNgX3tHTPvzS0hJOnTqOzs5OVS6CudoVe3X3o71vq9WKVEqqUBw9ehROp3N7cmFNtrVVmvJUw9Y2G3S8dmpqCp2dnTh+/Pi++yvQvI3x8XEcOnQIPT09e+rR58sdoLtnOtrHcRJBVp4DZfXA5/PB7XajpaUF7e3t8tROudqDUrAXnYKyekLfP8/ziEQicgVrYWFBnpyhugNKdgohEonAaDQWrTL8oaBOBiqEvezUywkVqmWbgH6potEopqamEI1GMTAwgLa2tpzH6fdLpXqWRYb7Hy2NJ5MEVitd2DJ9AIpBqVymN4dolEAUWTAMActSgsGA46RYYZ9PRCzGIh4v/kIul3Rcq6vAnXcaEQ7v/p2GBoIvfzldlZ15IBCAx+OR2y5q+vBm8+5xSCUaG8meWgrKnbdSQ5HP839lZSUjMZDuYCsZipNIJODxeJBIJHDDDTfktQqvJdLpNLxeL4LBIE6dOrVLQFsp6HQ6uFwu+T0rCXIoFMLCwoLcuqMLYywWk0d8KXJVDwghGfexSlQPKj3BoNfrc75/Wj1YXl5GOBxGNBrF5uZmRmqjkqCGw2E4HI59bydpBXUyUCGUUxlQhgodPHiwpDG8/QhHeu6559DR0YEzZ84U3PWl0zsz9fRh0iItGe3EYlRRv+MiuBewrBRQZDBImgRAciuk44FGYwp6PQeXSwdCjNjcNMHhSMNgkFzKWFYvtxRuvllaNFMpBuHwboV+IiFZDUsVg8r5/SurAaX2vNvagM9/Pi2PTWbDbCbYTvotCYQQzM3NYWZmpuDOW2lrS137UqmUvDgtLS3B6/XKCnNlebvURYIQgtXVVYyPj5dlIFQtUO1MQ0MDLl26VFOTnVwEWQrwWsfk5KS8GHs8HiwsLGRUDywWS1VDmejvV3OCQfn+aaT1s88+K0+RhMNhrK6uIplMwmq1QhRF/OY3v4HL5YI9X5Z5BfDUU0/hs5/9LF544QWsrq7ihz/8Id70pjdV7fX2iv3/FmkcpbQJShn1U4YKnTt3Lqc1aiHUSjMQCoXkPIHBwUF0dHSo/t0dtb5kGkQtgqNRZju+dwdqBHilgJ43hgGcTgsaG6XoVkHgEQwaoddLUcMMQ8AwAkwmFjYbsysq2GIBsjfnhZT/5SAQCMgKeLXVgGxI98DKfX40VZLjOJw7d25XjkQxmEwmtLW1yTdnURQzStuLi4tIp9Ow2+0ZY42FTJGUO++hoSFZV7KfUI5WasVoiRCC5eVlTE5O4tixY7I9NTUGCgaDWFpagsfjkY2BlO0dvV5fsVAmumGpdftGEATZ8ImC2kr/7ne/w49//GN4PB5wHIdXvepVuHjxovxTCWMqQPoOnT59Grfddhve+ta3VuQ5q4k6GagQ9Ho9YrFY0cdVKlSo2pUB6ia3uLiI7u5upFIp1YuUySRZ5ooiMnzoaan64x/nceqUmPU71RHEKSH1EQna2wX84z+KaG6OIBKJyP1Ho5HH+roRyWQjIpEDIKSM7XQJEAQBk5OTWFlZwfHjkjZACwvJ4uIipqam0NHRkVfAWipYlpUFn0rtB12clKVtJTmgpkg08MjpdNZ8550P0WgU169fB8uymhmtTKfTcLvdcjKhsn1iNpthNptzErRQKITl5eW87Z1yQ5m47fLcfmQTZL8mtZV+7Wtfi9e+9rV47LHH8Oijj+LP/uzP8Oyzz+LDH/4wzpw5g+985zsVOYbXve51eN3rXleR56oF6mSgQijWJqDlzUqFCtFwpFzjfnuFz+eDx+OBxWLBPsDPzQAAIABJREFU5cuXYbfbsby8rJp8tLUBg4Pito3ujjZAstFlcOaMiM7OykfqKg9PaYsgjSvFYTAYYLdbQAiLEydY9PQ0AJD639mq+ZmZGYTDFgACBEEHg8EAg8EAQirzlaGOfSaTSTMLSSKRgNvtRjKZxNmzZ6vah8/nWkdFYcFgEHNzc9txzgZwHIfDhw/j2LFj+04ElMmHR48qY6L3F5ubmxgdHYXT6cTFixeLCjiVBI2CEjRKDrxeb15xqJrqQTweVxiJkapPLgCQyUkxAhKLxdDW1oY77rgDd9xxh/we/lBRJwNFUIlpglgsBo/Hg2g0WrFQIXqhq03nUoNUKgWv1wu/34/+/v6MkqfafAKpzyjFAtMQIUB6DpYt332vEJxOAr1emmCgh6g0FEomOVgsNrCsHvk6Odl+8zYbg4YGA3Q6Dskkh0gkBZ6PI53WQRSNWFxcQ2OjreQwIDo6urKyohnHPlpWnpiYQHt7O86cObMvffhsYVwgEMD169dls6RAIIDFxUXZFIkuTuWY0pSLZDIJj8eDWCymGeGiKIqy3mSvrYpc1YNIJCIThNXVVSQSCdlWmJ6HXJHONByK5jdU0la5ECgZKXYN5zIc2o9gL62gTgZUgGEYOTwnH3L18Gmo0MzMDA4fPlxUeFcK6EVbifAPQgiWlpYwPj6OAwcO4JZbbtllSaumLUEZuV5P0NCg2xbaZX7JK60NAIBz5wh+9rMkgkFGPo6xMT8+9zkXRFEPk8maMUlgs5Fd2oBsmEwEjY1AOGxEOm0EYINOR2AwCLBYOKTTYYyMTIPjOLk3SW+M+ex8t7a24Ha7NeXfTxe3aDSK06dPy/Pd+wlRFDE9PY2FhYVdYkqe5+XWgt/vx/T0tGyKlB0nXGnQitmBAwcwPDxccye/XIjFYrh+/ToAVKXCpKwKUKRSqQxyMDY2lvE4h8MBn88Hv9+PoaEhtLa27qoeVDOUid6nii3sdSviTNTJQIWQXRnw+/2yQOfChQsVd7liWXZP0cIU0WgUbrcbiUQCp0+fzivKKvRa2f3DgwdZPPwwl3dGvxxlezGcOyeNFNL3c/Ysj5/8ZAhGoxPUqIfCagU6OgoTkvZ24MtfzmcwxKK9fUA2hKFlbRpGY7FYZHJAvf6npqawurqqqWqAUpWvlcWNjjEC0uKWrfbW6/UFTZFonLDVat0VJ1zuZ87zPMbHx+Hz+eTK3n5D2Xbs6OhAT09PzaojJpMJra2tOUdL/X4/ZmdnQQiBxWLBxsYG0ul00UjnSoYyUZfFYo8Ph8N1wyEF6mSgQqAmQNmhQtW0Rd2LiJDuvmZnZ9HZ2Ylz584VrDDkeq1sX3Qls6+0ur0YlNavnZ1SsJC0Myj/GCRBY/7fVxrCKO186c6VGvKIogi9Xo+Ojg7Y7faqj1oVQyqVgsfjQTgc1owqnxCC+fl5TE9Pl9SHzxcnTMnB+vo6JiYmAGDXWKMa8hMKhXD9+nW5mqOFrAMayxwIBKrqZ6AW1FY4HA4jEAjg2LFjOHz4sNxeyD4Hyh+j0VjxUCae56HT6Yred6PRaIbvwh866mRABdS2CTiOw69+9atdoULVQrlkgJardTqd6qpFtmZAOYsM7DD4/UCxYKFagkbZOp1OTExMIBQKyaI3OqapHKmjP7VyQaN93KamJs2o8pXCxXLGGLNhMBh2WVorTZGUfW+l9kBpiiSKIubm5jA7O6uZrANAGkm+fv06bDYbLl68WFLCZLXA8zw8Hg8CgUBGq8lsNsvngBAin4NQKISJiQnE43G5gkPPgc1my2urTO8/xUKZ1DoeUmvmaoGatFHMzs7i2rVraGpqQmdnZ9Vet1zUyUAFEA6H5dLm0NBQzcqIpXoNcByH8fFxuVydHcRTCPRLll0N2E8SQNMS6fhjKe+nmtjc3ITH44HVasXly5d37SaVdspKr3V6Q6yGKC6dTmNsbAxbW1s4efKkLBDbTyhbFW1tbVUTLuYzRVI6Jo6NjcmmSDabDX6/f5fj4n6CEILZ2VnMzs7ixIkTmhhDBaR738jICCwWS0FywjCMHEqkrODQc+Dz+TA1NQVCSEYok9PpLLl6kEqlMjYv+b5H1W4TPP/883jlK18p//mDH/wgAODd7343vvnNb1btdctFnQyoQL4vXXaoUDgcrqm6WG0+ASEEa2tr8Hq9ZY810iqEVqoBdDTPaDTm7C3vB6iHxPr6ekFVt9lsxsGDB2XSSJPqlKI4QsguUVy5PX2fzwev14vGxkZcunRJE7vJ/TYQytX3DofDWFxcxMLCAliWhSiKsreBGlOkaiGZTGJ0dBSpVEpT5ITmQpSbXEmraLTNka3/mJqaQiwWg8ViyWgtOByOvNWDWCyGubk52Gy2orbKsVisqp/l1atXi1aUtYQ6GSgTuUKF6Fx0rW62atoE1MM9FAqhv78f7e3tJX9pCSFgWRaBQAAbGxtwuVz7JjbjOA6Tk5NYW1vTjBgP2BGM2mw2XLp0qaTecq6kOmVZe2xsDIlEIsMMhlrJFnrvtBK0sbGBvr6+ss59NaBFAyFBELCwsCCXultaWvL6/SvJQXZaXqWxvr4Oj8eD1tbWfRv5zIbS2KgSbR2KfPqPbKIsiqJcPVBO8NDr6vDhw+ju7gaAgtoDv9+viU2EVrD/V9bLDIVChSoVY6wWhcgAFWRNTk6ivb0dN998c1k3XaoNaG1tRTqdxsTEBBKJREaEcK163hsbG/B6vWUtuNUCrQZQwWgl7GhzlVSzvf5pmFEutz5gh5zY7XZcunRJE8lsPM/LlRMtkZOtrS2Mjo7C4XBkkJPsCk6+tMDshakSn7UgCBgfH8f6+rpmJhiAHe+HhoYGVcZGe0W+SGP6XaATPLQt0N7ejra2NnnaiiJbe/DII49gcXER6+vrVT3+lxMY8nKqY+wTBEFAOp3OCBXq6+vbtbg++eSTGBoaqtms9rVr19DY2Iiurq6Mv6caBp7nMTg4WNbxZI8LKlsCyp53MBhEJBKRjWCUPe9K3ejT6TTGx8fh9/vR29srB5DsNyg5sdvtGBgYqOmCq3Tro4uTIAhwOBwQBAHxeFxTwjeav2A2mzE4OKgJIqc06+np6cHhw4dL+qzoaCn9/EOhkPxdUJIDh8NRkv4jEong+vXrMBgMGBoa0sRnpdQs9PT0aKYiF4/H8dJLL0EURbS0tCAWiyEUCsnfBdpaiMfj6O7uRjAYxPve9z688MIL+N73vodbbrllv9+CZlAnAyqwubkpX3CDg4N5Q4Wefvpp9PT0VCzoohhGR0dhMpnQ09MDQNp5TU9PY35+Hl1dXYrxOvXINS5If/JBaQRDb4oMw2SQg1Kd+uix0PE8l8uF/v5+TfS7leV3rZATpRiPZVnodDokEglYrdYMQySbzVbTY1UaCGlJ+EZzBRiGwfDwcMXMeuh3QUkQaFlbWcXJVaVT2hwrA4b2G6lUCqOjo0gkEjh16pQmNAvATgulvb0dvb298mdFqwf0PMzMzOBtb3sbXC4XTCYTbDYbPve5z+FVr3qVJipmWkGdDKgAddMq9uX8zW9+gyNHjtRsdtXr9YJhGPT398v9MpPJhMHBwbJGZrLHBYuRgHygo1zBYBCBQADBYHCXU1++GyJFMpmE1+tFOBxGf38/WltbNbGI0M+5oaEBJ0+e1MTNRBl4pNRR0JQ2StLC4XBGjHC5JE0tIpEIRkdHwTAMhoaGNNGfVS64hWKZK/l6dLdKyQEVxWWTA+oEOTQ0pAmbY2An76CpqQknT57UhGZBFEX5eh8YGCg6GSOKIh599FF85StfwbFjx2AymfDss88iGAziLW95Cx5//PEaHbm2UScDKiCKopy+VQgvvPACWlpaajZDOjExgWQyCUKIvEstp3xX7XHBbKe+YDAou8Q5nU64XC45HQ2AHL/a0tKC3t5eTQjMtCrGo1HYBoMBg4ODBXe41GdeeR44jtul/9hr9aVcA6FqI5VKwe12IxaLFazwVRvKkTr6X1EUYTAYcOjQITQ1Ne1peqQSoBWdxcVF9PX1aaL6BUiarZGRERBCcOrUqaJTUdFoFHfffTeeeOIJPPbYY3jNa14j+8bMzMxgfX0dly9frtHRaxt1MqACasnAtWvX0NDQICtZqwlCCH73u99hY2MDra2tZe9SK1UNKBXZu9ZQKCTvOggh6O7uxpEjRzSxiNDRPK1VA2ZmZnL696sFjRFWkoNoNLon/UcikZDH4IaGhiqmNN8raK5Ac3Mz+vv7NWG9TDULi4uLGcZUwWAwbxhQLb6biUQC169fhyAIGB4e1kRFB5CqcqOjozh48CB6e3uLVrS8Xi/e+c53orm5Gd/97ndlj4k6cqNOBlRALRkYHR2F0WhEb29vVY8nFovB7XYjHA7LyvpSoawG0GjR/WL+hBDMzc1hZmZGniGmvVZlSdvpdNa0TKkULvb391ckbbISoAJRnU6HwcHBit6sc+k/AGSch8bGxl3ngRCClZUVjI+Pyz1cLSTAKVX5dLRWC1AGDOXSLKTT6YzKQTgclsOAlJbKlf4++Hw+uN1utLW1oa+vTxPnUCn0PHnyZNFzSAjB97//ffzt3/4t3vve9+LBBx/UBPnTOupkQAUIIUin00UfNzY2BlEUMTAwUJXjoP77MzMz6OjogM1mg8/nw0033aT6OaamGITDOyQAoKNswIkTtb8UaLAQz/MYGBiQe6VKAxL6U8uRxvX1dYyNjaGxsREnT57UhHBRmb/Q1dWFY8eOVb1yQo1clOchmUzKSm1qITs9PY1wOIzBwcF998qnoPbPRqNRU6r8cgKGlFHClCQkk8kMW+vGxsai3hP5QHUnq6urmhplTCaTGBkZgSAIOHXqVFGhZzKZxH/7b/8NP/jBD/D1r38db3zjGzVB4F8OqJMBFVBLBqamppBIJDA8PFzxY6CjWQDk8uvq6irm5+dx8eJFVc8xOQkMD+df1F56KVEzQpA/WCg/ksmkfDMMBAKyjW8lRxqVtr19fX2aqQZEIhG43W4QQjA0NLSv0avK87CxsYFEIgGWZdHc3AyXyyWb8exXi0c5BleuO141oAwYqgRpUp6HUCiEcDgMg8GQUT1QIxClVQo6WaGFaG1A8soYHR1FS0sL+vv7i76PmZkZvOtd7wLLsvj+97+P48eP1+hIfz+w/9LQlwHU3kiqYTpEHfeWl5dx/PjxjN2g2qAi2hLYrvjmRSRSiSMujlAoBI/HAwAl2auazWaYzWZZPawsaft8PkxOToJhGDQ2NsqixMbGRtWlTuoq6XK5NGPbK4oi5ufnMTMzoxkxntlshl6vh9/vB8dxssdCOBzG1tYWZmZmMlo89L+1KNVSzUI6ncaNN95Y8ejwclGNgKHs74MgCLJANBQKyaZItJqmtFSmWF1dhdfrxeHDh3HixIl9v7YA6Zqnepj+/v6i01mEEPz0pz/FnXfeibe97W343Oc+pwldz8sNdTJQQVSaDNA5WrvdnjNPQE1QkVIgKIr7uztSBgtVosydnW2vHGkMBoNYWFhQNdJIffIDgQD6+/vR1tamiZ1kLBbD6OgoBEHQ1MIWCAQwOjoKq9Wa4W6odIlTeszThDqaEkgXJmVK4F5BPSnGxsZUC8xqgVoGDOl0Ovnzpa+ttFSem5tDJBKRQ7GSyaQ8WaGF4CpAmvi4fv060uk0zp8/X1QPk06n8fGPfxzf+MY38Mgjj+DP//zPNfHdfTmiTgZUQk2McaXIQDKZlCNBKTPOdYEXCirKZR60n6y/FsFCynS6zs5O+WZIvQ5o8InSiIfneczMzKCpqQmXL1/WxBijMgSG7ti0sLBRMre0tFQwFyKXxzwVxAWDQSwvL8Pj8UCv12eQtHJ9/mn5fWtra19Cj/IhmUzKC9t+BAwxDAOLxQKLxSKL7niex9rampwQyDAMRkdHsbCwsMvrv9agngbNzc2qchiWl5fx7ne/G+FwGM8++2zVtFp/KKiTgQqi1EjhbNBFYGJiAm1tbbjlllsKLk752gTZ44L7mS64n8FCypshLTVyHIdgMIjNzU1MTk6C4zh5AVpdXd33fnc8Hofb7UYqlcINN9ygGfMZpYHQhQsXSnbsMxqNOVMClVHOPM+XZEwFSCTT7XbLUzVaaO0AmQFDZ8+e1YRZD62eTExM4OjRo+jq6gLDMBle/9lJgfQ82Gy2qn0n6Mz/3NzcrryXfI//t3/7N9x+++14/etfjy996UuaGX98OWP/r9CXCapdGaA323Q6jbNnz6oSF1EyQBl+tc2DSoUWg4XoOVpbW0NTUxN6e3vlUurW1hZmZ2chCMKuUbpq97sJIVhaWpKDpbS0gNCxz0pa5LIsu6ukrTSmUi5KSnJAZ+2Vpjjl5ApUC1oNGFKKF8+cOZNhuGSz2WCz2dDR0SE/llr5Ui0OgIwY4UppQNLpNK5fv45kMonz588XFcbyPI+HHnoIn//85/EP//APuOOOOzRx3n8fsP93m98jFCrb5wMtvc7NzeHo0aMllYTp4wRBkFO7aExnLiJQTIBeKYG6VoOFUqkUvF4vQqEQTp48KfdJqcnOsWPHdo00KuOD6YLkcrkqKlCiMdPxeBynT5+uWdBVMdAqRS3EeAzDwGq1wmq1ZlRxqECUZlSwLAu73Y54PA6dTodz585pRkuhDBi6ePGiJsgvIAl2r1+/Lms8ilVbDAYDDhw4IG9IsiO119fXZQ2IkhyUaooUCAQwMjICl8uF06dPFyW/Pp8Pf/EXf4GFhQU8+eSTOHfunOrXqqM46qOFKsFxXEYedi4kEgk8+eSTuPXWW1V9KTY3N2Ur2XLGxURRxM9//nO84hWvgMFg2JUumAtTU0zOqYFK+AwQQuT5fKfTif7+fk2oepXisgMHDuRMnCwEGh+sTGmsxEgjNeqZmJhAa2srent7NWGOQgjB8vIyJiYmcOjQIfT09GhGszAzM4P5+XlYLBY5TVRJ1GoVp62EVgOGlLbQlU6wVDqI0ioCNUVSag9yLfDKalNvb6+qqs7TTz+N97znPbhw4QK+/vWva8bZ8vcJdTKgEjzPF931cxyHJ554Aq9+9asLslw6y76+vo7e3t6yFcaEEPz85z/HoUOH0NzcXBFf+XKh1WAh5XGdPHmyIomS+VIas1sLhRbQVCoFj8eDcDiMgYEBzYje6HFFIpGy46+rAeVxDQ0NyWVuZYSwMk5beS7sdnvVFud0Og232625gCHlcQ0PD1d98cye5FGaIinPhU6ng9vtRjweV5WAKIoivvCFL+CBBx7AAw88gLvvvlsTROv3EXUyoBJqyADdqV+9ejXn7oS6j9FZ9pMnT5ZVSlQKBH0+H7a2tuTwHzq+Rc1fql2qpLtIrQULKSN9W1pa0NfXV7Vdd/aNMBgMIp1Oo6GhQfY8oGI4ZSyzlnzygR2fBZpQp5Xj2tjYgNvtVnVcSqJGd6yEkF071kq8N6p+dzqdGBgY0MzntbW1hdHRUTQ2Nu7rceUyRSKEwGg0oqOjA83NzQVNkQKBAO6880689NJL+N73vocrV67U+B38YaFOBlRCDRkAgF/84he4dOnSLnUr7b9Go1G5X72XdMFcwUJ0fIuO0mWXs10uV0XDTuLxODweDxKJBE6ePKkZG9pqVANKgXK+OxAIIBQKIRqNwmKxgBACjuNqPllRCMpERi2J3gRBwMTEBNbW1spOiqT9bqXPv1IDQglCKTa+Sq98LSX6KVX5asvvtTqu+fl5eVTWbDbL54KaIlHdB8uyOHHiBK5du4Z3vvOd6Ovrw7e//W3NVM5+n1EnAyohCIKqSYFf/vKXOHv2rFyWE0URc3NzmJ6exqFDh8ruC5eTLqjcJdFFSWlMQvPsSy270RHI6elptLe3o6enRzPKd9qDr3Y1oFSsrKxgbGwMJpMJBoMBkUikIudir1CO5lEnQS2AhjFRPU0lK1xKDYjSxlfZ4sl3LooFDO0XksmknBZ56tSpfbWrVoLjOLjdbkQiEZw6dSpD7JltivSjH/0In/rUp+B0OpFMJnHLLbfgvvvuw4033qiZkdHfZ9TJgEqoJQNPPfWU3GulQSmEEAwODpbVT6zkuCANO6GVg2AwKI/R0VJ2sSS0fMFC+w1q1EQrL1rZSSh33crkw+w5e+W5qMVIoyAImJqawvLysqZG85TislqFMQmCkHEuQqEQBEHI8DxoaGjA5uZmyQFDtQD18D9w4AD6+/s1QcwBaYphZGQEdrsdQ0NDRa/lSCSCu+66C2NjY7jpppvg8/nwzDPPIBqN4t5778V9991XoyMHHnzwQXzkIx/B3XffjX/8x3/M+ZhvfvObuO2223b9fSKR0AypLgXauGp+j6DX6+URtsXFRRw/frxsdbGSBAB7Nw9Sqn3p89MxukAggJWVFaRSKdnLXNnrLidYqBZQahZaW1sxPDysmWqA3++Hx+OBw+HIsO0Fcs/Zx+NxmajlGmmslAZEGYFcjoFQtZBIJGTDpVraL+t0OrhcrozETGrEEwwGZTtlAGhqaoLdbkcikaionXI5ULYr1Hj41wrK6Qq1UwwejwfveMc70NbWhp/97GfyeyGEYHJysqjHSyXx3HPP4dFHH8WpU6eKPrahoQHj4+MZf/dyJAJAnQyoRin9RK/XC7vdjsuXL5fljFUr86BctrHU+CUQCMjGL2azGTzPQ6fTYXh4GC0tLZrYRdL5/FgshuHhYc1oFniel41n1PaUGYaRzV/ouVCWsxcWFuB2u2E0GjOIWikjjbRlNTs7q6kROAByrG9bW5sqK9pqQnkubDYbtra24HK5cOjQIcRiMbnlo9PpMio5ahICK4VEIoGRkRGIoqgpQsdxHDweD0KhkCoHTUIIvve97+Hv/u7v8Nd//dd44IEHMsg8wzDo7e2t9mHLiEajePvb346vfvWreOCBB4o+nmEYzWhs9oo6GagQqGgtFovh4MGDOHXqVNnjgoIgZOQJ1HLhVXqZUwHX8vIyGhoaQAjByMjInhakSkA5B08/a61UAzY3N+HxeGSDl73s5E0mE9ra2jJS6ZTRwcqUxmIjjfF4HKOjo+B5XlOhRxzHYWxsDJubmxgcHKy52DMfigUM0ZZbrlAs5fmoRq+bWh1rKZAJkCpOIyMjsFqtuHjxYtGpokQigQ996EP48Y9/jO985zt4wxvesO+bjPe///34oz/6I7z61a9WRQai0SiOHj0KQRBw5swZ3H///Th79mwNjrTyqJMBlch3kdKSGBWttba2lm1AQysBasyDqg1lsNDFixflCgddkAKBQEZssHJioZpCOKVb36lTpzRTDRAEAZOTk1hZWalaD16n06GpqUmesadKedpaWFpaQjqdlts8lBxQ4qAlAyFgJ/1Qa7kCagKGlC23o0ePZojhgsEgZmZm5AkS5dTCXoizcrpiYGBAM0mD1Ep7YmICXV1dcuZBIUxNTeGd73wnTCYTXnjhBXR1ddXoaPPj8ccfx4svvojnnntO1eP7+/vxzW9+E8PDwwiHw3j44Ydx5coVvPTSS+jp6any0VYedQGhShBCkE6nM/4uGo3KCl5qHOPxeKDT6dDX16f6ebPTBdVMClQLPM/LNxw142/ZO6RAICCLr2jlwOl07rnsq/TupzsirQilgsEgRkdHYTKZMDg4uCtqulbIXpACgQBisRgYhoHL5cLBgwfhdDo10eumToI9PT2aGbEEMgOG+vv790ScCplTFXPpy0YsFsPIyIjcqtOK1THP83Ji5PDwcEbmQS4QQvCTn/wE73vf+/COd7wDf//3f68JEri4uIgbb7wRP//5z3H69GkAwNWrV3HmzJm8AsJsiKKIG264Aa94xSvw+c9/vpqHWxXUyYBKKMkAtUWdnZ1FZ2cnTpw4IX+hx8fHIQiCqjjNcsYFqwllsNDAwEDZhkhKIRyd63Y4HBnkoJQbABWWJRIJDAwMaMYVj+ZKLC4uVj2rvlRQAyGXy4W2tja5ghAOh/d1pJGO5hFCMDw8rJm0uVoEDFFzKiVBSCaTciWHEgSz2ZxxHVGNwpEjR3D8+HHN6DwikQhGRkZgMpkwPDxc9DudTqdx33334Vvf+ha+8pWv4E//9E8183350Y9+hDe/+c0Z5E8QBLlVm0qlVBHDO+64A0tLS/jXf/3Xah5uVVAnAyUglUrJc9k6nQ6Dg4O7eq/T09OIxWIFlahaSxesdrCQ0oAnGAwiGo3CarXuckrMfs3sJD+t+BkA0tiU8jrQyqKm7MErw5go8o00ZkcHV1qDodR5HD58GCdOnNDUokYDhirtaVAMyjl7ahRGNTkOh0P2B9GSQBYAlpeXMT4+jqNHj6K7u7vo/WJxcRHvfve7EYvF8M///M/o7++v0ZGqQyQSwfz8fMbf3Xbbbejv78c999yDoaGhos9BCMH58+cxPDyMr3/969U61KqhTgZUQhAEXLt2Daurq+jp6UFnZ2fOm9n8/Dw2Nzdxww035HweLVUD9itYiOO4jFI2NX2hxMDlcoFlWXi9XiQSCQwODhYtP9YKyhJ3d3c3jh49qplFjQZf2e121QZC2WN0wWAQ8Xg8Z/hPuddpOp2Wcxi0lHegxYAhqsnx+XxYXl6W48mVbYVqkLVSjs/r9cLv92N4eLjouSSE4Be/+AX+8i//Em94wxvwxS9+UTOTD8WQ3SZ417vehY6ODjz44IMAgE984hO4ePEienp6EA6H8fnPfx7f/va38fTTT+P8+fP7eehlQRvbrJcBWJaFyWTClStXCvaE9Xp9TnMirVUDkskkxsbG5DjfWgYLGQwGtLS0yMZASpW83+/H5OQkRFGE2WyWqxQ0pnk/EYlEMDo6CgCqstdrhb0YCCnH6GiefaGRRkrW1Arh/H4/3G43nE4nLl26pJmpD2WQj5oRuFqBZVnEYjEsLy/LpktKsqaMD1aKRGuhA4lGoxgZGZEjmouRTZ7n8elPfxpf/OIX8fDDD+P222/XTFugHCwsLGSQxWAwiPe+971YW1tDY2Mjzp49i6eWsDXqAAAgAElEQVSeeuplSQSAemWgJKTT6aLmF+vr65iensbly5flv9NaNUCLwUKA1E/2eDxIJpPo6uqCKIpya4HnebmU7XK5qurOlw3lfD4ti+73DpKCtiv0ej0GBwersutSkjX6AyCjcpA90qicrujv7y8rV6BaoAFDNCxMKwRFOaM/PDycl6DQDBL6Ew6Hodfrq6oDoQFranUL6+vruP3227G8vIx/+qd/wpkzZyp2LHVUB3UyUAI4jpPdAPOBlmpf8YpXaG5cMB6Py14IWrLsVWYd5Bp/yy5lBwIB2Z1P2VqohiqZ2i8LgpBTI7JfUBKUWtn2UijDfyhZU440mkwmLC0twWg0YmhoaN+mK7Kh1YAhQNplXr9+HXa7HYODgyUR9Fw6ECV5pj/lkH4qrPT5fBgcHCx6zyCE4Ne//jVuu+02XLlyBV/72tc0852pozDqZKAEqCEDwWAQL774Iq5evaqZcUGtBgsBUjXA7XYjnU6XlN+gHKGjwiuLxZIxsbCX0ilNWpuenpZ3Q/vdpqCgnxnP8xgaGiqaCV8LUOfKxcVFhEIhAJBn7OlPJRMzS4VWA4aU11mlJlIIIfL5oD+xWKzk81HqOKMoivjc5z6Hhx56CJ/+9Kdx1113aaaCVkdx1MlACVBDBiKRCJ555hncdNNNsNls+14NiEaj8Hg84DhOU8FCypsgVZfvZbHlOE42Q6LqbJpEp3RKVHNzonHTqVQKQ0NDcn7AfkM5XdHR0bHnz6ySoKl5yWQSQ0NDsNlsu2bs92OkkRAiWx1rLWAonU5jdHQU8Xgcw8PDVd1BU9EuPSehUEjOx1CKE+n1tLa2Bq/XK19nxT6zra0t/NVf/RVGR0fx+OOP49KlS1V7L3VUB3UyUAJ4nocgCDn/jQoEOY7DSy+9hGAwKAeg0AXJ4XDUjBgoy8haChYCdna2HMdhcHCwKoutMomOjmcRQgr2uZWLrdbc+mgqYywW09R0BbCzcLS2tqKvry9n1SlfYmY1Rxo5joPX60UgEMDg4KCmRvO2trZw/fr1fdMt0POhJGzpdBp2u11uy/X398ui0kJ44YUX8I53vAODg4P41re+panPuQ71qJOBEpCPDOQSCBJC5JsfvQHSxYgmpFVrZxQKheDxeAAAAwMDmunZ7WfpPdu6NxAIyF7yLpcLVqsVKysrSCaTml1sW1pa0NfXpxnBG8/zGBsbg9/vz+lpUAiFRhqVkdrljjTSHrzNZsPg4KAmXO6AndHUhYUF9Pb2oqOjQxO6BUKI7KQpCAKMRqMcUpZtp0zvWaIo4qtf/So++tGP4t5778U999yjGfJcR+mok4ESkE0GlOOCdB64UIYBXYyUCnl646MK+b18mZSOeLUWlRUDFeLxPF+1akApoH3VQCCA5eVluc9ts9kyqjn7GUdazEBoP0EXDovFgsHBwYp8TrlU8sqRRjWtnmIBQ/sJmnnAcRyGh4c1M5oKAD6fD263G+3t7ejt7QXLshl2yqFQCKFQCJOTk3jsscdw9uxZzM3NYWRkBI8//jiuXr2qmc+5jvJQJwMlQBAE2UNgr+OCStte+pNOp3d5+qvdBSqDhQYGBjTjiCeKIubn5zEzM6M5IR4tvUejUQwMDMDhcGRMLEQiEZjN5gxyUCtffzqV4nA4MDAwoLmd7fz8fNUX2+yRRtrqyU5ppG0JZcDQ8PCwJoSVFBsbG3C73Whpadlz5kElIYqiPAJaLPyIEq2vfe1reOKJJzAzM4NEIoHh4WFcuXIFt956K974xjfW8OiBBx98EB/5yEdw9913F8wQ+Jd/+Rfcd999mJ6exvHjx/GpT30Kb37zm2t4pNpHnQyUAEEQZBFhpccFaciMsnIQj8czPP1dLteu8SCe5zE5OYnV1VVVwUK1hFbH8gghWFtbw9jYWMHSO90ZKUWJVARHz4nD4aho9UU5n6+lMjIgaT1GR0chiiKGhoZqvrNVjjTSn1QqBYfDAaPRiK2tLbS0tGBwcFBzi+3y8jJOnjyJ9vb2/T4kGYlEAtevX4coijh16lTREVBCCB577DF86EMfwl133YVPfvKT8Pl8eOaZZ/D000/DZrPh/vvvr9HRA8899xz+5E/+BA0NDXjlK1+Zlww888wzuOWWW3D//ffjzW9+M374wx/iYx/7GH7961/jwoULNTteraNOBkrAc889h4MHD6KxsVEmAdW8UadSqYwedzQalZ3HXC4XRFHE/2fvvMOiOLs2ftObgKigogKCNCkColSJHWuMJeKbSLHFFmOJETXGioXYTSJqYsQvKtZYY4JBpSqiItJ7s9CEXVj6luf7g3fm3aUuysKq87suLi9nZ3ae2Tbnec45952VlQU1NTWYm5tLVT+3tBYv1tfX00VlgwcPho6OjtjHUv3cwkVwwjPVd031lJeXIzExkdbIl5b3U9hXQNq6GKqqqpCSkgI2mw0lJSXU1tZKTUtjdXW1iCmTtLQzAv9bqaCKPtt6P6urq7F27VrcvHkTp0+fxuTJk7u8S8rOzg5Hjx6Fn59fq+6CHh4eqKioEDEPmjBhArS0tBAUFNRZQ5Z6pKPZ/D3h+++/R0hICCwsLODs7AxXV1e4uLigd+/eEvliKCkpoU+fPrSDGpfLBYvFQmlpKdLS0sDlcqGgoAAlJSWwWCwAaNbwpzPhcDhISkqCQCCAvb291KwGAKJOfs7Ozu0WYaFasah6h8biO69evaJTPe0RexEIBMjJyUFubi4MDQ1hYGAgNasBlK9AeXk5hgwZIjW+AoCowZCLiwtUVFToFlM2m43CwkKkpaVBTk5OpCixM1oaqaJP4Ry8NEBNIF68eCH2SkVGRgY8PT2hqqqKp0+fwsDAQPIDbYPly5dj8uTJGDt2LPz8/Frd9+HDh1i9erXINnd3d7GtiT8WmGCgHQQHB6OgoADh4eEIDw/Hjz/+iKSkJBgbG9PBgaura7u04duDvLw8BAIBioqK0L17dwwaNIhePXj9+jVSUlJowx/qr7NmRdIs2StciGdmZtZhwZuMjAzU1dWhrq6OAQMGiKR62Gw2MjMzUVVVJbKaQzk0UlBL73w+X6r8DoCmvgLSIlvdmsGQgoICevXqRbe3US101EpObm6uRFsaha2QLSws2rXyJGmomgoejwcHB4c2VyoIIbh69SqWL18Ob29v7Nu3Tyo+A+fPn0dsbCweP34s1v6FhYVNaiF69+6NwsJCSQzvvYUJBtqBjIwMdHV1MWfOHMyZMweEEJSWliIiIgJhYWEICAjA4sWLMWDAALi4uMDFxQWurq4d4oZGGQux2WyRG1q3bt3o2RrVW89isVBcXIyMjAx6NiupHDfwv9UAQgiGDRsmdYVbycnJ0NDQgJOTk0QL8WRkZKCiogIVFRXo6uoC+F+FPIvFok1/lJSU0L17dxBCUFJS0iGiSx2JcN2CtMn2ttdgSFZWFpqamtDU1IS+vn6Tlsb09PQmxj9UF0l7r5ky8pGXl4ejo2OnWiG3xZs3b5CYmCh2AWNdXR02bdqEs2fP4tdff8Xnn38uFZ+BFy9eYOXKlbhz5067Olias0eXhuuRJpiagQ6EEIKKigpERkYiLCwMkZGRePLkCbS1tengwMXFBWZmZmLfkAkheP36NdLT09ttLCQs9NKc1gFVjf22wYHw8rY0rgakp6ejuLgYpqamUmOUw+PxUFJSgszMTNr4StImM+2BWnqXl5eXqroFQHIGQ821NApbarfV0kh9R9PS0ugaGWn5HhBCkJWVhfz8fJiZmdFBamvk5+fDy8sLdXV1uHjxIkxNTTthpOJx7do1TJ8+vYkployMDGRlZVFXV9ck0NHT08Pq1atFUgUHDx7EoUOHkJeX12ljl3aYYECCULOQhw8fIiwsDOHh4YiJiUG3bt1E0gqWlpbNRuodbSzUnPAOpXUgHCCIM0OtqKhAUlISAMDCwkKqVgNKS0uRnJwMVVXVDuuB7wiEuxiowi1ZWdlmlfmEc9zC7XOSHFt+fj4yMzObLL13NZ1tMES1NFKdJK21NPJ4PKSkpKCsrAyWlpZSVVNRV1dHt1paW1u32W5MCEFwcDAWLVqE6dOn48iRI1IVDAINwWrjG/i8efNgZmYGX19fWFpaNjnGw8MDHA4Ht2/fprdNnDgR3bt3ZwoIhWCCgU6EyinHxMTQqYXo6GjIycnB2dmZTitYWlpi3759qKyshI+Pj8SMhYS1DqjgoK6uTsQquHE+VbjPXNpuGsJtlsbGxhKr3XgbKGncsrKyVrsYCCGoqqoScQSk2ueE35OOzN3W1tYiKSkJNTU1UuXFAEiHwVBLLY2qqqp094K0BcSU3HGPHj1gbm7e5u8Hj8eDn58fAgIC8NNPP8Hb21tqvjttMXLkSJFuAi8vL/Tr1w+7d+8GADx48ABubm7YuXMnpk2bhuvXr2PTpk1Ma2EjmGCgi6mvr0dsbCzCwsIQERGBiIgICAQCqKmpYfr06ZgxYwaGDh0KJSWlTvlyUm5nVGqBkoilLIJfv34NOTk5WFhYSFWxG4vFovPxFhYWUjWjoQrxNDQ03kpASPg9oRzoOiLHDfyvw6JXr14wMzOTGjdL4aV3aTMYIoQgOzsbOTk50NDQAJ/PR2VlpVS0NAorMJqamoqlU1FYWAgfHx8UFRXh0qVLsLa27qTRdgyNg4GRI0fCwMAAgYGB9D6XL1/Gpk2bkJ2dTYsOzZgxo4tGLJ0wwYCUUF9fD39/f+zevRuff/45LCwsEB0djcjISHA4HAwbNoxeORg+fHinKeHV1dWhrKwM+fn5qKioAACoqqrS3QqNq+M7Gz6fTy8hS5v8LJ/PR3p6OgoKCjp0ebs12V5hh8bWzsXj8Wif+raU5zobaTYY4nK5SEpKAofDgaWlJV3AKNzS2NgVULgWRJJFovX19UhISEBNTQ2GDBnSZrBOCEFERAR8fHwwcuRInDhxQqpWNxg6FyYYkBJSU1Ph6emJgIAA2Nvb09sFAgFSUlLomoOIiAiUlJTAzs6ODg6cnJwk5ohYXl6OpKQkyMrK0vl34VlqRUUFlJSUukSyV1ikx8LCQqpEXdhsNpKSkqCoqCjxlQoqxy2slCgjIyOyciBclCgJX4GOQloNhoD/jU1dXR0WFhatFjA2bmlks9ngcrlN6g46Kt3DYrGQkJCA7t27Y/DgwW2u8PD5fBw4cAA//vgj/P39sWzZMqlZeWHoGphgQIoQp92FEg2htA4iIiKQn58Pa2trOjhwdnZGjx493umGzOfzaXc1Q0ND6OvrN/tj0Zxkr7y8vEhw0NYstb1Qr0FbY+sKhGsqjIyMoK+v3+krFY1vRCwWi+6tBxqCKENDQwwcOFBqVlGk2WCIEILc3FxkZ2fD2Nj4rSS/KWMsYUvtxukeapWtvR4n1NhMTEzEqpMpLS3FV199hdTUVJw/f57JmzMAYIKB9x6qCpyqOQgPD0dGRgatkkgFCO0R2qFWA6jagPaYHgkEAnq5lAoQqFkqlVp4F60DDoeDxMREyMjISF3dQmVlJRITE0EI6RLt/pag9DBSU1PB5XIhJydHFyUKt8911Sy8pqYGiYmJUmkwVFdXh8TERNTU1MDa2rpDx9ZSS2PjdE9L3xVKc6GqqgpWVlZiqX3GxMTA29sb1tbWCAwMlKruB4auhQkGPjCo9rXw8HBa6yAxMRGDBg2idQ5GjBjR7AxC2AK5o2bcwrNUKjgQCAQi1s3i5FKFNQ2krYtBuC1PT08PRkZGUjU2qhBPV1cXxsbGkJOTQ21trch7UllZCVVV1SZKiZKenRcVFSE5ORm9e/cWSyO/M6F0DcStyH9XKNEw4QChpZbG9qQsgIbvz7Fjx7Blyxb88MMPWLdundR8RhmkAyYY+MAhhKCsrEwkOIiLixNRSXRxcUFubi78/PywdetW2NvbS8wCmWqdE7ZupnKpVHDQuK+emnFTbnnSNHOsqalBcnIyqqurRQrKpAHKlInNZrdZiMflckXSCo2Fdzo63SMs2yttBYzC+v1dqcAo/F2h3pva2looKSmhrq4Offv2hZGRUZsFvBUVFVi2bBmio6Nx7tw5fPLJJ1KTgmGQHphg4CNDWCUxPDwcoaGhePLkCeTl5eHm5oaJEyfCzc2tXSqJ7zqempoaEZXE2tpauq+ey+WisLCQVjiUlpkjIQQFBQVIS0ujBYSkpS0PaJjVCrcztrdQjSpKFJ6lysjINDH8eZv3Q9hgyNLSUqpkeylbXx6PJ5ZQT2fC5XIRHx8PDocDLS0t1NTUgMPhQFlZWSTdI9zSmJCQgLlz52LAgAE4d+4cbXrGwNAYJhj4iImMjMT8+fOhpaWFr776Crm5uYiIiEBMTAzU1NTomoMRI0a0qJIoCWpra1FYWIi8vDxwuVwQQmitA2qW2pVV5sIzbnNzc6kyo6FaLV+9egUTExOx+szFQSAQiDg0Nq6Op1Z0Wluubs1gSBooLi5GUlKSVKYsysvLER8fj27dusHCwoIO7oQLeKngbdu2bVBSUoKuri5u3bqFVatWYceOHVIVrDJIH0ww8BGzePFimJqaYuXKlfQPHyEEdXV1iImJoTsWHj58KKKS6OLiAltb2w7ThheGumFkZmbSOW4+ny+iksjhcETy2+8iutNeKOMjTU3Nt5pxS5LKykokJCRAVlYWlpaWEm21bGz4w2KxUFNT02LQJmwwJG3pFIFAQOtBmJubS9XsWTiAEqc7RSAQ4O7duwgICKCLC6uqqmBvbw9XV1csW7YM+vr6Eh93QEAAAgICkJubC6BBsnzz5s2YOHFis/sHBgZi3rx5TbbX1NRIvPWVMS1qgAkGGNqEUkmkgoMHDx6Ay+Vi+PDhcHV1hYuLC+zt7d9ZJbGmpoaWxbWwsECPHj2a3a+5/DblBEgFBx2tdcDj8ZCeno6ioiKpMj4CRG8YXWkYRRUlUn8cDod2cSwvL0f37t1haWkpVQEUJXcsIyMDKysrqVKu5PF4SE5OBpvNhpWVlVgBVFpaGjw9PaGhoYHz589jwIAByMrKQlRUFCIjI7F+/XoYGRlJfOw3b96EnJwcBg0aBAA4ffo09u7di2fPnsHCwqLJ/oGBgVi5ciXS0tJEtks6MONyuRKZ1LyPMMEAQ7vh8/l4/vw5HRy8q0oiIQSvXr1Ceno6+vTpAxMTk3YtaQqL7lDLpXJycnRg8K7Fb5RIj5KSktTluOvq6ugZoLTNuKl0SklJCZSVlVFbW9uu1jlJU1BQgJSUFKmTOwYa6iqeP38OVVVVsQIoQgiuXLmCFStWYP78+fD395eqoAsAevTogb1792LBggVNHgsMDMSqVavAZrMlOoaSkhLs3LkTU6ZMwdixYwEAKSkpOHfuHHr37o1p06ZhwIABEh2DtMIkkRjajZycHOzs7GBnZ4dVq1ZBIBAgNTUVoaGhiIiIwB9//IHi4mLY2dnB2dkZI0aMgKOjIzQ0NJrckGtra5GcnIzKykpYW1u/lfSsnJwcevToQa8kCAQCVFRUgMVi4c2bN8jMzHwrrQNpEBBqjeLiYiQnJ6NXr16wsrKSqhmOsMGQk5MT1NTURFrn3rx5g6ysLNpSW7h1TtK5ej6fj9TUVJSUlMDKyuqd3UA7EiowTktLw8CBA8UShqqrq8OGDRtw4cIF/P7775gxY4ZUfU75fD4uXbqEqqoqODk5tbhfZWUl9PX1wefzYWNjgx07dsDW1rZDx5KXl4e//vqLDp5TU1Ph7u6OkSNHIjw8HHfu3MHy5cvh7u7eoed9H2BWBhg6HOomSkkoR0ZGIjc3F9bW1nRawcnJCRcvXsS9e/ewbds2mJqaSuxmRhW/CXcs8Pl8kRlq45uQtAoIAaK+AtKY4xbXYKg5S20ulwsNDQ2R6viO/FxUVlYiPj4eCgoKsLKykiopZmE7ZCsrqxbTZMLk5ubCy8sLfD4fFy9ehLGxcSeMVDwSEhLg5OSE2tpadOvWDefOncOkSZOa3Tc6OhqZmZmwsrJCRUUFDh8+jNu3b+P58+cddk0CgQCysrI4ffo0Dh8+jJkzZ9KTFm9vb8TGxsLX1xfq6urYtm0brKysOuS87wtMMMAgcShRHiqtcP/+feTn50NFRQUTJkzA5MmT262S+K7jEdY6YLPZqK+vpyvjuVwuXr9+DX19fakSEAIaqsoTEhKgrKwMS0tLqbqZvavBUGPJXjabTbtmNnZobC/CqSg9Pb0uq6toCSpIUVRUhJWVVZvdMoQQ3L59G4sXL8asWbNw+PBhqUpfAQ1povz8fLDZbFy5cgW//fYbwsLCMHjw4DaPFQgEsLOzg5ubG44cOdJh46FSJxs3bsStW7dQV1eHW7du0QHHjRs34O/vD2tra+zZs0csVccPBSYYYOhULl26hKVLl8LFxQVTpkxBXFwcIiIiaJVEZ2dnuLq6wtXV9a004N8G6iZUXFws0s6ooaEhsnrQlTlYgUCA3Nxc5OTkSGXKQlIGQ3V1dSLFoo376sUpFhUOUsSdcXcmr1+/RmpqKq1e2db7yuVysX37dpw4cQK//PILPD09peqz0BJjx46FkZERjh8/Ltb+ixYtwsuXL/H333+/03m3bt0KHx8fGBgYICgoCFwuF3PmzIGnpyf+/fdfnD59GlOnTqX337t3L65du4apU6di/fr173Tu9wmmZoCh06ivr8eRI0dw9OhRzJ49m94urJIYHh6OY8eOYcmSJRgwYAAdHLi4uEh0Nsdms5GTk4PevXvDxMQEPB6Pnp1mZmaiqqqKnqFSN6LOmpULC+EMGzZMqhQYJW0wpKSkhN69e9MKhTwejw4OCgsLkZaWBjk5OZH3RbgehFpJUVVVhZOTk1QV1QnXLgwZMkQsn4CCggL4+PigtLQUDx8+hKWlZSeMtGOg2pbF3TcuLu6tl+o5HA7U1dVRWlqKv//+G3/++Sfs7e1x5swZXL58GYqKitiyZQvy8/Nx8eJFmJqawsTEBACwevVqpKSk4OzZsxg7dqyIi+yHDLMywNCpiNPTS6kkRkVF0RLKT548Qa9evUTMlzpCJVFYQGjw4MEtFpNRpjJUaoFqmxPuWOhorQNhlcO+ffvSvgLSgjQYDAkXizbW85eRkUFZWRkGDhwIQ0NDqZo9V1VVIT4+HvLy8mLVLhBCEBYWhnnz5mHMmDE4fvy4VNWxNGbjxo2YOHEiBgwYAA6Hg/Pnz2PPnj34559/MG7cOHh5eaFfv37YvXs3AGDbtm1wdHSEsbExKioqcOTIEfzxxx+IiorC8OHD23XuBQsWIDs7G8HBwVBUVMT9+/cxZswYaGtrIy4uDn379gWfz4ecnBzOnz+PH3/8ERMmTMCGDRvo1zQ7OxtZWVkYN25ch7820gqzMsDQqYjzg0zJ3k6aNAmTJk2iBW6io6MRFhaGa9euYePGjVBTU4OTkxOdVrCysmrXzZISEOrevXubs0ZFRUXo6OjQaoNcLpduZ3z58iWSk5OhqKhIBwaNZWHbi/DStqWlpVRVvAOiBkN2dnZdFqTIysrS9QRAw02TxWIhNTUVNTU1kJeXR05ODkpLS0W6FrpyhYBqaRwwYIBYNSl8Ph979+7F/v37sXfvXixZskSq6h2ao6ioCJ6enigoKICmpiasra3pQAAA8vPzRa6BzWbjq6++QmFhITQ1NWFra4vw8PB2BwIA4OPjA3d3d+zfvx8bNmxAUVERHB0dERMTg5CQEHh6eoKaA8+ZMwdJSUkICQmBvr4+Fi9eDAAwNDSEoaEhgI9HlIhZGWB47xBWSYyIiEBYWBiio6MhKytLBwetqSRKQkBIWOuAmqEKax1Qy9finKesrAyJiYm0I520LW1Lq8EQALBYLCQkJNAKkfLy8qitrRV5X6qqqqCmptbEoVHSUK9dcXExLCwsxArw3rx5g4ULFyIrKwvnz5/HsGHDJD7O9xlKRCggIAArVqzArVu3MGHCBADAli1bsGfPHjx58gRWVlaora2FsrIy6uvr8Z///AdZWVk4ffo0hgwZ0sVX0TUwwQDDB4GwSmJERASioqJQX18PBwcHOq1gb2+P8PBw/PHHH/jmm28kKiDU3PI1AJGqeA0NDZHZkUAgQGZmJl6+fAljY+Nmbaa7Emk2GCKEIDs7G7m5uTAxMWn1tRNO+VBKiZSCJfXevMuqTnNUV1cjPj4esrKysLKyEuu1i46Ohre3N+zs7BAYGChVglLSCNU6yOFwkJGRgSVLloDH4+Hy5cswNDREaWkpvL29kZGRgZSUFPq7RwWI0dHRmDlzZhdfRdfBBAMMHyR8Ph/x8fEICwtDREQEwsPDweFwQAjBxIkTMX/+fDg5OXW4bHFLEELA4XBE6g4orQOqGDE/P5+WxZWkr0B7kXaDobq6OiQkJKCurg7W1tbtzqVTZj/Ue0MpWAqnFRoHbu2BSqlQXhviiF398ssv2L59O7Zu3Ypvv/1Wql5vaYHK+wsTFhaGWbNmYezYscjKysLTp08xadIkXLx4ESoqKkhLS8OkSZNgYmICf39/bN++HVwuFxcvXqQ7YD6WtEBjmGBAAuzevRsbN27EypUrcejQoWb36Upjjo8NysaVy+Vi1qxZyMjIQEREBIqLi2Fra0uvHDg5OTWrkigJhLUOXr16BQ6HAwC0RbA4LoCdgTQbDAENy+iJiYno1asXzMzMOsSZTyAQgMPhiKzq8Pl8EftmTU3NNs8lbIBkYWEhlrslm83GsmXL8OTJE5w7dw5ubm7vfD0fItu3b0f//v3h4+NDB0qVlZUYN24cbG1tcfToUZSUlODRo0eYPXs21qxZAz8/PwBATEwMZs2aBVVVVfTs2RPBwcFSZVXdVTAFhB3M48ePceLECVhbW7e5r4aGRhNjDiYQ6FgIIViyZAmmTp2KzZs30/n3xiqJ3333XROVRGdnZ/Ts2VMiwYGMjAwUFBRQUlICLpeLoUOHQkVFhV41oArg1NXVReoOOrN+oLS0FImJidDS0oKjo2OXBybCCAQCZGVl4cWLFzAzMxrMmXoAACAASURBVIOurm6HPbesrCw0NTVpwRnhwI3NZuP169eoq6uDurp6izoUNTU1iI+PByEEDg4OYhkgPX/+HHPnzoWhoSFiY2OlyhpbGhCesVdXVzdZoSouLkZmZiZ++OEHAIC2tjamTJmCffv24ZtvvsHw4cPx6aefYvjw4YiJiUFhYSFsbGwANL/K8LHBrAx0IJWVlbCzs8PRo0fh5+cHGxubVlcGOsOYg0FUeawlqKVw4bRCeno6Bg8eLKJ10KdPnw4JDihfgZ49e8LMzKzZGy3lAkjdhCorK6GmpiYiuCOJ4FG4dsHU1BS6urpStWxK6S7w+XxYW1t3SUqlsVKicFGirKwsXr9+jb59+8LU1FSstMDp06fh6+uLb7/9Fps3b/7ob0ytIew0mJaWBmVlZdqW2dDQEAsXLsTGjRvp4IHqJlBXV8e5c+eaaDMwgUADTDDQgXh7e6NHjx44ePAgRo4c2WYwsHDhQvTr10+ixhwMbwchBIWFhSLOjImJiTAyMqK1DkaMGNFulUThanwzMzP07dtX7GMbF75VVFTQWgdUcKCiovJON25hgyFpq10A/pd/p9wtpeVHvL6+HiwWCzk5OXTKR9hWm3JobPzeVFVVYdWqVfj333/xxx9/YPz48VIVeEkba9euRVZWFq5evYqamhr07NkT06ZNw88//wxNTU2sX78eDx48wL59++Ds7Ayg4TMza9YsPHr0CCtWrMD+/fu7+CqkEyZN0EGcP38esbGxePz4sVj7m5mZITAwUMSYw8XFpUONORjeHhkZGfTt2xceHh7w8PCgVRKpVsYTJ05g6dKl6N+/P1xcXOi/1vrGy8vLkZiYCEVFRTg6Ora7Gr+x1oGwGt/r16+RkpICRUVFEXdGcavi22Mw1BXw+Xykp6ejsLBQKlsa+Xw+8vLyQAiBs7MzlJWV6VbT4uJiZGRk0PoZN2/ehLOzM3r37o0FCxZAS0sLT58+/Witc9uDvr4+/u///g+xsbGws7PD+fPnMWvWLLi4uODrr7/G7NmzkZqaijVr1uDXX39F7969cfPmTfTp0we5ubkdmk760GBWBjqAFy9ewN7eHnfu3KF7VNtaGWiMJIw5GCSHsEoi1c745MkT9OzZU8RfwczMDAKBALt27YK1tTWGDBkCAwMDicz+KK0D4dUDYaleLS0tdOvWrclN/l0NhiQNpdYnKysLa2trqWppBBrEq5KSkqCjowNTU9NmVyuoosSXL19i7dq1iIuLQ1VVFfr27QtPT0+MHDkSTk5OnaoqGBAQgICAAOTm5gIALCwssHnzZkycOLHFY65cuYIffvgBWVlZMDIyws6dOzF9+vQOHxvVJtiYR48e4euvv8Znn32G7777DoqKivj+++9x5MgRXL9+HaNHj8b9+/exb98+BAcHw9DQEAUFBTh9+jRmzJgBoCGI7ohC0w8NJhjoAK5du4bp06eL/Ajw+XzIyMhAVlYWdXV1Yi1ndpQxB0Pn01glMTw8HDExMVBSUoKmpibq6+uxZ88efPbZZ532QyRcFU8FB4QQkeBAIBAgKSmpww2GOgrKxKd///4YNGiQVK1WCBcxmpubi5Xyqa2tha+vLy5fvozt27dDSUkJkZGRiIyMRH5+PoqKisTyKOgIbt68CTk5OQwaNAgAcPr0aezduxfPnj2DhYVFk/0fPnyIESNGYMeOHZg+fTquXr2KzZs3IzIyEg4ODhIZ44YNG2BiYiLSeeXh4UEX/1KFmaNGjcKbN29w/fp1Wjnw3r17qKiogIODQ7vScR8rTDDQAXA4HOTl5YlsmzdvHszMzODr6yuWmQghBMOHD4eVlRV+//33NvffunUrtm3bJrKtd+/eKCwsbPGYsLAwrFmzBklJSdDV1cW6deuwZMmSNs/F0H4IIQgMDMSKFStgaWkJTU1NPHz4kFZJpNoZbWxsOq1DgBCCyspKOjgoLS0Fn8+HiooK+vTpQ+e2pSEPz+PxkJqaijdv3sDS0lLqVitqa2uRkJAALpeLIUOGiFVbkZOTQzsMXrhwgb4JUxQUFHT5TatHjx7Yu3cvFixY0OQxDw8PVFRUiExWJkyYAC0tLQQFBXX4WKKiojBixAgAwK+//opx48ZBT08PqampsLKywpkzZ+Dh4QGgYfXIwMAAkyZNwp49e5q8jkyRYNswayUdgLq6epMbvpqaGnr27ElvF8eYIy4uDr/88ovY57WwsEBISAj9/9Y+7Dk5OZg0aRIWLVqEM2fOICoqCsuWLYO2tvZHrbolKYKCgrBu3TqcO3cOn376KYCGIrNnz57RHQsHDhxAfX09hg8fTncrDBs2DEpKShJrZ1RXV4e8vDyKioqgqKgIY2NjcLlcsNlsJCcno66uDhoaGnRg0L17905vKeRwOIiPj4eSkhIcHR2lrt22tLQUCQkJ0NbWhpmZWZs3GUII/vrrLyxevBgeHh44dOhQs9fUlYEAn8/HpUuXUFVVBScnp2b3efjwIVavXi2yzd3dXexUaGtQaQHqX0IIhg0bhuXLlyMxMRFBQUFITk7GnDlzMGzYMMycORMBAQGYOHEiNDQ0oKamhqtXr8LNzQ02NjZYuXKlyCoSEwi0DRMMdBKSMOaQl5dHnz59xNr32LFj0NPTo7+45ubmePLkCfbt28cEAxJg5syZGDNmjEihm6KiIhwcHODg4IB169bRKolUx8Lx48dRXl6OYcOG0SsHVI96RwUHLRkM9e/fH0BDyxyVUkhPT0d1dbVIP72WlpbEVjIIIXj58iXS09NhYGAgdU6DlORxXl4eTE1N0a9fvzaP4XK52LJlC37//XccPXoUX375pVRdU0JCApycnFBbW4tu3brh6tWrGDx4cLP7FhYWNincbGs1Ulyo38bc3Fz6fZeVlUXfvn2hpaUFGxsbREZGwsvLC7dv38aYMWNw7NgxPH78GGPGjAGfz4erqyt+++03jBo1SqrSSe8LTDAgIUJDQ1v9/8GDB3Hw4MF3OkdGRgZ0dXWhpKQEBwcH7Nq1i86XNebhw4cYP368yDZ3d3ecPHlSpG+XoWNQUlJqs+JdTk4Otra2sLW1xcqVKyEQCJCamkqvHCxduhSFhYWws7ODs7MzRowY8dYqieIaDKmoqEBFRYWuuq6rq6MLErOzs2mtA+HgoCNm7lwuF8nJySgvL4etrS169Ojxzs/ZkdTV1SExMRG1tbUYPny4WIp1r1+/hre3N9hsNqKjo1u8yXYlpqamiIuLA5vNxpUrV+Dt7Y2wsLAWx9r4c9dR0r0CgQBbt26Fn58fbt++DRcXF6irq2PMmDGYM2cOZs6ciRkzZqC6uhqzZ8/GihUrkJmZiQcPHtDBgJycHObPn08/HxMQtA+mZuA95e+//0Z1dTVMTExQVFQEPz8/pKamIikpqdkCJBMTE/j4+GDjxo30tgcPHsDFxYUWSGGQLgQCAXJychAaGoqIiAhERETQKonUyoE4KokdaTBEpRSougPK5EdYJbG9Kxnl5eWIj49Ht27dpM6lEWhwkUxISECPHj1gbm7eZgEoIQT379/H/Pnz4e7ujoCAgPdG7nbs2LEwMjLC8ePHmzymp6eH1atXi6QKDh48iEOHDjWpmXobMjMzsXPnTvzzzz9YsmQJvvnmG2hpaWHhwoXIzs7GvXv3AAAbN24Ei8XC6dOnwePxkJeXx/x+dQBMMPCBUFVVBSMjI6xbtw5r1qxp8jhVkbthwwZ6W1RUFFxdXVFQUCB2uoGh66BUEqm0QkREBNLS0mBubk7rHLi6utIqiQKBALdu3YKamprEDIYokx8qOKioqIC8vLxIcNCc2A51PXl5eXSbmr6+vlQtoRNCkJOTg5ycHDot0Nb4+Hw+/P39cejQIezfvx+LFi16r2aoY8aMwYABAxAYGNjkMQ8PD3A4HNy+fZveNnHiRHTv3v2dCggbry58++23uHfvHnR0dPD3338jPj4emzdvxsKFC/Hpp5+Cx+Ph3r17WL9+PfLy8pCQkMDoB3QATJrgA0FNTQ1WVlbIyMho9vE+ffo0ye0VFxdDXl6+01qZGN4NGRkZ6OnpYe7cuZg7dy4IISgqKkJ4eDjCwsJw4MABzJ8/H4aGhrCzs0NGRgYKCgoQEREhsR9L6vNDfYb4fD5t3VxSUkKL7QirJKqrq4PH4yExMRHV1dWwt7enfQCkhfr6enp8w4YNg4aGRpvHlJSUYMGCBcjNzUVYWBiGDh3aCSN9ezZu3IiJEydiwIAB4HA4OH/+PEJDQ/HPP/8AaFr0vHLlSri5ucHf3x/Tpk3D9evXERISgsjIyHadNyQkBPb29ujevTuA/6UeqKX+3bt34+bNm1i9ejXGjRuHxYsXQ0tLCy9evIBAIIC8vDzGjx8PBwcHOmX2sToNdiTvT8jK0Cp1dXVISUlpcbnMyckJ//77r8i2O3fuwN7eXux6ga1bt0JGRkbkr7UVhdDQ0Cb7y8jIIDU1VfwLY2gR6vWfPXs2fvnlF8TFxaGkpARffvklbt26hbKyMlRWVmLs2LFYuHAhAgMDkZGRAYFAILExycnJQUtLiw5IRo4cCTs7O3Tv3h1sNhuxsbG4f/8+wsPDUVtbC1NTU6lbQmexWIiOjoacnBx9w2kLKuWmoaGBJ0+eSH0gADQUk3p6esLU1BRjxozBo0eP8M8//2DcuHEAGoqeCwoK6P2dnZ1x/vx5nDp1CtbW1ggMDMSFCxfapTEQHR2N8ePH4+LFi6ivrxd5TE5ODoQQKCoqYubMmYiIiEBRURHOnDmDJ0+e4OzZs/S+hBBoampCRkYGPB6PCQQ6ACZN8J6ydu1aTJ06FXp6eiguLoafnx/CwsKQkJAAfX19bNiwAa9evcL//d//AWhoLbS0tMTixYuxaNEiPHz4EEuWLEFQUJDY3QRbt27F5cuXm7QzamtrN7t/aGgoRo0ahbS0NJEfVG1tbabVR0Ls3r0bu3btwuHDh+Hj44PKykpERUXRRYnCKomUv4KZmVmnLGUTQpCVlYXc3Fzo6OiAEAI2mw0ej0e3M1LWzV2hECectjA2NhbLd0IgEOCnn36Cn58fduzYgVWrVr1XaYHOhJq9r1mzBmfOnMGVK1doHYHGUAWAaWlpCAgIwPXr15GXl4eTJ082a/3O8O4wwcB7ypw5cxAeHo43b95AW1sbjo6O2LFjB10F7OPjg9zcXJEuhrCwMKxevZoWHfL19W2X6NDWrVtx7do1xMXFibU/FQywWCx6SZBBskRFRaFXr14wNTVt8hilkvjo0SO6KPHRo0dQVVUVCQ4sLS07/GYsLNJjZWVFy+5SY6LaGVksFm0PLFx3IOlul/r6eiQlJaGyshLW1tZipS1YLBaWLFmCuLg4BAUFwdXVVaJjfN8RrvB3cnICn8/HuXPnmogvUVDBQ0lJCW7duoVr167h4sWLUqeS+aHABAMMYrN161bs3bsXmpqaYrUzUsGAgYEBamtrMXjwYGzatAmjRo3q5JEztERtbS0eP35MGzBRKomOjo60EJKtre07VfhT2v3iivQI2wOzWCxUV1ejW7duIsFBR94Q2Gw2EhISoK6uDgsLC7ECj2fPnmHu3LkwMTHBmTNnWlwdYxCF8gVgsVgYOHAgZs2ahR9//LFdraSMmqBkYIIBBrFpbztjWloawsPDMXToUNTV1eGPP/7AsWPHEBoaCjc3ty64Aoa24HK5iI2NpTsWoqKi3lolUSAQICMjA69evRJbu785hLUOWCwWKisroaqq2sS6ub0QQpCfn4/MzEwMGjQIenp6Yl3T77//jg0bNsDX1xfff/89c2NqhdZu3MHBwZg4cSJ++uknLFy4UKwAj9EPkBxMMMDw1rTVztgcU6dOhYyMDG7cuCHh0TF0BMIqiZTWAaWSSAkhDR8+vIlVcnl5OVJTU0EIgZWVlVja/eIirHXAZrNRUVFBax1QwUFbWgeUyFFFRQWsrKzESmNVVlZi5cqVuHfvHs6ePYsxY8YwhWutIBwInDp1Cnl5eZCTk8OqVaugpqYGWVlZ2nHw6tWrzOvZxTDBAMM7MW7cOAwaNAgBAQFi7b9z506cOXMGKSkpEh4ZgyQQCARIS0sTEUISVkl0dXVFbm4u9u7di/Pnz2Po0KESnzkLax2w2WyUl5dDXl6+iXUzdaOpqKhAfHw87dQoTgokOTkZnp6e0NbWRlBQkFhSxAwNzJgxAzExMXBxccGTJ0+gq6uLXbt20cWDo0aNQmlpKS5dutRsrQtD58CstzC8NW21MzbHs2fP2r1c/OrVK8ydOxc9e/aEqqoqbGxs8PTp01aPofq8lZWVYWhoiGPHjrXrnAzNIysrC3NzcyxduhTnzp1Dfn4+UlNTsXjxYpSUlGD+/Pn4/vvvMWjQIFy+fBm3bt3CmzdvIMk5B6V1MGjQINjb22PUqFGwtraGhoYG3rx5g8ePHyM0NBTPnj1DXFwcYmJioKurK5ZjJCEEQUFBGDVqFKZOnYq7d+8ygYCY1NbWYunSpSgrK0NcXBwuXLhAm6QFBATQhci3b99GcXExvv32W7x586aLR/3xwogOMYhNc+2MFRUV8Pb2BoAm7YyHDh2CgYEBLCwsUF9fT7cTXblyRexzslgsuLi4YNSoUfj777+ho6ODrKysVpd1GYfGzkNGRgZGRkaor6/HoUOHYGFhgX379iE7OxsRERHYvn07rZJIrRwIqyRKAllZWXpFYODAgRAIBGCz2UhLS0NVVRVkZWWRk5MDFotFpxY0NTWbrGDU1NRg3bp1uHr1Ks6cOYNPP/2UWcZuhcbCPzweD3Z2dpg3bx569eqF/fv3w8/PD3PnzsWNGzfQp08faGtro1+/fjh79iy2bt0KVVXVLryCjxsmTcAgNu1tZ/zxxx9x4sQJvHr1CioqKrCwsMCGDRswadIksc+5fv16REVFISIiQuxjfH19cePGDZFUxJIlS/D8+XM8fPhQ7OdhEJ/jx48jNzcX27dvF6nGF1ZJpOoOEhMTYWhoKBIciFO897ZQlsjKysqwsrKCgoICqqqq6IJEFosFLpcLTU1NXLt2DUOHDoWhoSGWL18OeXl5XLhwocWOGYYGWioUzMvLg76+Po4dO4bDhw9j+/bt+Pzzz7Fy5UpcunQJ69evx7x58+hWU4augwkGGKSawYMHw93dHS9fvkRYWBj69euHZcuWYdGiRS0e4+bmBltbWxw+fJjedvXqVcyePRvV1dWMQ2MXQggBi8Wig4PIyEjExsaiX79+Iv4KRkZG71w1TgjBq1evaEvkgQMHtuiRUFNTg6KiIvj6+uLJkycoLi6GtrY2vvjiC4waNQqurq6d7qS4e/du/Pnnn0hNTYWKigqcnZ3h7+/fal49MDCwWVGempqaDnGXbI3MzEz8/PPP0NfXh7GxMaZMmUI/Nnv2bPTv3x8HDhwAACxcuBCXL1+GpaUlLl++TCuZMt0CXQfzqjNINdnZ2QgICICxsTGCg4NpNzMqFdEcLfmu83g8JifZxcjIyKBHjx747LPPcODAATx69AhlZWU4fvw49PT0EBQUhOHDh8PY2BheXl44fvw4kpKS2i2hzOPxkJSUhKysLNjY2MDQ0LDFlQcZGRmoqqqiX79+GDhwIKqrq3HkyBEcOHAANTU1WL9+PXr16iW22FZHERYWhuXLlyM6Ohr//vsveDwexo8fj6qqqlaP09DQQEFBgcifJAIB4fckNDQUZmZmeP78OQIDA+Hh4QE/Pz/U1taCzWYjOTkZqqqqKC8vR2FhISoqKnDnzh2RQAAAEwh0IUzNAINUIxAIYG9vj127dgEAbG1tkZSUhICAAHh5ebV4XHO+681tZ+haZGRkoKGhgQkTJmDChAn0LD06OhphYWG4ceMGvv/+e6iqqsLJyYlOK1hZWbWoklhZWYn4+HgoKirC0dFRrP71V69ewcvLCxwOB48ePYK5uTkA4MsvvwTQYOrV2SsDlGEQxalTp6Cjo4OnT5+2qtPRlmdIR0HduM+dO4fs7GwcOXIEy5YtQ0VFBa5du4Z58+ahb9++WLBgAebOnYsdO3YgODgYGRkZmDhxIoYPHw6AERGSFphggEEEQgi9VCcNN86+ffvSNQkU5ubmrRYhMg6N7y/ULH306NEYPXo0AFGVxHv37mHnzp0tqiT+8ssvUFZWxieffAJDQ8M2Z5qEENy9exfz58/HlClT8PPPPzdrnKSjoyOR620P5eXlANBmUFJZWQl9fX3w+XzY2Nhgx44dsLW1lciYLl26hLVr16K6uhpXr14F0LAy4eXlhfj4ePj6+sLLywvr16+HgYEBCgoKoKurCw8PDwANrz8TCEgHzJoMAz1r5vP5kJGRgZycnFQEAgDg4uKCtLQ0kW3p6enQ19dv8ZiOcGhsbzsj49AoOZSVlTFixAhs3LgRwcHBKCsrw507dzBmzBjExMRg5syZ6NevH+zs7LBjxw5UVlaiX79+bX6GeTwe/Pz88MUXX2DPnj04deqU1DkoUhBCsGbNGri6usLS0rLF/czMzBAYGIgbN24gKCgIysrKcHFxadHavD3w+fwm2xwcHDB37lxwOBxwOBwADS3HQEMhr4KCAi5dugSgoQB59erVdCBA/d4wSAmEgYEQ8ujRI/LNN98QFxcXMnv2bHL+/HlSVlbW1cMiMTExRF5enuzcuZNkZGSQs2fPElVVVXLmzBl6n/Xr1xNPT0/6/9nZ2URVVZWsXr2aJCcnk5MnTxIFBQVy+fJlsc5ZVlZG9PX1iY+PD3n06BHJyckhISEhJDMzs8Vj7t+/TwCQtLQ0UlBQQP/xeLy3v3gGsUhKSiKDBg0iAwcOJNOnTyc6OjpESUmJuLi4kHXr1pEbN26QoqIiUllZSaqqqkhVVRXJzs4mI0eOJMbGxuTZs2ddfQltsmzZMqKvr09evHjRruP4fD4ZMmQIWbFixTudX/hzfOfOHRIdHU0KCwsJIYRkZmaSSZMmESsrK/L69Wt6v9TUVNK/f39y//79dzo3Q+fABAMMJD4+nvTq1YtMmjSJ/Pbbb2Tp0qXExsaGjB49Wip+KG/evEksLS2JkpISMTMzIydOnBB53Nvbm3zyySci20JDQ4mtrS1RVFQkBgYGJCAgQOzz+fr6EldX13aNkQoGWCxWu45jeDcKCgqIhoYGWbduHamvryeENNwAk5OTSUBAAPnPf/5D+vfvT+Tl5cmwYcPIypUryfbt20mfPn3IzJkz34v36+uvvyb9+/cn2dnZb3X8woULyYQJE955HKWlpcTJyYmYmJgQY2NjYmpqSk6ePEl4PB4JCQkh9vb25JNPPiGpqakkLy+PbNmyhfTt25ckJCS887kZJA8TDDCQzZs3ExMTE8Jms+ltGRkZ5MCBA+TBgwci+woEAsLlcgmfz+/sYXYa5ubmZNWqVWTWrFlEW1ub2NjYNAlAGkMFAwYGBqRPnz5k9OjR5N69e5004o+b5OTkVh8XCAQkKyuLnDx5knh7exMlJSWyYsUKqf8MCwQCsnz5cqKrq0vS09Pf+jns7e3JvHnzxNq/udeEz+eTN2/ekFGjRpE5c+aQ0tJSQgghbm5uxNDQkDx79ozw+Xxy4sQJoqWlRTQ1NYmPjw8xMzMjERERbzVuhs6HCQYYyP79+4mRkVGzP6rUbOtjQklJiSgpKZENGzaQ2NhYcuzYMaKsrExOnz7d4jGpqankxIkT5OnTp+TBgwdk6dKlREZGhoSFhXXiyBnEob6+nggEgq4eRpssXbqUaGpqktDQUJHUU3V1Nb2Pp6cnWb9+Pf3/rVu3kn/++YdkZWWRZ8+ekXnz5hF5eXny6NGjNs9HBQL19fUkOTmZVFVV0Y/l5OSQoUOHkoKCAkJIwwSiW7duIkEyi8UiGzZsIObm5uS3335r8rwM0g0TDDCQwsJC4ubmRhQVFYmPjw8JDQ2lc4TUF7mgoICcOHGCuLu7k//85z/k+vXrLQYKAoHgvc6VKygoECcnJ5FtK1asII6Oju16nilTppCpU6d25NAYPiIANPt36tQpep9PPvmEeHt70/9ftWoV0dPTI4qKikRbW5uMHz++yepeY4QDo6ioKOLk5EQ8PT1JaGgovf3GjRvExMSE1NfXk5EjRxIzMzMSHR1NCCGkurqaxMTEEEIISUhIIHPnziXDhg0jr169IoSQ9/q34GOC6SZgQO/evREWFoZTp06hoqICW7ZsoSuAZWVlUVlZicmTJ+PcuXMYOXIk1NXV4evri/Pnz9PPUVhYCBaLBQB0R8L7SkvtjPn5+e16HkdHxw6p4mb4OCENk7Umfz4+PvQ+oaGhCAwMpP9/8OBB5OXloa6uDsXFxQgODoaTk1Or56Eq+g8cOIAxY8Zg9OjR+PLLL2Fvb0/v4+joCC6XC2VlZfTr1w8RERFwcHAAANy6dQu//vorSktLYWlpCW9vb3Tr1o3WaHiffws+JhidAQaa2bNnw8HBAbt27cJXX30FQ0ND2Nra4ueff0ZeXp6Iet+NGzfg5eWFKVOmQEtLC6dOncKvv/6KXbt2ITY2Fvr6+pg9eza0tbWbnIdqURLWMiD/NTmRBgGSt2lnbI63cWhkYOgKrl+/jt9++w3Xrl2Du7t7k8fV1NTg6emJEydOYPbs2ejVqxcAICYmBn5+fhg5ciTdljl27FikpqYiKytLKr7PDGLShasSDFLApUuXSFpamsi2oqIiYmhoSPz9/QmLxSLjx48nsrKypGfPnsTOzo7s2LGDBAUFEQMDA/L06VNSW1tLVq5cSVRUVIi7uztZs2YNMTc3J6NGjRLJO7a2XMjlcgkhhEydOpUsWbKE1NbWSuaCxeBt2hkPHjxIrl69StLT00liYiJZv349AUCuXLki9nn19fWbXRZetmxZi8dcvnyZmJubE0VFRWJubk7+/PPPt7toho+aLVu2kPHjx5Py8nJ6G1V3cOfOHVJSUkJKS0vJvHnziKKiIhk3bhyZM2cO0dDQIKtWraKPob7jXfn9ZXg7mGDgIBBZuQAAESVJREFUI2fGjBnEx8eHhIWFkdraWsLhcMiBAweIjo4OuXXrFikrKyN6enrk6NGjJDc3l+zbt49MnjyZ9O7dmwwaNIiEhYWRkpIS4uDgQNzc3EhxcTEhhJAnT56QAQMGkEOHDhFCGn4kgoODyYQJE8iECRPIjz/+SPLy8uhxUHlLHR0dsm3btlYDh84o/mpvO6O/vz8xMjIiysrKREtLi7i6upK//vqrXecsLi4WKRT7999/CYAW+7QfPHhA5OTkyK5du0hKSgrZtWsXkZeXp3O5DAzi4u3tTVxcXEhpaSmpq6sj3333HZkwYQLR0tIiWlpaZNCgQXQNwMmTJ4mvry/x9fUlISEh9HMwtQHvN4xr4UcMIQQREREICAjAnTt3oKioiMGDByM7Oxvjx4/HgQMHoKamBh0dHezfvx+enp70sVwuFy9evMDAgQMRGRmJRYsW4bvvvsOCBQvopcEZM2ZAWVkZ586dQ1lZGaKjo/HixQsUFxfjxo0b6NGjB/744w9oa2tDRkYGxcXF6NOnD+7cuYOxY8c2O+a6ujqxtOY/BFatWoVbt24hIyOjWaU2Dw8PVFRU4O+//6a3TZgwAVpaWggKCurMoTK85+Tk5MDU1BSGhobIysrCkCFDMH36dIwePRp8Ph9r167FwIEDm/1ckf/WMjAmQ+83TM3AR4yMjAzc3Nxo05NHjx4hOTkZxsbGcHV1pffz9PTE3r17YW1tjSFDhkAgEKCmpob2eE9JSUFpaSlGjBgBoEHmVU5ODvn5+fRz9+jRA5MmTaKfc9OmTRgyZAgOHz6MnTt3AgD+/fdf9OzZEwMHDmx2vBwOB56enjA0NKStUD9U6uvrcebMGaxZs6ZFydaHDx9i9erVItvc3d1x6NChzhgiwwfEwIEDERcXh7i4OCgoKGDChAlQUFCAsrIy+Hw+dHR0wOVyAfzPZpj8t86H+mN4v2GCgY8cgUBAm4U4ODjQFcLCbN26FYWFhRg3bhxMTU1haWkJVVVVrFixAv369UNycjI4HA5dLKekpISamhokJiZizZo1AICkpCScOXMGz549g7a2NhYuXIju3bujsrKSXkm4efMmbGxs6OIkCupHJycnB+Xl5VBVVaXH/qHORq5duwY2my1SOd6YlqyaG5s0MTCIw+DBg5t00QANQXhtbS0d2FPfOSYA+LD4MH9JGcRGVlaWrvYl/3UsFIYQAnV1dZw9exahoaGYPn06ZGVlYWlpCQMDA7x69Qp5eXlQVlaGn58fAKCgoACbNm2CqqoqPv/8c5SVleGzzz5DZGQk3N3doaSkhOXLlyMyMhL9+vUDj8cDAISHh8PV1bWJWQyVyUpMTERNTU2zAUvj/Xk8XpNreZ84efIkJk6cCF1d3Vb3a86qmfmRZugIqqqq8OzZM0ycOBEcDqdVy3CG9x9mZYCBprnlPhkZGfoG09zMIScnBwUFBVixYgXy8/NhZWUFJSUlVFdXY/fu3VBQUEBISAjYbDYuXrxIW6mmp6fDyckJAwYMgJKSElgsFgoLCzF8+PAmrUjUTCQ5ORmKioqwsrKix0bReOmyJa/794G8vDyEhITgzz//bHW/lqyaG68WMDC0lwMHDiA6OhrPnj2Ds7MzTp8+DeDDXo372GHeVYY2EdYC4PP5IjPunJwcVFRUwMvLCwEBAVi6dCkmT56My5cvY/HixQAATU1NaGhoIDY2FgAQFxeHzZs3Q0lJCUZGRgAa6gU0NTXp/zempqYGWVlZ6NOnDwwMDETGBTQEDCkpKfjhhx/g7OyML7/8EsHBwS2uDggEgmYtWaWBU6dOQUdHB5MnT251v5asmp2dndt1PgMDg2btl5cvX97s/oGBgc3uX1tb267zvs/s3r0bw4YNg7q6OnR0dPDZZ5810aZojitXrmDw4MFQUlLC4MGDcfXq1U4YbftxcnKCoaEhDh8+TAcCPB6PCQQ+ZDq/gYHhQ6Guro589dVXxNTUtNX9+Hw+Wb16NVFRUSEWFhZk8eLFRFFRkcyePZvk5OQQQv7XqtfYRY5qI0xMTCSjRo0imzZtop9TmLi4ODJgwADi4eFBTpw4QebPn0+sra3J3bt36X2ysrJokxVphc/nEz09PeLr69vkscY69FFRUUROTo7s2bOHpKSkkD179rxVa2F7WxpPnTpFNDQ0RI6hNOs/Ftzd3cmpU6dIYmIiiYuLI5MnTyZ6enqksrKyxWPet1ZQYblxxl/gw4cJBhjemvr6enL58mWyZ88eQkiDcBCPx2vxh6OsrIzcunWL5OTkkGnTppGNGzcSDodDCCFES0uLbNiwgRYfoqCe68KFC8TBwYFcvnyZENLQ00wFCoWFhcTT05PY29uLHLtz505iYmJCCGnQT1+0aBExNTUlf/31F/Hy8iLHjx8nZWVlzY6Vx+N1idZBcHAwAdBECIqQpjr0hDSIRpmamhIFBQViZmbWLpGjlli5ciUxMjJq8RpPnTpFNDU13/k8HxLFxcUEQKvGVLNnz25iJezu7k7mzJkj6eExMLTJ+5tYZehyFBQUMHPmTPr/reXpCSHQ0tKil76vXbtGdxFwuVwYGBjA0dGxyXNQqYCUlBQoKipiyJAhABr0zsl/CwvT0tKQkJCAlJQU9OzZE3p6evjiiy9QVVUFFRUVFBUVQSAQoLCwEIWFhQgODka/fv2wb98+REdH4/fff29SeNe4bkE4V8rj8SRWkzB+/Hj6uhoTGhraZNusWbMwa9asDju/OC2NAFBZWQl9fX3w+XzY2Nhgx44ddD3Ix0h5eTmAhhbalmBaQRmkGSYBxNApCNcdUH/UDV1BQQGxsbH49NNPmz2uvr4ecXFxIIRAU1OzyXPy+Xzk5uYiKioKDx48gJeXF8LCwhAYGAhNTU3U19ejoKAAsbGxWLNmDQ4fPoxdu3ZhzZo1uH//Ph48eECfJyQkBJMmTYKrqytOnz4NDocD4H9FjIQQDBw4EOfOnRPpWLh79y6++eYb1NTUSPR1lDTitDSamZkhMDAQN27cQFBQEJSVleHi4vLRmjIRQrBmzRq4urrC0tKyxf2YVlAGaYZZGWDoVJrrVqBuqC0VJ1VVVaFv3764fv06TExMMHjwYIwePRqjRo2Cs7Mz9PX1UV1dDRkZGZiamsLU1BSrV68Gl8tFUVER+vfvj7t370JVVRUzZsygn9fIyAjq6uqoqKgAABw5cgRHjhyBo6MjHB0dcefOHYSGhuLFixfw9/eHiYkJgoKCICcnh0GDBtGrA1wuFxEREfj1119x5MiR97q9T5yWRur1oXBxcYGdnR1++uknHDlypDOGKVV8/fXXiI+PR2RkZJv7Mq2gDNIKszLA0OXIysq2WqWspaWFo0ePQiAQ4K+//sLIkSNx/fp1eHp64tKlSzA0NMS0adOwdu1avHjxAkBDAFFdXY3+/fuDy+UiNTUVmpqaIjO3ly9fgsVi0akHyq3xt99+w+bNm/Hll1/ir7/+Qk1NDVRUVJCQkIB169YhPz8fPj4+WLx4MfLy8lBRUYGEhARMmTIFwP8CnPdN54BqaVy4cGG7jpOVlcWwYcM+ypWBFStW4MaNG7h//z769+/f6r5MKyiDNMMEAwxSD/lvSyMAODs7Y+fOnYiPj8erV6/omf7OnTuhoKCAIUOGwM3NDUuWLMHhw4dRUVGB0tJSZGVlwdzcnH7OmpoaJCcno1evXujbty9CQkJQWVmJBQsWQENDAwAwadIkqKioQE9PD7q6unB2doatrS1mzJiBhQsXIiEhATk5OeByuXj+/Dk++eQTVFVVoaamps0ARxoRt6WxMYQQxMXFfVR2zYQQfP311/jzzz9x7969FiW0hemoVlAGBknwfv1aMXyUyMjI0AV9AoEAPB6PDg7U1NQgEAhgbGyM4OBgREZGYubMmdDV1YWTkxM0NDSQmpqK2NhY2Nvb08/55s0bJCcnw8bGBgCQkJAAXV1d9O3bl1ZEfPnyJbp16wZzc3N0794dNTU1yMnJgZubG9asWYMHDx5g5MiRePr0KcrLyxETE4MvvvgCWlpa8PDwQGlpaSe/Um+PQCDAqVOn4O3t3aQ40svLCxs2bKD/v23bNgQHByM7OxtxcXFYsGAB4uLisGTJknafl8fjYdOmTRg4cCBUVFRgaGiI7du3t7mqEhYWhqFDh0JZWRmGhoY4duxYu8/9LixfvhxnzpzBuXPnoK6uThenCteMNH7dVq5ciTt37sDf3x+pqanw9/dHSEgIVq1a1aljZ2BoDqZmgOG9orkZt7DyYHMqiQMGDMD06dMxZswYeltWVhaSkpLg4eEBoKEaXEtLC2/evKG9ER4/fgwul4tBgwYBaDByIoSICCPx+XwkJiaCzWbD1NQUixcvRnZ2Nj7//HNcv34d8+fPl8jr0NGEhIQgPz+/2fHm5+eLvOZsNhtfffUVCgsLoampCVtbW4SHh2P48OHtPq+/vz+OHTuG06dPw8LCAk+ePMG8efOgqamJlStXNntMTk4OJk2ahEWLFuHMmTOIiorCsmXLoK2tLdLdIkkCAgIAACNHjhTZfurUKbr4svHr5uzsjPPnz2PTpk344YcfYGRkhAsXLrQpr83A0Cl0di8jA4MkEQgErWodUDx48IA4ODjQokcPHz4k+vr6JCAggBBCyLNnz8iIESOIubk5iY2NJYQQsmXLFuLg4EASEhLo5ykrKyMzZ84kY8eOpbdVVFSQmTNnkmnTptFjYmieyZMnk/nz54tsmzFjBpk7d26Lx6xbt46YmZmJbFu8eDFxdHSUyBgZGD4GmDQBwwcFlVIQnpE1V8zn5OSE6OhoWtrY0dER3t7eWLt2LaysrODv74+MjAzY2NhAX18fAPDs2TMYGxuL5MaLi4uRlJQkYs8sEAhQWVmJ7t27A0CLugEMgKurK+7evYv09HQAwPPnzxEZGSnyejbm4cOHGD9+vMg2d3d3PHnyhLbZZWBgaB9MmoDhg6e5Qj6BQEBr6tfX16OyshLbtm3DihUrkJqaCnl5eaSlpcHCwoIWktHR0cHr16/pmzzQUIFfUFCAsWPH0tvevHmDp0+f0mIyTOtYy/j6+uL/27tjlkaCMIzj/zNqUGxEkWS/gIJrZ4qArX1KU20IGC1sBCVroYUgEvALCBbRxlhZLDbBxipFYNMYCCiihQhiChG2EE0scrd3YqJ3h96heX7lsAvTzbuz88x7e3vLyMgIgUCAx8dH1tbWiMfjLd9pldd/eHjg5uamrQ4yirwX7QxIW+ro6PAXac/zyGazZLNZBgcHGR4eZmtri2q1+uwL1LIsjo+PMQyDubk5oHHwsK+vz++kCHB2dka1WmVychJQMfCavb09/yCe67psb2+zsbHhN8dppVlev9m4iPwe7QxI2+vp6eH+/p50Os3CwgL9/f309vayurpKJBLxn5uYmOD09JSDgwP/oqJisUgoFAIaC1KtVsN1XcLhMENDQ7pU5g2Li4vYts3U1BQAY2NjXFxcsL6+jmVZTd9pldfv7OxkYGDgw+cs8hWpGJC2FwwGsW0b27Y5OTmhUqkQjUb9VMEP9e9XJ8diMX8sl8txdXUFNL5KPc/DcRw/gVCr1V70OZCfPM978RsnEAi8Gi2MRqM4jvNsLJ/PMz4+TldX14fMU+Sr+1bX6SaRP/Jr06JmyuUy9Xod0zS1M/CGRCLB4eEhm5ubjI6OUiqVSKVSJJNJMpkMAEtLS1xeXrKzswM0ooWmaTIzM8P09DSFQoHZ2Vl2d3f/WbRQ5KtRMSAi/83d3R3Ly8vs7+9zfX2NYRjE43FWVlbo7u4GGgXD+fn5s66NR0dHzM/PUy6XMQyDdDr9V5ceiUiDigGRd6bdABH5bJQmEHlnKgRE5LNRMSAiItLmngDFW4yx942S5gAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAGFCAYAAABg2vAPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzsnXeMJOd55p+qznFyzmFzTuRyk0jREuUkiyIpHWwcIUtnGTJJS5YBAwQlGz7JIGifLZoGoT8OAoU7nSzDomjSd2IWd5fkkqsludw0090zPdMTe2Z6UudU4f4YVqm6p0N1d3XVzPb3AxaLne3pr6pDfU+94Xkpnud5EAgEAoFAqFlorQ+AQCAQCASCthAxQCAQCARCjUPEAIFAIBAINQ4RAwQCgUAg1DhEDBAIBAKBUOMQMUAgEAgEQo1DxACBQCAQCDUOEQMEAoFAINQ4RAwQCAQCgVDjEDFAIBAIBEKNQ8QAgUAgEAg1DhEDBAKBQCDUOEQMEAgEAoFQ4xAxQCAQCARCjUPEAIFAIBAINQ4RAwQCgUAg1DhEDBAIBAKBUOMQMUAgEAgEQo1DxACBQCAQCDUOEQMEAoFAINQ4RAwQCAQCgVDjEDFAIBAIBEKNQ8QAgUAgEAg1DhEDBAKBQCDUOEQMEAgEAoFQ4xAxQCAQCARCjUPEAIFAIBAINQ4RAwQCgUAg1DhEDBAIBAKBUOMQMUAgEAgEQo1DxACBQCAQCDUOEQMEQhXgeR4cx4Hnea0PhUAgEIqi1/oACITbDY7jwDAM4vE4KIqCTqcT/9A0DZqmQVGU1odJIBAIIkQMEAgKIYgAlmXFyAAAMAwjPkYQAjqdDnq9XhQHOp2OCAQCgaAZFE/imARCRfA8D4ZhMDU1hdbWVhgMBgBAKpUCRVHiJs/z/KY/AMTHSCMIQhRB+vsEAoFQLUhkgEAoE57nwbIsGIYBx3EYGRlBY2MjTCYTeJ7ftInn2tilwoBhGKTTafExFEWBpmno9fqMFANJMxAIBKUhYoBAKBEhBZBOp8W7e5ourxY3n0CQrpNIJMT/I2kGAoFQDYgYIBBkImzOQiQAyNzMaZpWpHtAGhkAAJ1OJ64v/Emn00ilUkin05idncXQ0JAoDkiagUAglAoRAwSCDLKLA3OF6imKqmorYa6NPZ1OY25uDkNDQ2KkgqQZCARCqRAxQCAUIJcIyJcSqLYYKLSmED0ASk8zSKMIBAKhNiFigEDIgVDQJ4gA4a680IaphRjIdxzSvwulGYTHURRF0gwEQg1DxACBICG7Q0COCBDQKjIAIGf3Qq7HFupmSKfTGc9F0gwEQu1AxACBgPwdAqVselqKgUp+v1A3gyCMBGiaRiKRgMFggM1mI2kGAuE2gYgBQk1TrEOgFKRiIJ1OY35+HiaTCQ6HAyaTSdHjzkZOZEAu2QWI0jV4nsfExAQcDge6uroyOiny2S4TkUAgbH2IGCDUJFKjn0IdAqVAURRYloXP54PX64XZbBZnFBiNRtjtdjgcDjgcDtjtdlgslm21UUpTJjRNw2AwbEozSDsaSJqBQNg+EDFAqDlK6RCQixBSv3HjBoxGIw4cOIC6ujoAAMuyiEQiiEQiCIfDmJqaQiQSAU3TokAQ/hZC73LRYlOVpkLKSTMIxYqCQCBpBgJBe4gYINQMQiRA2JxKKQ4sxOrqKtxuN1KpFHp7e7F7924AEO+S9Xo96uvrUV9fL/4Ox3GIxWIIh8MIh8NYWFjA+Pg4WJaFzWbbJBL0+sJf1a3QxSBQLM3A8zxSqVRGaoOkGQgEbSFigHDbU0mHQCEikQg8Hg9WVlYwODgIlmXR1NQkq5BQiArY7XZ0dHSIx5lIJBAOhxGJRLC6uorp6Wkkk0mYzeYMceBwOGA0GrfVRimnm6FYmkGwXd5O500gbAeIGCDctggiwO/3i3fnSoSjk8kkxsfHMTc3h+7ubpw7dw4mkwmLi4tiEWI5UBQFi8UCi8WC1tZW8eepVEpMMYTDYSwuLiIWi4kV/QCwuLiIuro6WK3WbbVRyk0z3Lp1C319fXA6nSTNQCBUASIGCLcd2R0CCwsLsFqtaGxsrOh5GYaBz+fD5OQkmpubcfr0aXEzBqrXWmg0GtHY2Jhx/EIdwvr6OtbX1zE3NwePxwOKomCz2TbVIUgdCrc6udIMkUhEFA6lpBkqrQUhEGoFIgYItw3ScLO0TbDSAUIcx2Fubg7j4+OwWCw4fvw4GhoaNj1OTZ8BnU6Huro62Gw2eL1eHDlyBDRNIxaLiVGEpaUleL1esCwLq9WaIRDsdjsMBoMqx6oUuTb3YmmGbIFA0gwEQm6IGCDcFhQaJETTdFnhe57nEQgE4PF4wHEc9uzZg7a2trwbiZZ2xMI5C3UI7e3t4s8TiYQoENbX1zEzMyPWIWQXKppMJtlui2qS73UtlmZgGEZ0VpTWipA0A4GQCREDhG2NVAQAuTsEytmkg8Eg3G43wuEwhoeH0dPTUzTknCsCoaQZUC7kWBALdQgtLS3iz9PptFioKEQRotEoDAbDJoGwVeoQ5B6Dkt0MJM1AqBWIGCBsS6SGQcU6BGiaFsVCMWKxGMbGxrC4uIj+/n4cOXKkpHC6lpGBUjAYDDnrEKLRqCgSZmdnEYlEAECMODgcjow0jFoo8bqW2s2wvr4uiiGSZiDc7hAxQNhW5GoTLBbilRMZSKVSmJiYwPT0NNrb23H27FlYLJaSjq3S2gSt0el0cDqdcDqd4s94nhf9ECKRCJaWlhAMBrG+vg6/35/hqOhwOKpWh1CtCEuhNMPExAR6e3vF6ECuNEO2JwKBsF0hYoCwLahkkFChmgGO4zA1NYWJiQk4nU6cPHkyYzMshe04qEjO89tstoyuievXr8Nut8PpdCIcDiMYDGJ2dhaJREKcxSBNNZjNZkWOU63NVjoJUq/XiwInO80ghaQZCNsdIgYIWxolBgnl2qR5noff78fY2Bj0ej0OHTqE5ubmio5V6wJCNTEYDGhubs54zdLpdIbtciAQQCwWg06ny1mHUMpGqcXrmh2NkJNmEEQC6WYgbDeIGCBsWQp1CJRCdmRgZWVFtA/esWMHOjs7Fbtzvd0iA6VgMBjQ0NCQ0XYp1CEIAmF+fh6RSAQ8z2fYLgt+CIVsl7XoYJBToJkvzSB8fgt1M5A0A2GrQMQAYcuh9CAhYZOORCJwu91YW1vDwMAA+vv7FTXjqaXIgFzy1SHE43GxDmF5eRmTk5NIp9OwWq2boghGo1GzyEA5nzthU8/+bJWaZhCiCASCGhAxQNgy5OoQUOKOiWVZBINBXLp0Cd3d3Thw4ACMRqNCR/0bpGJArVDwdtwsKIqC1WqF1WpFW1sbAIgbpCAQQqEQ5ufnxfHPPM9jZmYGDQ0Nqo1/VrpoUU6aYX5+Huvr69ixYwdJMxBUhYgBguaU0yEgB4ZhMDk5icnJSej1+k32wUpDIgPlQ1EUTCYTTCZTRh0CwzCIRCL46KOPkE6n4fP5EI1GM8Y/C1GEUsc/F6PaHhHAZoHAsixSqRR0Ol3eNEOhCY8EQrkQMUDQjEo6BArBcRxmZ2cxPj4Oq9WK/v5+rK+vV1UIANqJgdt5E9Dr9airqwMADA8Pw2w2g+O4DD8EoQ6B47hNcxnsdnvR8c/5EISpmnAcJ34H8qUZOI7b5JshCAS9Xi+KA5JmIJQCEQME1REiAeFwGEajUbG59YJ9sNvtBs/z2LdvH1pbW7GwsIDV1VWFjj4/FEWpbsYjcDsXLkpTL8DGxidEBKSPicfjYqHi6uoqpqamkEqlYLFYNkURTCaTrHW1EgO5IN0MhGpCxABBVYTQJ8MwuHjxIj71qU+VbO6Ti2AwCJfLhWg0iqGhoQz7YLU26ewLLLngKksxYymhDiF7/LMw+jkSiWBhYQGxWAxGo3FToWJ2HYIWYqDUNcvpZiBpBkIuiBggqEK+NsFK72hjsRg8Hg8CgQD6+vpw7NixTWFhtZwBs0WHWnfrt/tFvJLX0Wg0oqmpCU1NTeLPGIYR0wzhcBjT09OIRCIZg54cDocmUZ5CkQG5FOtmyJVmSCQSMBqNYt0FSTPUHkQMEKqK0CHAMAyAzF7rUmYGZJNKpeD1ejEzM4OOjg6cPXsWZrM552PVjAzUSppAC5TamIQ6BKEWAdjYhKW2ywsLCwCAX//61xl+CIJYqKbtcrVcCwulGQQHzq6urozHSiMI0umORCTcfhAxQKgKuToEsi8i5YwWZlkW09PT8Hq9qK+vx1133ZWRO86FmpEBUkCoPGq8ptKogLDmW2+9haNHj4qphtXVVUxPT4vjn6UpBsEPQYniVzUtjIXvJMdxMBgMMBgMOdMMwnmRNMPtCxEDBEWRioBiHQJC+5Tc5/X7/fB4PDAYDDh8+LBs++ByREc51EprodrnmF1AqAbC58VisaCuri5j/HMqlRILFSORCBYXFxGLxRQZ/8xxnKJGWKWsK62xATLTDMJ7kJ1mEGocSDfD9oeIAYIilDNDQO4mXal9sFqbNIkMVBctOxikGI3GnOOfpXMZZmZmEI1GAWCTQLDZbHk3fLUjA3LXlUYGpJTSzUDSDFsbIgYIFSFcCITiQEC++14xMRAOh+F2u7G+vo7BwUH09fWVddekVmQgOx1BLnjKoJUVMSD/PdTpdHnrEASBsLS0BK/XC5Zlc9ouCyF6rcRAOd+tYu2OJM2wfSBigFA2lQ4SyrdJJxIJjI+PY35+Hj09PTh48GBF9sFqFvbVQppAbbRIE0hTXOUirUNob28XnzeZTIophvX1dczMzCCZTMJkMol32FarFQ6HAyaTSZXzZllWMRFSqN1RGkEEgMXFRRiNRjQ3N5M0g8YQMUAomUIdAqWQLQYE+2Cfz4eWlhacOXMGVqu14uNVq4BQrXWyqZUL5lZJE1QCRVEwm80wm80ZdQjpdBrhcBgejwfpdBoTExPi+OdsR8VSxz/Lodrpiew0gxCFWF9fh91uJ2mGLQARAwTZyOkQKAVBDEjtg202G06cOIH6+nrFjlvN1kKt0gS1EBnQYk213kODwYDGxkaYTCa0tbWhs7NTHP8sRBFmZ2cRiUQAQLRdlrY7VlJ4qGWtgrDRC8hJMwgjoIUoAkkzVA4RA4SiVGuQEEVRWFtbw8TEBACI9sFKf6mFi1y1HeVqqYDwdrhLL4QWcwmAzM9ovvHPUj+EpaUlTExMZKQWpFEEuek1rboYWJbdtK6cNEMikRD/TzrLgaQZyoeIAUJecnUIKKXA19fXEQqFsL6+jl27dqG7u7tqdybC81b7gpctBoS7GzW4nSMDgPqCRwsrYkBeVb/NZssYuiUd/xwOhxEKhTA3N4dEIgGTybSpUNFsNm+yXVayZqAUcomBXORLMxTrZhDEAUkzFIeIAcImymkTlIvUPthsNqOjowO9vb0VP28hhOOu9oappc/A7YxWaQKtIgOlbsoUlXv8czqdzmh3XF5eRjQahU6nyxAIgrDYymIgH8W6GYS5DNLHkzRDbogYIGRQaYdAPqT2wZ2dnTh79iw8Ho8CR1wcaWSgmkjFQDgchsvlQjKZFHO7wsVX6ehELVzEtIgMbMV+/1IwGAxoaGhAQ0OD+DOWZcU0QzgcFsc/A8C1a9c21SGUO/5ZLtWI1slJMwQCAUxMTODQoUM50wzSKEKtQMQAAcDGlzIej8Pv96Ozs1NUy5XCsiympqYwMTGBhoaGDPvgUhwIK0H4QqshBliWxc2bNzE/P4/u7m60tbUhGo1ieXkZk5OTYBhGzO1KL7yVXnRv54hELUUGql2rIHQnSC28k8kk3n33XfT29oqfVZ/Ph1QqJfohZNsuK0WlkQG5ZKcZhNSIXq8vmGaYnJzESy+9hL/+67++7YUBEQM1jtQwKJFI4NatW+jq6qr4g8/zPObn5zE2Ngaj0YgjR45kTI4D1LUJFo6pWgh3G+vr6zCZTDh9+jRMJhPS6XTOHnPB635qakq86ErFgWBCU8r5qYUWdsSkZqC6awJAW1tbxjknk0kxxRAOh+H3+xGPx2E0GjcVKmaPf5aLVrUKDMOIBYaF0gwulwv//u//jr/5m79R/RjVhoiBGiVXh4BSIcHl5WW43W6k02ns3LkTHR0dOS8UlUwtLAUhT1gN4cHzPBYXF+F2u8HzPGw2G44cOQIAog+D9Dhy9ZhLBUIwGMTs7CwSiYQ4DEf6J99d2e0cGQDUFzxadhNoIQZyhcSFOoTs8c/SuQw+nw/RaFQ0WMq2XS50LsI1aKt0MQhIBUI0Gi06CO12gYiBGkPImaXT6U2DhAQxUK5al9oHDw0Nobe3t+AXnabpTQU+1aIaxX3BYBAulwuxWAw7duyATqeDz+fLWFMO+Yq/BIEgvSszmUybBMLtTq2lCbQSA3LQ6/Wor6/P8AHhOA7RaFQUCX6/H2NjY+A4LmP8c3ZKTBDnWogBhmFk3fyEw+GM1s7bGSIGagQ5HQLCBYFl2ZLmtScSCYyNjcHv96O3t1e2fbBaaQKl10okEvB4PFhcXERfXx+OHTsGvV6PxcVFxTYuwYRGOgxHqA4XBIIwLQ8AvF4vGhsbxYuuWja2alFLaQItoiCVbMg0TYufu46ODgAbr188Hhc/r9KUmMViEZ0UgY2N2WAwqHreciMSoVCoJgQ3QMRATSC3Q0D4udxNk2EYTExMYGpqqiz7YDXFgBKRAZZlMTk5icnJSfF8LRZLxhrVPJ9c1eEMw+Dy5ctwOBxIJBJi+5her8+4I3M4HGXndbVGq8iAFrlsLdatRt6eoihYrVZYrVa0traKPxf8EIS5DADw/vvvw2AwZKQYqv15FYoHi0EiA4TbglwioNiXXqfTFc3jcxyHmZkZjI+Pw26344477siY1iYXtWoGhLXK3ah5noff74fH44HJZMLx48czNmQBLeyIhX7plpYWMYogtbENh8OYnp5GJBLJ6C8X/lit1i0vEGqlgFAoWtvKaYJKMRqNaGpqQlNTE5qbm7G2toYzZ85s+rxGo1FQFJXRySB4IiiRVhCiEcUgYoCwrZF2CEiLg+Rc3AqJAaFYzuPxgKIoHDhwAC0tLRXPJlCDctdaW1sT/QIKFUMCuaMPam0o0nVz2dgKeV3hgiv43AsX3GyBUGxzUHujrAUxIE3fqb2uloZDer0+7/hnIYqwsLCASCQijn/O7mYoJa0prG02m4s+LhKJZEQ2bmeIGLiNUGKGQL679bW1NbjdbrFYrqurq+ILiFo+A0DpaYJ4PA63241AIICBgQEMDAwUvSPZyrMJpHldAekFV2pAw/N8xoXW6XQWrQyvJlq8plrk7pUYm1wOW7GiXzr+WYDneSQSCbEOQTr+Wei8kX5uC9XNlJImIDUDhG1DoQ6BUsneoKPRKDweD5aXl9Hf34/jx48r1oK4FSMDQh2Ez+dDe3s7zp49K+sOQlhDqxa/ctaVXnClhV/Zg3C8Xi9YlhUn5cXjccTjcdU2kVpJE0jnf6i9rpYTC+VCURQsFgssFktGa24qlcpodxQKaw0Gw6Z2RyEtJvgMFIOkCQjbgmrMEBDSBKlUCuPj45idnRXtg+VuinLZSgWEPM9jbm4OY2NjsFqtuPPOO0uug9jKkYFSnivXIJxEIiFGENLpNGZnZzE9PV0VN8WtAEkTVB+lxKTRaNzUecOybMZcBun4Z7vdjng8jmAwKH7W8x1HOBwuqx5qO7L9v7U1iHTWt9IzBCiKwsLCAm7cuIHGxkacOnUqI1SnJFslMrCysgKXywWGYbBnz55NTmxy0XJQUTXXld6Rtba2IhQKobW1FU1NTUXdFMvN6UrRKjKgxR26FhP1tBQD1VpXp9PlrEOIx+MIh8PweDwIhUJYWloCwzAZfgh2ux00TaO+vp6kCQhbl3I6BOQg3BmHQiEkEgkcPXp0k32w0mgdGYhGo3C73VhdXcXg4CD6+voqnqB2uzsBClTTTTHfempSKwIE2Jo1A9WApmkxEjA+Po5du3bB6XSKn1mh3XFmZgYPPfQQrFYrLBYLnn/+ebAsi8OHD6O3t7fkz8WTTz6JX/ziF3C5XLBYLDh16hSeeuop7Nq1K+/v/PjHP8Yf//Efb/p5PB5XPEIrQMTANkGIBAgWt8IdhBIXrEAgAI/HA4Zh4HA40N7eXnUhAGgXGUin0/B6vZienhZTICaTqeI1boc0QaXkclOU5nSLuSnmeh9qqWagVlwPAe1EiLC2Xq/PK2qvXbuGy5cv46/+6q8QCATwne98B6Ojo3A6nXjllVdwxx13yF7rwoULeOSRR3DixAkwDIMnnngCn/3sZzEyMpKRjsvG6XTC7XZn/KxaQgAgYmDLk6tDQCkREAqF4Ha7EQqFxDvjGzdubInQfTXWYlkW09PTGBsbg9PpzJigqAS3a5qgUnLldPO5KQpDcKR/1PqMSNFKDGz3scmloJUYkDMToaWlBb/927+NP/qjP8KFCxcwODiIeDyOW7duFbyjz8Urr7yS8e/nnnsOra2t+PDDD3Hu3Lm8v0dRlDjkTA2IGNiiCCM1V1dX4XQ6y2oTzEc8HsfY2BgWFhbQ29uLw4cPizldNdv91BQDqVQKXq8Xer2+Yn+EfJDIgHzyuSlKBYLgpihsVOPj43A6nRVNyZOLVrbAWomBSmo6KllXq/QEUHwmgtBmK9QdWCwWHD9+vOL1g8EgAGSI43zr9/X1iSmK733ve+IQtGpAxMAWQ9ohkEqlcPnyZXz6059WZIZ4Op0W7YPb2tpy2gfLcSBUCjUcCCORCFwuF0KhEFpaWnD48OGqXXBJZKAycg3BYVkWs7OzmJ2dBcMwmJqaUsVNsdZqBqoZfi607lYWA+FwGAAUbS3keR7f/va3cebMGezfvz/v43bv3o0f//jHOHDgAEKhEP75n/8Zp0+fxrVr17Bjxw7FjkcKEQNbBKFDIJ1Oi3fL0imClcBxHKanp+H1euFwOAq2zaltESwcn9IXQWlrZE9Pj1hdXM2LrSAGtBpyoyZqnZ9Op4PFYoHRaMTu3bsBKO+mmAtSM1B9WJZV5CanVBiGkVV4HQ6HYbVaFRUsjz76KK5fv4533nmn4ONOnjyJkydPiv8+ffo0jh49in/5l3/BM888o9jxSCFiYAtQaJBQJXfqUvtgmqZlhcd1Oh1SqVRZ65WK8CVT8mIkCJ/x8XE0NDSIrZFq1EJoJQBqoYshe7pmOW6Kwh85bopa3KVrFRmotZoBuesKbYVKfa8fe+wxvPTSS7h48SK6u7tL+l2apnHixAmMjY0pciy5IGJAQ4RIgLDZ5yoOLFcMCJ76iUQCw8PDsu2D1U4TAFBkk+Z5HoFAAC6XCzRN4/DhwxkV7WpsmML7VguRATWR877JcVNcXFzE+Ph4hpui1AtBukGQAkJ11tVCDDAMo6oVMc/zeOyxx/DCCy/g/PnzGBgYKOs5Pv74Yxw4cKDi48kHEQMakD1IqFCHQKmbcyQSwdjYGJaXlzEwMID+/v6SHOG0ShNUQigUgsvlQjgcxo4dO9Dd3b3p4qZGsaJUDKiJ2pEBtc+v3I1Zjpvi8vIyJicnwTBMhllSIpFQvahOqzTBVr9D12pdpSIDjzzyCH7605/ixRdfhMPhwMLCAgCgrq5OHIH+8MMPo6urC08++SQA4G//9m9x8uRJ7NixA6FQCM888ww+/vhjPPvssxUdSyGIGFCRcgYJ6XQ60VugEMlkEl6vF7Ozs+jq6sK5c+fK6p1Xe3gQRVFlr5dMJjE2Nob5+Xn09fXhyJEjeS/glawjF63EAEE+2W6KwMb7JTVLWl1dxdraGjiOw9ramqJuioWotcjAVhcDoVBIkeLBH/7whwCAu+++O+Pnzz33HL7yla8AAKanpzPeg/X1dXz961/HwsIC6urqcOTIEVy8eLEkf4NSIWJABSoZJFQsMsCyLHw+HyYmJtDU1FSxfbCaaQKgvDt2lmUxNTUFr9eL5ubmnF0Rudap9nkJ76faffG3e0qi2iH7XMYzLpcLFEWJlsvBYHDThLxy3RTzUYs1A1qsq0WaoBjnz5/P+PcPfvAD/OAHP6h47VIgYqCKKDFISK/X59zEpIN1zGYzjh07VrRvVQ5q9v6Xup5QEOl2u2EwGEo6Z5qmkU6nKznUomgZGbjdoxFatPkZjUY0Nzcr6qZYiFrsJtjKkYFIJFIzcwkAIgaqRqEOgVLIThPwPI/l5WW43W6wLIvdu3ejvb1dsYuIFpEBOesFg0G4XC7EYjHs2LEDXV1dJZ2z2gWEBOXQSlzl+nxV6qZoMpnyfm5rrZBPSzEgJzKgVJpgu0DEgMIoPUhIujkHg0Fx2tbQ0BB6e3sVv3ioLQaK1SgkEgl4PB4sLi6iv78fx44dK2tErlYFhIIIqXaY+3YWIFvdAEiOm2IgEEAsFoNer4fdbofT6RRrEAQ3xVoL12vZTSC3gFAaFbrdIWJAIXJ1CChhH6zX65FIJHD9+nUsLCygr68vwz5YadTsJhDWy7VJsyyLyclJTE5OorW1FWfOnBErb8tBrQLC7I2ZtBkCl+cvo9HSiB0N5TunbbdBRfncFKVmSdluisLmGI1GFXVTLIYWIkRIoWoVGZCTwolEIhgcHFThiLYGRAxUSDkdAnJJp9MIBoMIh8Po6OjA2bNnK9oQ5aBmNwGwWQzwPI/5+Xl4PB6YzWacOHEi44JayTpq3D1rcZe+lcVGIBbAi2MvosXSgkePPQqDrnQRu5XSBJWg0+ngdDrF0HMgFkCTuUkUCMK45ytXrijqplgIwTFT7U1ZuOHQqoCw0LRAgXA4nNep9XaEiIEyqaRDoBhS+2C9Xo+WlhYcPHiw4ueVgxAZUOuOVioGBKOkZDKJXbt2oaOjQ7FjUCMyIKxTCwWEct+X9+feRyAaQDAZxPXAdRxrP1bV9ZSi2sV842vj+MnNn+CB3Q/gQMsBOBwORCIR0DSNwcFBRd0UCyF8J9TelOXOB6jW2nLTBJV0Zm03iBgoESU6BAo998LCAjweD3Q6HQ4ePIhQKCQOzFAD4UuiphhIJBL4+OOPEQgEMDg4iP7+fsUvEiQyoD6BWADvzb+Hdls7QqkQLk5fxMGWgzDoDCV9vm6XyICUC9MXcHP5JhqnGrG3aS909EZETq/Xy3JTXFhYkO2mWAit7tBZlhWjqGpTSjcBKSAk5ESpDoEqhM2+AAAgAElEQVRcrK6uwu12I5FIZFTLx+Nx1Qv6AHWKihiGQTweh8fjQWdnJ86ePVu16WlqtUxKxYCam/RWLCB8f+59LMeWsa95H5wmJ8bXx8XowPnp8zDqjDjdfbro82hVQFitNcfXxnF18Sr66vowsjyCkZURHGg5UDAaUYmboiAQchXeahUZ0KpeAJDnM8DzPEkTEDYjiICxsTE0NTWhvr5esS9PJBKBx+PByspKzrtiLVr9gA0xUK0iRZ7nMTs7i7GxMfA8j76+PnEiXbVQO03AsiwmJiYwNzcHq9UqVo87nU4YjcYtezcvBznCQ4gKtFnbQFM0zHoz9JQeF6cvot3ajg8WPoCO0mFP0x40Wop7RRR6vd7wvYFgMogHdj1Q0nkUopoGQBemLyCejmOgfgDuZTfemnoLe5v2llzIJ9dNcWpqCqlUKqdAENZU+/OoVVthKWuHw2ESGSBsIO0QEPr7rVZrRgtRuSSTSYyPj2Nubg7d3d157YO1EAPV3DhXVlbgcrnAMAz27t0Lv99flm1yqaiVJgCA5eVlXL16FSaTCcPDw+LFORAIIBqNZvSfCyKhktdgKwqL9+fex0xoBo3mRoRTG2muNJfG2NoYXhx7EaFkCBzP4XrgOu7uvbvgcxV631bjq3jJ8xISbAJ3dNyBHmePIsdfrciAEBXocnQBALrrusXoAPjK79BzuSkCyBAI6+vropuiyWQCz/Pw+XyKuikWQ2sxINeBkIiBGidXhwBFUdDr9bLmBBSCYRj4fD5MTk6iubkZp0+fLljZqrYYqNaa0WgUbrcbq6urGBoaQl9fH2iaxtLSkmp37NVeJxwOi+/vrl270NnZKboeChsLy7KIRCJiLYhUIAjCQBpBkMtWSxPYjXbc03vPpp+HU2FMBifR6+wFwzH4aOEjHGw5WDA6UGhjfnvmbfijfgDAm7438ZWDX1Hk+KslBi5MX0A4FUaHvQMJJgEdpUOKTeGtqbdwRn+masLOZDLBZDJtclNcXFzExMQEIpGIom6KxdDK2wCQ5zOQSqWQTCaJGKhVpCIgV4dAPmtgOXAch7m5OYyPj8NsNuP48eOyIgxKCJBSUVIMpNNpjI+PY2ZmBl1dXTh79mzGhUUtX4NqRgZSqRTGx8cxOzsLmqZx8OBBtLS05FxPp9Ohrq4uIxcpGNQIAkFwsBMuylKRkEsgbMXIwD199+Cevs1i4LXJ17AcX0ajpRE8z2N0ZVRWdCAXq/FVvOl7Ew3mBhh1Rlyau4R7++9VJDpQjW6ClfgKpkJTsBlsmAvPiT83681YjC4iYAygnW5XdM1CGI1GcfDS/v37ASjnplgMrSIDHMeB5/mikQGhaJuIgRpDbodAORszz/MIBALweDzgOA579uxBW1ub7C+RFpEBJTZojuMwMzOD8fFxOJ1O3HXXXTl9vtXyNahGZIDneczMzGBsbAx1dXU4deoUPvroo5LveHIZ1DAMI16QQ6GQeNcmHZIjiAThWLYiwWQQOkoHu9GOpegSri1dQ6t1I79NURSaLc1FowP57tKFqMCepj2gKRq3lm8pFh2oRmSgydKEbxz5BlJsatP/6Wk9FjwLmhfyleqmmF2DILgpFkNLK2KgeEtjKBSCTqcrOgDtdoKIAWx82IVNvlCbYKliIBgMwu12IxwOY3h4GD09PSV/2bVKE1SycQYCAbhcLgDAgQMH0NLSkvc13a6RgdXVVYyOjoJl2YxzVEp06PX6TRfldDotXpCF/vNEIiG61gEQL8zVKv4sBYZj8Cvfr2DWm/G5wc9hdGUUa/E16Gk9ArGA+DgOHNyrbtzVdVfe58r+/EijAjp648LeZmtTLDpQrTRBh70j7//5eb8mYqDYmsXcFEOh0CY3xWyzpOzXUksrYqB4bYYwsVCrVIYWEDHwCXK8AnQ6HRKJRNHnisViGBsbw9LSEvr6+nDkyJGyL87CxqymZWi5AiQSicDlciEYDMqenaDGNEFhHSU26Xg8DrfbjUAggKGhIfT392ecYzVD9gaDIeeQnBs3boCiKIRCIczNzSGRSMBisWxKMZQz06ESfEEfJoOTMNAGzIZnMdwwDOee3GHXDlv+TTKXiLs8fxmzkVnQFI1gMrjxOPCIp+N4e+Zt/OG+P6zo2LVoZ9RiamG5uXupm2JX10YxJMdxGXbLs7OziEQiOd0UGYbRzGNAr9cXfZ1DoVBNTSwEiBgAIH+jKBYZSKfT8Hq9mJ6eRnt7e8V++sKagLoFN6VunNKceU9PDw4ePCi7+E2L/v9yYFkWPp8PExMTaGtry+uJoLbpkMFggMlkgs1mQ39/P4CN9yNX5bjQWiYdklMtgcBwDK4vXYee1iPNpXEzcBOfG/ycWEVfCrk25oH6AfzX/f815+P76/rLOeRNa2rh178VIwNyoWla3Oylz5/LTVEwWHK73Yq5KcqhlCFFDodjS9bjVAsiBkognxjgOA5TU1OYmJiA0+nEyZMnFSs8kZoAqRX6lRsZEM7b6/WioaEBp06dKtm+Uy0xUO46PM9jaWkJLpcLBoOhaOGnWn4G2WtKBYjRaERTUxOamprEn6VSKbFAcW1tTew9l7rXOZ1O2e51xS6SvqAPvqAPPY4eMDyD8bVxzIZnyw7fZ6+3u2k3djdVz5tCq8jAdhYDucjnpjgyMoJ0Og2apjPcFIXHluOmKIdS3AdJZICQl+xuAp7n4ff7MTY2Br1ej0OHDik+8lKw7FTbhbDQesIG6Xa7QdM0Dh8+XPZ5qxkZKHWdSCSC0dFRhEIh7Ny5E93d3UU3iOyNeauMFzYajWhubs54n4Te81AohNXVVfh8PqTTaVEgSCMIpVyQpVEBk94EE0zwc37cDNxEt6P4a5iNFq+fFiF7rcSA2rl74ZrmdDrFqYBKuCnKQa7HQCgUqqlOAoCIAQDy87zSyMDq6ipcLhdSqRR27NiBzs7Oql08dDqdqu2FhcRHKBSCy+VCJBLB8PAwuru7K7qAqRkZECa0FXufpO2QPT09JY2M3k6zCbJ7z7Pd66QXZKlAkHbd5MIX9GFyfRIN5gaEkxstWnajvezowO1mR5yP7VQzUCnZIkQJN0U539FS0wS1BBEDJaDX65FKpfDhhx9ibW0NAwMDVRmqk43aHQW5ugmSySTGxsYwPz9fcVGkFDW7CYDCF3me5zE3NwePxwOHw5G3HbIQ5YiBcCoMu8Fe0UaghADJ5V6Xfce2tLSEaDQKl8uF2dnZjBSDkPNdii7BYXQgzaWR5n5THGrWmxGIBcpKFdSCGNjuNQOlIEeElOqmaDabxVRXPl8OYkWcHyIGZJJIJODz+ZBKpWCxWHDgwAFVbDuBysyOykEqPqSFc83NzThz5oyivbdq+gwA+TfNtbU1jI6OIp1OY+/evSV5QUgptYVxJb6C77/7fXxh5xfwqd5Plbxetcl1x3blyhW0t7fDZDIhFAphaWkJXq9XzPnW2etwT+M9YluZ9KJvNZT+2SGRgequuZUnB+Yin5uiYNxVyE0xkUjItiKupfHFABEDAArfdTAMg8nJSfh8PrFwbM+ePap+abWYT8AwDPx+P9xuN4xGI44dO5bR0qbkWmqlCYDN4clEIgGPx4PFxUUMDAxgYGCgokhPqZGBNybfwI3ADehoHU52noRJX7rtq9qpCYqiYDQa0dramhHSjcfjvzFKWglh3jcPnudhtVnhTrlxtPMo+lr6NgmEXPA8j5fGXsLhtsPimmpSK3fpQlW/2ihtOmQ0GnO23eZyUxTamQu5KUYiEfT19Sl2fNsBIgbywHEcZmdnMT4+DqvViuPHj8Nms+FXv/qV7CIUpVC7ZiCdTmNpaQlLS0vYuXNnVesh1CwgBH4TGeA4Dj6fD16vFy0tLYq0gQrryN2YV+IreM33GhrMDRhbHcOluUs5LXzlrKk1FEXBarXCarWira0NwMZrHYvFcHX2Ks7fOo/54DxOTp8Ez/MZF2Kn07nJmObm8k3871v/GyMrI7i/4X5VN0m5tSVKotUoYZZlVYtwZq9b7fRqLjfF0dFRcBwHp9OZ003x8uXLMJlMpGagVpF+6QX7YLfbDZ7nM0LGwhdWCzGgRmRAuEv2+/2wWq246667qn6eWkQGAoEARkdHodPpFI94lCIG3ph8AwuRBexu3g3fug//z/v/cKrrVFnRga0IRVGwWC0YiY8gbUhj2byMwSODaNQ1im2O8/PzcLvdojGNkPN93v08lmPLuDJ/BQd0B7CnaY9qxy28f2qKAeksFDXRKk2glQMhx3Gw2Wzo6flN3YrgphgKhTAxMYE33ngDExMTeP311/Haa6/h6NGjOHr0KO655x6xPVIOTz75JH7xi1/A5XLBYrHg1KlTeOqpp7Br166Cv/f888/ju9/9LrxeL4aGhvB3f/d3uP/++8s+Z7kQMSAhGAzC5XIhGo1iaGhok30wTdNiCF2NsbsC1a4ZkKZCWltbMTQ0hGAwqIrgUTsycP36dYTDYezYsaPiToh868gRA9KogI7SodvRXVF0YKt2MHhWPbgZuIndTbvhC/rw3tx7+NKeL8Fms4kXVqkxTSgUwkX3Rbw19hYcegeWEkt4mXsZPaYexGIx2d73laCFGJDORFGTQmKA4znQVHWEgpazCbLXlbopPvXUUwCAu+++Gw888ADa2trw4Ycf4plnnoHBYMBDDz0ke60LFy7gkUcewYkTJ8AwDJ544gl89rOfxcjISN5Jte+99x6+/OUv43vf+x7uv/9+vPDCC/jSl76Ed955B3feeWf5Jy4DIgaw8YW4du2aaB987NixvBvhdp8iKIXneczPz8Pj8cBsNuPEiROor6/H7Ows1tbWFF8vF2qIAYZh4PV6AWwUHx0+fLhqodFcYiBXyPmNyTfgj/ixu2k3OJ6DQWeAjtaVFR3YCmmCXHA8h4szF8FwDOxGOzrsHbjiv4JT3afQ7egWHyc1pmlvb8fPV34Oi8OCvro+2KN2jIZGcX3xOlZXV6HT6TYNajKbzYq+BrUUGci3Kd8I3IB7xY37d94vzn5Qel0tIhIMw8i6yYlGo9i/fz8+//nP42tf+1pZa73yyisZ/37uuefQ2tqKDz/8EOfOncv5O08//TQ+85nP4PHHHwcAPP7447hw4QKefvpp/Ou//mtZxyEXIgaw8QVsbGzErl27clrMStFKDCi9plA9n0qlsHv3brS3t4sXPzULFqspBqRix2q1QqfTYXBwsKo5UjmRgTSbxjuz70BP6zG+Np7xf0vRJdxavoWj7UdLWncrGBtlI0QFhI2/ydIEf8SPS7OX8KU9X8r5OzeXb+ID/wfodHTCaDCiva4d8+F53GBu4A/v/UPEYjExxSAdjvNx4mMMNQ3hRM+JigVCrUcGEkwCl2YvwR/x40DLAexqKhzWLhVhVPxWiQxkw/M8wuFwxphxJQgGN2ZoFEpLvvfee/iLv/iLjJ/dd999ePrppytef2FhAX6/HwaDQYyESA2ciBj4hL6+PkXmE1QDnU6HVGrz2NNyiMVi8Hg8CAQCGBwczOmToFbovpprBYNBjIyMIJlMimLnV7/6VdU3TTliQE/r8eixRxFOhTf9H03R2Nu8t+Q1txo8z+PizEWsxFego3TilEKe53HFfwWnu0/nnFPw0thL4mPXEhvRKY7ncH31Otxrbuxt3rvJ+37EP4L333sfo9FR1KXrkI6nxYKwRX4RTXVN2N+5f1PFeKFjB9S9SxfaCreCGBhZHsFMeAYUKFzxX8Fww7Ci0QHh+75VxQCw0U2gpM8Az/P49re/jTNnzmD//v15H7ewsCAW4Aq0tbVhYWGhovU//vhjfPe73xU9cpLJJIDf7GdXr14lYqBU1K7sBzbesHg8XtFzCKHyqakpdHR05B20A6gfGeB5XrFCJqk5ktAqKChfNUSOHDFAUVRV7ra2Gk6jE2e6z2z6uY7SgUfu43UanTjXkxlCbUUrTMbcaROapnF5+TISVAIsxYLv4nGu8xwikQgWVhfwfz74PzCwBny55cuwGC1iakH4O1ftj1aRAa0K+aTrJpgErvivwGawocXagvH1cYyvjSv6edVSDMhJEwiRASXFwKOPPorr16/jnXfeKfrY7M9dJZ0twvv7rW99CzzP49lnn8XAwACSySTi8TgSiQRWVlYwNDRExECpqG0ABFS2OfM8j9nZWYyNjcFms8kaoqS2GAAqvxhyHIfp6WmMj4+jqakppzmSGv34W2UWQTWRc34UReG/7P0vJT/3Y8cf2/SzW7duwW63o695c9+3UJTY5ejCWmINr06+ijs67kBdXR0uLV9CiA5Br9fDssOCg3UHxRRDIBBANBqF0WjMGPPsdDo1Cdlr4WsAbL5TFqICww3DMNAbDqNKRweEa8tWON9cRCIR8DyvWJrgsccew0svvYSLFy+iu7u74GPb29s3RQGWlpY2RQvkwLKs2Dp69epVnD9/HkeOHMn7eCIGPqGc+QRqUe7mvLKyApfLBZZlsW/fPrS2tso6TzUHIwlfzEru2JeXlzE6OgqKogoOTVIrMqD11MLbjULn9qbvTawn19Fl7wIPHqPLo/i1/9c43HYYL0+8DLvBjhSbwquTr+LkmZMZF3iGYURTmlAoJJrSCDUlk5OTolCodi++Fu6DwrrCpiyNCghCoNvRrXh0QCge1MJISo4YCIc30neVRgZ4nsdjjz2GF154AefPn8fAwEDR37nrrrvw+uuvZ9QNvPbaazh16lTJ6+t0OvFcv/rVr2JkZISIASXRQgyUumY0GoXb7cbq6iqGhobQ19dXkgpXyyIYyIwMlEosFoPL5cLq6iqGh4fR29tb8DzVEgNasJ3FQIJJ4A3fG7in7x7YDJtbrvKFSYWoQIetA2kujQ/8HwAU8Orkq1iLr2EmNIMdjTvAcAxcqy6xk0FAr9ejvr4e9fX14s8YhkEgEIDL5UIsFsPCwoJoa5sdQVBypPhWSBN417xYii0hySThWnGJj0lzadxYuqGoGNCqXgBA0TRBOByGxWKpuLX6kUcewU9/+lO8+OKLcDgc4h1/XV2daHD28MMPo6urC08++SQA4Jvf/CbOnTuHp556Cn/wB3+AF198EW+88Yas9EI2TzzxBOrr69HQ0ICOjg488cQToGkaR44cQV1dHex2uzhPBCBioGS2cmRAOm2vq6sL586dK+uORogMqOHCJhRNlbJJMwyDiYkJ+Hw+dHZ2yj5PtdIE0jCzGuJgKxYQlsL56fP40bUfgeEYfGHnF3I+Jtc5vjX1FmbDs2gwNeBG4AbmI/PQ03p84P8AnlWPeIdroA2gQeOX3l/iRMcJGHT5N3Gh8JCmaezbtw/AxvdKsLQVjJISiYQ4GEfqpliuQNgKYqDb2Y0/2PEHOR/nMCrnxqe1GJATGXA4HBV/r374wx8C2PAskPLcc8/hK1/5CgBgeno6430/deoUfvazn+E73/kOvvvd72JoaAj/9m//VrLHQCqVwiuvvCJ6eCSTSRgMBnzta18T/XIEHA4H5ubmiBgQKCVNIFRiqkUxMcBxHGZmZjA+Pg6n01nWtL3s9QD1hrXIvWPneR4LCwuio9edd95ZUl7vdk0TANs3MhBPx/Gi50X4I368OPYi7u2/d9PGk+/cuh3deHDXg0iwCfzc9XO02dqQZJNgWAaBaADdzm74I34AGx0coyujm6IDucjO3xsMhpy+90J6IRQKYW5uDolEAhaLJaNA0eFwyLrD1KJmQCjcFb7vdaY6HGw9WPV1tXIfFNITxV5npayI5Xwnz58/v+lnDz74IB588MGK1jYYDPiP//gPMAwDlmVhsVjg9/vBMAwSiYRYPBiJRMTrFREDJaJFN0EhMSCENAHg4MGDaG5urngDF76oahmDyNmkQ6EQRkdHEYvFsGvXLnR0dJR8nqSAcOtxYeYCvOte7G3ei+nQNN70vZkzOpDrvf7MwGcAbLQjmvQm7GvZh1AyBO+6F0P1Q3CafpPztRgsoEAhmAoWPSY5IjiXQEilUmL0IBgMiqN1rVZrRnpB2tstoNXEQmDrGB1VG4ZhZI8vViIyoCUURYmWy4lEAm+//TY+85nPFPwdIgZKRKtugmwBEg6H4Xa7EQwGMTw8vMk6uRKE52FZVtG8aKH18omBVCqFsbExzM3NFXWHrGQdpdBCDGi1Zj54nsdqYhVNlqaCzyFEBQy0ATaDDTaDLWd0oNC5hVNh/K+b/0tMBzSaG7FoWMQdHXfk7EyQQ7kRMaPRiKamJjQ1/ea8U6mU2MGwvr6O6elppFIpWK3WjOgBwzCazCUAtBEDW7WTANi48VCyrVArhBTQ1atXcd999+W89r3yyiv40z/9U0xNTRExILCVuwn0ej04jgPP80in0+Lm2NPTg0OHDim+YQuVvmq2F2avJU191NfX4/Tp03n9vOWiRWRgO99dlMuluUv4hfsX+PYd385pLCQgRAUG6jaqrDvsHRhfG98UHSi0Of/c9XPcDNxEr7MXkVQEAGA32nFx5iJ+Z+h3MNQwVPLxK3mXbjQa0dzcnNHhkkwmxRTD6uoqpqamkEqlQNM0RkZGRJFgt9uregddi5EBOTcS4XAYdrtdhSOqLvF4HNFoFJOTk+jr60M8HkcqlYLBYIBer4fRaMTy8rLYgk3EQIloVUAIABMTE5icnERDQ4Mim2OxNbVyIVxZWRFHjR48eBAtLS1VWacaCCZKAmrcsW8lwZFiU/il95e4tXwLb/rexMMHHs75OCEqEE/HRcdB4fdzRQfyneMbvjcAAIvRRRhpI4z6jUJSmqJxa/lWWWKg2rUyJpMJJpNJFAg8z2NqagpLS0swm81YWVnB5OQkGIaBzWbLSDHYbDbFNlKWZUFRVM2IAa3cB9VG+PxevXoVf/7nfw6KorCysoI/+7M/g8FgEKNSiUQCb775Js6c2TAGI2LgE7ZqZIDneSwvLwMA5ufnceTIkYwwZLVQ03hIEB7xeBxutxuBQADDw8Mlt0QW43ZNEwBbp4Dw1/O/xtjaGDpsHbg4cxH39t+bMzoQZ+KwGW3Y05w5mrjZ2gy70Y5IKiKKgXznNheeQ39dP4YbhrEYXcSprlP4dP+nxf9vt7WXdQ5qFc4KUBQFnU4Hs9mMwcFB8RiSyaSYYlheXsbExARYloXNZstIMdjt9rK+J1p1MGgpBuREBrZ7mkD47DocDtx99924du0arFYrQqEQ1tbWxOJBiqJw7733ip4GRAyUiJpiIBQKweVyIRLZCH8eOXJEtfCVmsZDwIbQuX79Otrb23Hu3LmqjIhWO03AcRzm5+fBsizq6uoyenqVXnMrkGJTeHniZegpPbod3QWjA42WRvyPT/8PWc+bb3O+4r+CFJvCcMMwHEYHpkJT0FN6tNvLEwHS9bSo7JeuSVEUzGYzzGYzWltbxcckEgkxxbC0tASv1wuWZWG32zO6GOR81rRsZ9zqBYRq3HBVm0OHDuGf/umf4PP5cPPmTfze7/1ewccTMVAiQgFhNe8eEokExsbG4Pf70dfXh6NHj+LChQuqtqypkSbgeR6Li4uIRCJIp9PiCOVqoWZkYG1tDSMjI2AYBiaTCV6vFzzPZ1ywnU4nLBaLIp8jJUVOsc92vrWEqEC/sx8URaHV1lowOlAJc+E5XFu6hk57J4CNiYi3lm/hw4UP8bvDv1vRc6sdGQDk1SlQFAWLxQKLxZIhEOLxuNjFsLCwgLGxMfA8LwoE4bNmtVozNn8lxQDHc6Apec+11dME4XBYllvgVmZychLj4+OwWq1obW3F0aNH4fP5YDabYTQaYTKZYDQaM+rNiBj4BLlffmnbXaUOVdmwLAufz4eJiQm0tLRk+OurGbZXY71wOIzR0VFEIhFYrVb09vZWVQgA6kQGWJZFMBjEBx98gMHBQXR3d4ubizB+NxQKYXZ2FuFwGDqdTrxYC3+qERWRC8/z+PvLf4/h+mE8sPsB2b8nRAUoUKApGik2hTpTHdyr7oK1A3KPKfv7ecV/BYFYADpKh2g6CmBjANJHix/hWPuxiqIDWomBcjZmiqJgtVphtVpF/3pBIAgphmyBIIhRpcQAz/N4deJVtFhbcLzjeNHHC375aiP3mh2JRLZ9AeFLL72EZ599Fp2dndDr9eLkW4tlY1iXYK6VTCbx8MMP4+677yZioFSED5PcylQ5CGY6brcbRqMRx44d2zTzWm1/g2qlCYRuiNnZWfT29uLIkSO4ceOGKjnvakYGeJ7HzMwMvF4v9Ho9zpw5A4vFAoZhwDAMKIqCzWaDzWZDR0cHgI0NIBKJiBftiYmJjOE50ghCoY4RJUXOtaVruDh9ER8vfoy7++4u2h4oMLY6hpX4CmiKxlRoSvy5RW/Bx4sf46HdD8FisGz6PYZjoKeLT5HL3pzTbBp7mzJHPTeaG6GjdUiwCVnHnA+tev6VukuXCoT29g1RxPM8YrGYmGKYn59HKBQCz/P48MMPM2oQrFZrSec/G57FreVbsBqs2Nm4M8PfIRdadhPIEdpKTyzUgtOnT0On04GmaczNzeH5559HIpHA3r17kUqlcOvWLUxMTKCurk40OCJiQILc8bNKbszr6+twuVyIx+PYuXMnOjs7c34RtYgMKLlxCtMTPR4P6urqcOrUKVF9qxG+B6rnDri+vi6mBLq7uxGLxUTv8ULQNC1u+gIMw4ghX+GiLTjbZY/fVfqCyvM8fuH+BeJMHDEmhle8r+CP9v+RrN/d3bQbf3nHX4LjN7++FoMFZv3mcdmr8VX85/h/4tN9n0aPs6fg82d/Jx7a85Cs4yoHtSIDHL/RLqyjdVWvU5CKUUEgLCwsYGpqCp2dnQiHw5idnUUkEgFFURkWy4XSWTzP49rSNSSYBGJMDCPLIzjZdbLgsWjpQFgL3QQAcPz4cRw/vhGl+dnPfob5+Xk8/vjj2Llzp/iYf/iHf8CtW7dE220iBspAiSLCeDwOj8eDpaUl9Pf3Y2BgoGCkQW2zIyXFx9raGkZHR5FOp3HgwOdU3b0AACAASURBVAG0tLRkXFjUEgPZbX+Vkkql4PF44Pf7MTg4iP7+fvj9fiyHlrEcW0azNff0xELo9Xo0NDSgoaEhYx1BHKytrWF6ehrpdFpsOxOiD5XeXV5buoYPFz5El70LkXQE/9f7f/G5oc/Jig7oaB12NO4oeb0bgRuwG+zodnTn3YDlvGccz+HVyVdxvP04WqyVtaKqJQb++zv/HWuJNTz9W09rskHyPA+DwYCOjo6MaJWQzhIEQjgcBk3Tm2yWLRYLZsOzcK240OnoRCwdw0eLH2Fv896C0YGt3E3A8zzC4bBi44u1QuhGMZvNeOqpp/Anf/In2LlzJziOA8dx0Ov1+Mu//EucOHECt27dQl9fHxEDUuSGWysRAwzDYHJyEj6fD21tbWI4uRhqRwaUSBMkEgm43W4sLS2Jm2Wui4CakQElXkMhJTA2NiZ6Pgi1HRRF4d3Au7g+ch1fP/J16KjKL3rZznbStrNQKIT19XUkEglcvHhRzAkLF225IV8hKpBkk3CanLAZbHCvufNGByrdLFfjq/ho4SPUmeowujKK6dA0+ur68j6+2HrXl67j30b+DQvhBfzxoT+u6NjU6CbwrHrwgucFsDyLDxY+gJ2zq+L2KSWXAKFpGna7PSNnznEcotGoKEinp6cRiURA0zSuJa/Bn/KjoaUBdeY6TIYni0YHtoMd8XaPDFAUJX6e2tvb8fbbb+OBBx5AW1vbb6ZUer2Yn58X/WqIGCiDcsQAz/OYn5+Hx+OBxWIpuXJ+O6UJpIWQra2tOHv2LMzmzWFiAbXaGJWIDASDQdy6dUuMcghV3QLz0XmMhcdQZ6rDjaUbONx6uKL1cpHddmYymbC2toahoaGMOzrhgp3dwWAymTZtrkJUoMO2cYeoo3WoN9WXFB0ohWtL17CSWMGepj3wrHrwgf8D9Dp7M44rmo7iTd+bqGMK36VxPIdXJ15FIBbAu3Pv4t6Be9Hr7C372NSIDPzo2o8QTUdBgcL//Ph/4pu939yytsDCZ8jhcKCzc6N7g+M4uBfcWL65jEZDIwLLASQTSQS5IP5z7T9hCVvQ2dQJh8Ox6fOmpR2xXAdCJQYVaY0gfL71rW/h0Ucfxbe+9S188YtfRGtrKxYWFvD9738fu3fvxq5dG6OpiRgog1JrBlZXV+FyuZBKpbB79260t7eXfLFRu4CwHPHB8zwCgQBGR0dhMBhw/PjxjHB3PtRME5S7jjAjYX5+HgMDAxgYGMh5l3F1+SriTBxt+jZcmr2EvU17QUGdYrRcBYrRaFSMIExOTmYUKEq7GF6bfA2hVAgpLoX5yPxGfQU4RFIRXJi+gC/u+qJixylEBVosLaApGl2OrpzRgfNT5/HTkZ/ipPEk9lH78j7f9aXruB64jt1Nu+EL+vDm5JsVRQeqLQY8qx68MvEK7EY7dJQOl+Yu4V7HvThpL5xrV5pK0ko0TWM+NQ+dVQdQAAsWOl4HW8oGNsXCu+5FMpRENBqFXq/XfA4DIC8ykE6nkUgktn2aQPre3nffffjHf/xHPPnkk/j6178uTt194IEH8Pd///diDQkRAxKUdiGMxWJwu91YXl4uGCaXu+ZWThNEIhG4XC4Eg0Hs3LkT3d35c8DZqCV0yikglBY+CjMShJRANtPBaYyujaLZ1IxuZze8a17cWLqBA00HlDj8kpHe0XV1bfT5s2triMTjCDIMQqEQFhYWEI/H0cK04KH2h2CymPCa/zV0Ojpx78C9AKD4WFtpVAAAHEYH5sJzGdGBcCqMlydeRiAWwHuR9/BFJrcYEaICDMfAbrSj3dZecXSg2mJAiAoIHgmhZAg/n/457uq9q2pr5qLSGpN9zfvEc8im3d6OBnMDWJbN6JgJBAJIpVK4efPmpoLYarfUyklPhMNhANj2aYLs9/Xzn/88Pv/5z4P55Huf3a0GEDFQFsU2ZoZh4PV6xUpdJRz1dDod0ul0Rc9R6nqpVKro49LpNLxeL6anp8senLRVCwiDwSBGRkaQSqVypgSyuTx3GTEmhkZdI4w6I8x6M96bew+76nfBoiteF1IucjYuamIC+tdfh8nrhZWm0XTwINj77gO/fz/S6TQOhQ4hFArh3Zl3EVgPIBQM4bOWz2K4ZRimqAkhOiTb9nY1voqR5RGc7j696dhi6RhGV0ZBgYJn1SP+nOM5TIensRRbQputDRenL2I6NI39Lfvx8dTHeG/hPfS2b97chahAt6MbwG/MhyqJDlSztVAaFRDWcJqcuLZ+DTfXb6K3t/z0RqlUWrTYbm8v6ueg0+lQV1eXcaf91ltvYefOneJEx6WlJcRiMZhMpowOBofDoagfgZw0QSgUAk3TVZ37ogY/+clP8OCDD8JsNuPSpUswGo3iTAKz2YxQKASLxUJMhyolX2RAuIscGxuD3W7HyZMnFVOYOp0OiURl/dOlrldI8PA8j7m5OXg8Htjtdtx1111l59m2Wmuh1AthYGAAg4ODRS+a08FpXFu6BofBgUgsglAyBIfRAe+aF7eWb+F4Z3EzlkooJHKouTkYf/QjYHERaG8HWBb6118H7fcj9Y1vwGC1oqmpCXUNdRiZHoGjzoEUk8I4PY69xr2i7S3HcbDb7Ugmk1hbW4PFYslZoPjm1Jt4d/ZdtFhbsKtpV8b/mfVmfHbgs0izm4Wtjtah0dwoRgXsBjssegvMtBlvzryJ3937u7AbJYVtn0QFVuOr0NN6LMc3Znjw4PHu3Lv4rYHfQo+zByzH4pkPnsGZnjM40XFC1mtZLTHwvOt5RNNR0BSNeDouHm+CTeCX07/E7xz8naqsmwstCvl4ngfP86ivr8+4QZK21IbDYSwuLooCQZpiKOa5kQ+hil5OZMDhcGiSxlAKlmXx7LPP4vd///dhMBjwzW9+E3q9HjRNg6Zp6PV6GAwGGAwGmM1mPP/88wCIGMiglDRB9l368vIyXC4XOI7Dvn370NraqugFZSt1E6yvr2N0dBTJZBJ79+5FW1tbRee6VSIDgsBxu92oq6sraTLkTGgGRp0RSSqJKBtFKBkCANSb6zEVnKqqGCj22uvefx+U3w9u3z7gk4scX18P2uUCfeMGuDvvBAB84P8ANwM30ePoQSQVwZWVK3jo0EM4MnQkw9XO4/FgZWUFc3NzYk+6UHsQpaN4b/Y9LEQWcH76PHY27sxsI6VoDDcMFzze1yZfw3RoWmxVbDY2YyYyg7dn3sZvD/22+Die52E32nFX9+bwuoEygOE2BPvl+ct4dfJVTIWmcLj1MAy6wptJNcXA7+34PXTYOzb9fGp6Cif71a8ZULuDQbimZG+2uVpqBYEgpBj8fj/i8TjMZvOmNsdi5yGsW0wMhEKhbe8+CADf//73UVdXB47j8NWvfhUMw4gDioS/o9FoxvtAxEAZ6PV6xOMbqj4SicDtdovV3EpP2pOuqXYBYfYGnUgk4PF4sLi4WLCIrlS2QmQgFAphZGQEiUQC+/fvL1nMnew6ib0te7GysgK3241Td54CsHFBM6L61quFRA7t84F3OkUhAAAwGsEDoJeWwGHDCfCl8ZfA8RysBissegtGlkfwivcV/LfD/y3D1W5qagpDQ0NobGwUCxTD4TB8Ph9ennkZ7rAbPY4evDvxLg45DuFo71HZ4d5IKoKXJ15GkkliPjwPAFhNrSJtSOOX3l/ibM9ZMTqgo3V45NgjBZ+P5Vi84HkBCSaBkeURXJq7hE/1fqroa1mtO8MDLQdwoGVzDcmV5BX0teZvrawGWgwqkrspA7kFQjqdzjDlmpubE025slMM0pSAcO2UExlwOp1bZvhXOeh0Otx77724evUqjhw5gm984xuyfo+IAQmlFLylUimMjo5iZmYG3d3dOHDgQFX9trWcTcBxHKampjA+Pi7OTJDjjSAXLSMD0pRAf38/BgcHy7KZ1tE6NJgbwJk52HV2NJg3LmAMw1S91qPY55ZraIDO48n6IQeK48B/EvkQogJdji7xNWq2NuNXU7/C54Y+J+bkpUgLFAHAH/FjPbiOnfadcFAOjKyM4D+u/weiU9GcDoq5Xuckm0SXo0t8/QBgLjaHpqYmNDoakeZKey0vz1/GjcAN9Nf1wx/x4wXPCzjVdapgdECL2QRaTErUwuiIZVlQFFX2uRoMBjQ2NmYUwKXTaVGQCnM/kslkxmdOCJMXe18jkcht0VY4Pj6OBx54AHfffTdOnz6NQ4cOYWBgoOA0RiIGSoTjOKyvr2N1dRUURVWUKy8FLdIEHMeJrYI0TePo0aNVGe2pps+AIDoE3we32w2Hw1FSSqDYGlLBodamUigywB0/Dt1HH4Ganwf/Sc0ANTUFvrUV3P79AIB3Zt8By7GYCc1k/K5JZ8Ll+cvo3rVZDGTzzuw7WEutYX/zflAUhf2W/QjEAmjb34ZOQydCoRCCwaB4sRYcFIUUg91uR5OlCY/f9XjG87777rvYt29fyYOshKgAx3OwGWzocnTJig5s1amFSqNFv381BIjBYMgw5QIyXTvX19cRDAbBcRzef//9TSkG6fGEQqHbQgw0NDTg/vvvx0cffYTXX38dzc3N2LdvH+6991586lOfQmtrK2w2W8ZnjogBmQg99G63GyzLwmw2i97PaqC2GEin04hGo7h+/TqGh4fR09NTtQuH0jbB+RAcJsPhMEZGRhCPx0uqeViKLkFP69Fo2dyWk72GmqS5NCajk9jL7IVJv7lrhTtwAMwXvrBRNOhyARQFrrMTzBe/CP6TDokv7/kyzvWcy/n8/5+9N42SozzP/n9V1etMz75rRrNJo9GM9gWEhITFbvBrDAgTZ7GJE5sEDslxeA0Jie3zf9/Xx7GNnRiH5Dg2jmWQje0YA2KJbSGBQEISaJdm3/e1Z3rfu+r/oaZa3TM9mp6tB8xc5+iDerrr6aquep7rue77vu5VWatm/A6DrkFO9J1AQKDX2Rt53eq1crz/OA9ufjBmNxftoDg6Okp7ezvhcHiKg2JqauqcF2dNFdDK38w6MwLCjOrAUu3SPwpjJitpcbJrp9Vqpbm5mdWrV+N0OhkbG6Orq4tAIEBqamqkIsrhcCzIpuDtt9/mySef5MyZMwwMDPDiiy9y9913T/v+t956ixtvvHHK6w0NDaxdu3bW4+fk5PDd734XRVE4ceIEhw8f5siRIzz22GPodDp27NjBjTfeyCc+8QmqqtTcnGUyEIXpJhyn00ljYyMOh4PVq1eTkpJCQ0NDUr9bsnIGossiBUFgz549i95uNFnKgJYEd+LECcrKyti2bVvCIYFgOMh3T36XNEMa/7j7H6ft3T6ZDCRjt9fr7uX8+HlqbDXU5NZEXpcVmWG3WqoXvuUWwlu2IHZ3g06HvGoVRPklrExfOWOzIAAUBeIszr6wj+K0YvJTYssvC1MLEQURBSXGfMloNJKXl0deXt7EYWPb7vb39+N0OiN5Hr29vfh8vkhpVCLX9WDLQcZ945FEQlB/x0ZrI+8NvMf1JdfH/dxC7l59IR+HOg5xS/ktcbs2avgohQmWsi9Bbm4uublqzxBFUSLljQ0NDRw5coT6+nqcTiebNm1i27ZtbN++nb1791JbWzvDCLFwu91s2rSJz3/+8+zbl3gr8KamppgKNO35mC20qg1RFNm1axe7du3iq1/9Ki0tLbz66qscPHiQRx99lHfeeWe5miARaK5zfX19rFy5ks2bN6PX67Hb7UlN5oPFVwYURWFgYICmpiZSUlJYv349DQ0NSek7vtg5A9q51dfXI8tyTMfERHGy7yR1o3XoRT0Xhy6yuTC+zfDVlIFAKMBX3v4Kd6y6gxvLpu4C5oJgOEjjeCP2oJ1LI5eoyKyIdAhst7Vzou8Ee0v3qgt9Tg7yxE4pEA7MLq3R6VSrD9rbKWhtxeB2w44dMHEdyzPK+d/X/u85n0e8trta05wzZ84gy3LEEz/a0U5TEeLdp9eXXM+anDVTXhcQpjXLgfhhAl/Ixz8e/Uce3vrwjNUQ0Xi97XWeOv0UvrCPT6+dvtPih71tcqJYKivieC3nBUGIkNI///M/58///M957LHH8Hq93H333Zw+fZqDBw9is9lmTQbuuOMO7rjjjpnfOAn5+fmzDofFg9aH5dKlS/T29mK1WhkcHKSnp4e6ujqampooLCxk9+7dkc8sk4E40BLm2trayM7OnhJPTnZmP1whA4sRz7Tb7TQ0NODz+SJ2yW63OylJfbDw7ZKjoYUEPB4PZWVl9PX1zZoIBMNBXml5BRGRQDjAqy2vsrFgY1x1IB4Z0H6vV9te5XDnYfpcfexZuQedOP/Hr9PeyZB3iLKUMgZdg3TYOqjJrSEsh7k0fIm28TZyzbkxXQE77Z2c7DvJxys/TqYpgYnH60U6fFitSsjMRPL7MZ06heR2E77tNojqO+EJemgZb2F97nokcX47QK1pjiiKlJeXk5aWFuNoN9mwJjq8kJ6ezierPjmnceM9Yz+99FOeufAMA64Bnv/U8wkdxxv08vO6n9Pn7OP5+ue5c9WdpOrjS9AflYV5KZWBRNsXl5aWcs8993DPPfck4ZvFYsuWLfh8Pmpra/nKV74SN3RwNWj37qFDh3jmmWfIycnBbrfT0dFBVlYW27Zt48tf/jI7d+6cYhW/TAYmYXBwkKamJnQ6HVu2bImbMKctXsl8gLUbOdFmG4nA7/dP8dvXjq1J98lIploMZSAUCtHa2kp3dzelpaVs27Yt0sBntjjZd5KG0QZK00sJykHODJ6ZVh2YThkIhAL8qvFX+MI+GkYbeK31NT615lNzOjcNwXCQi8MXMYgG9IKeFENKRB3odfbS6eikMrOS1vFWep29rExfiazInBs8R4O1gbKMMnYWz2yBK3Z2InZ3q6EFnY6AzUYwL4+Uzk6Uzk7kqJhm3Ugdx3uPk6JLmXVL4+kQfT3jOdppFquTs8k1xzWNHFgsloQWhMmSvS/k49unvg3Aa22vcXH4YkIWzf/T/j+029tZnbWaTnsnr7e9Pq068FHJU/gwkIGlsCIuKirihz/8Idu2bcPv9/Pcc89x880389Zbb3HDDfFzeeJBm6/fe+89/vu//5tVq1bxxS9+kW9961uUlFw9CXiZDERBlmXa29uprKy8qre+tmCGQqGkyOjRYy4EGdAk19bWVrKzs9m9e/cUv33twfmwkYHocEdqampMtcdcEhU1VUBAwKw3Y8ZMn7NvWnVgOjLwaturNFubKc8op9/Zz68af8UnVn9iXupAp72Tflc/eeY8HD4H+Sn5dNg6aB1vpWWsBZ2gI8uUxZh3jMsjlylJK6HL3kWbrY0sUxYXhi5Qk1MzozogDA2h6PUQfd/pdCiShDA6GnnJFXBxbugcI94Rzg6epTKzct7qAMx8D+p0uinlZlos2OFwYLVa6ezsJBQKYbFYYsILkzOq443300s/ZcQzoo4l6PjnE/88ozqgqQI6QUeqPhWdoJtWHVAUZcnCBMlemJdiTIgfJoiHpWpfXF1dHekeCLBz5056enr4zne+MysyoJG7z3zmM2RnZ/Puu+9y6NAhzpw5Q1VVFTfccAMbNmwgKytrSifZZTIQBUmS2LVrV0Lvg+SSAUEQInGg+WB0dDSS/Lh58+ZIMs1kRCsRi717WCgy4HK5qK+vx+12U11dTVFRUaz73RzGOdl3kvqRenJScnAFXABkGjOnVQfikQFNFVBQSNWnUpRWNG91QFMFfCEfwWCQcf84Ke4UgnKQI11H8IV9VKZXAqqHfOt4K92Obs4PnUdBoSSthKaxJhqsDTOqA4rJhBgMMpniCOEwcpSlbMNoA8OeYdZmr6XD3kG7rX3B1IHZLpQGg2FKspjP54sQhMHBQVpaWlAUJYYcpKWlxSzM0aoAQEgJJaQOaKpAsUVtEFWQWjCtOqDdLx8VZWCp2hcnQkI+SO2Lr7vuOg4cODCnz65atYqHHnqIhx56iKamJt555x0OHTrE888/T1ZWFtdeey033ngjt99+e4T8LJOBSUikNEwQhKR3ERQEYV5JhFoHRavVyurVqyktLb3qQ6n9LRwOL7plqbZjn6sKEV0BUVpaytatW+PuAuZS9nd55DIp+hQ8QQ+eoCfyukEyUDdSNy0ZiD6X19pfo9naHElas+gtKIoyL3UgrITJMGawNnctDpsDwS2Qb8knNyWXc0Pn0It6AuEAgbDabMoT9HCk6wijnlGKLEWIgkiuOTchdUApLYVLlxBGRlByc1FkGXF0FMxmlAnpUVMFMo2Zkaz5hVIHFqJUUxAEzGYzZrOZgoKCyHGjHRS1BEVQn5dgMMiLfS9GVAENM6kDmirgD/lxBpyR1/0hf1x1YCnIgKIoH7mcgUQ2bkulDMTDuXPnIu3I5wNNdfjCF75AX18fL7/8Mk8//TQ/+MEPeOmll7jrrruAZTIwBYkuGEuVRDjbMUOhEB0dHXR0dLBixQr27NmTUAdFza0rWWZAMHsJUVEUBgcHaWxsJCUlZUYDqLkoAw9sfGDaRLS8lKllP/HIzAtNL+AMOgk7r1zLoBykaayJNzre4OOrPj6r7wRqw59bKm4BYHh4mG662b56O2PeMdxBt/ov5I68P8ucRd1IHVnmLFL0akgox5wzRR1wB914g15yU64oRkpREeEdOxDPnEFsbSWlrw+hspLwzp0oE5OVpgqsyV5Dp72Tdls7oXCI9rFWqswlapLhPBaBxZDQBUHAYrHEJJTKsszZs2fVzm4eB0+df2rK5zR14PLIZdbnrZ/y9zHfGCElNKWjX6GlEFmRGfeNx5AB7Z5MNhlI9piwdGQgkTCB5kESnY8yV7hcLlpbWyP/7+jo4Pz582RnZ1NaWsoTTzxBX18fzz77LADf+973KC8vZ926dQQCAQ4cOMALL7wQKfubLZxOJ+3t7XR1dTEwMEBDQwNtbW2R6jidTkdVVRXl5eWRzyyTgTliKSsKEoG2UDY1NWEymdixY8esb/LFzPKPRrQKkehE4XK5aGhowOl0snbt2ikhgXiIt2ufCSn6lMjimQi040aPsat4F9XZ1XHfuyJt+hK32UCb3LPN2dyz5h5kYn+3IdcQgVAAV9AV0zrYF/TRbG1ma8FWjDojv237LX3OPh7c8mCkRBFBQN64Ebm0FHF4mNHz5zFfcw3GigrgiiqgORie6j+F1WtFHhvl/Lku1o4XI6ZlIO/YQfjaa2NzD2ZxbsmAKIpIkkR2djbpuemUnS8j1ZMaievLsoyiKEhInDl/BmGFEOOgKEkSxWnFvHjvi9OOMfne056xZOYMLAUBAfUZn28797mOm2gC4UKECU6fPh1TCfDoo48C8MADD7B//34GBgbo7u6O/D0QCPDlL3+Zvr4+zGYz69at47XXXuPOO2fXxVIL/Tz00ENcuHABWZZxu92kp6dTU1PDgw8+yHXXXce11147hRwtk4E5Yi679Pki0dCEZqLh8XhYs2YNK1asmNNEsxjeBoqi4Av5YgxYopWBmRAdEoj2fkgE2jiLmRQZTQY0PLz14UWddCefy2RzG6vXSpY5i09WfRIlKvI/7B7m6bNPU5Nbg0Ey0Ovs5dzwOZx+JxeHL3LtimtjB8rMRM7MxDM2hhwlpQblIHmpeWSYMuiwdxAIB8jyiwj9nRh9AqHUMoxWK7pf/xocDsIfn50Skmx7YC2z32Kw8M6fvYMv5OP1tte5vuR6ClLVEEN0guLY2FgkQTE1NXWKg+JMv/1SkoGPSgJhIonXC6kM7N2796okdv/+/TH/f/zxx3n88cfnPa52r61Zs4bq6mq2bt3Khg0bKC0tnfGzy2RgEmbTxviDpgxEmyTN1mEvHhbDGfDyyGXqR+u5q+quyKKlhSSuRgYURWFoaIjGxkZMJhPXXXfdrGN70aRjsRbneGQgGZhuvGA4yHOXnyPblM3nNnwu5m9vd79Nr6OXk/0nuXvN3ZzqO4Ur4CLVkMq7fe+yMX/jFXXgKsgyZXHPmnvwh/z86MKP2JizjtLudlrwUrJiLQYpHyUbGB5Geu89VR3Int7SOR6STQaix7swfIEjXUeQFZn71t4HTJ+gqJU3Tk5QjE5SNJvNMcfXyEcyz1F7rpeiH8JShQlmGlfzVlkIMrDU+NrXvhbz/2jCOW2V3KJ/qz9QfJByBjS71paWFjIzMxes6c5Chwl8IR/nh87TZe+iZayFjQVXsrGvFs93u900NDTgcDiorq6es9KRjIVaGyNZhk3RY8bDpZFLtIy1YNQZuX78+kifgQHXAG90vUFBagEdtg5ebH6RBmsDRZYiLHoLreOt8dWBq4x5efQynfZOVusLMbjrSE1J53i4g43iCsyCHiU3F7GpCXF0FDlBMqD9VktFBnwhH293v40/7Of9gffZWbyT4rTiKZ+JTlDMn+j3oCgKHo8noiD09vbidDqRJCmGHEiStGTugx+F5kjauDNtjJxONdnzg5JAOB9o4SztN07kmi+TgUmYjTKQzGoCiK8MWK1WGhoakGWZjRs3ztnLOtHx5oOWsRb6nf2kG9I5N3SOquyqGHVg8gIaDodpa2ujs7OTkpISNm3aNK/KhtmEI+Y7RrKVgXgIhoMc7T6KTtThCXo43ns8QgYOdRzC6rFSk1tDl72LX9T/grKMMkrTVTnRrDfPSh3wh/yc6DuBWWdGb0wBvY7ioECzfoyLcj87pDLwesFkQjHNfDwNS3Edo0sLLwxfoMPeQU1ODc1jzZzoOxFRB2aCIAikpqaSmpoayQqXZTnioKglebndaqLnxYsXY0ySFrOKZynKCuGDrQw4nU5MJtOiV08lA3P5bZfJwByxFMpANAHxer00NTUxMjLC6tWrKSsrW/CHeyHDBJoqYNFbKLAURIxxNHVgcnvh4eFhGhoaMBqNcwoJxMOiKgOKgtDYiHj+PBXvvovkdMI110ACsbqFGX7qOV0auUSrrZXy9HL8YT/nh89z/fj1pOhTeKPrDXJTchEFkUxjJsdHj5NhzIiUwqUb0mm3tV9VHYhGARmqiQAAIABJREFUu60dq9eKJ+ihIdSOkCcg9vSj6C2cFXvYEchH7OwkvGFDpBxxNlgKZUBTBcw6MwbJQJGl6KrqQCIQRTGiCGgYGxujrq6OzMxMHA4H/f39+Hw+zGZzDDmY3G53PljK2H2yx9XKKBMhA2lpaUlXSxYa0Zud6HOZ6byWycAcodPp8Pv9SR1TkiSCwSCtra10dHRQUFDAnj17pjhJLeR4C7WL1lSBVVmr0Ik60gxpMeqARgbcbjeNjY3YbDaqq6spLi5esIdTi5cthjIgvPce4qFDqjQXDCJeuIDU1cXorl30RSWVJZJQlihebX2VEc8IdxXfNeVvEVVA0KGX9DSPNeMP+zneexxQkwfXZK/BH/bjCrjQCTrabe2sTFsZae2bacyk096ZEBkozyjn/rX3X3mhyot05DBSaysp3jCi0Eu4tpbwpz4Fszj/pVAGNDKgqQJVWapxUo45hwHXwKzUgUSgeYhEJ3kFAoFI/sH4+Djd3d0Eg0FSU1OnOCjO5X5aKrl+qVwPgYTCBB8Uw6H5YK6/6zIZmITZhAk0eS8Z0BKUrFYrqampXHPNNQvS3epqWKgwgaYKaCV6ITlErjmXdlt7RB0QBIGenh6GhoYoLi5etNbJi9Ih0eVCOHkSJSUFiorwezz4yssZPXeOsdFRxM98huHhYVpbW2Mc7zIEgSybDYNOh7JS7SqYKKxeK/sv7ccb9LIpbdOURfPSyCVaxlvIS8mjZayFC8MXyE/J58zgmUide5+zDwAFhfLMcix6C7dV3sam/E2R40zXWGcyzHpzTPtkAD63BaG7G2FsjIDFglJRMeeywmQrA2HCvN39Ns6Ak9bxK/XigXCA9wfeZ3fJ7ik+AgAjnhEOXD7Ag1seTPjaxZPsDQYDOTk5kd4oiqLg9/tjGjRp95PFYompYEhJSZnxen2UwgSagvtRUAZcLhcHDhwgNzeXlJQUUlNTI91AU1JSInktJpNpSonnMhmYI5JZWuh0OiO75bS0NHbs2JGUG3ahwgR9zj7cATeBcIAue1fkdYNkoHmsmUKhEK/XCzAnP4TZYC4uhDNieBjBZkNZtSpy7I72drJzc1ljMhEoLETMzo5JKAu+/z4cPsz46CiiICDl5BDcswfdjTeSlkC8+H/a/odB1yAKCq93vc4tplti/t423kaKPgVnwEndaB2ugIuQHKIkvYQ7V93JloItU44pCuKC9RMAQBBQyspQysri/z0QQPfyy+j+53/Abkfeto3g/fejrJ7aIjjppYWCyJbCLdTmTm1dKwritHkUP7n4E/Zf2k+OOWdK9cZVx5thYRYEAZPJhMlkipugqDXhcrlciKIYE1pIT0/HaDTGXMOlJANL4W2QSBKdw+H40CsDw8PDfO973yM3NzeyPmmKqCRJSJKEwWAgFApRW1vL008/HfnsMhmYI5KRM6CFBHp6eigtLSU7OxuHw5G0iXGhwgSl6aXcteaumBp3UPMeetp7uNR/CZPJRFVV1aKX9SyKMjDRxMdjs9FrtQJQUlJCliyjBIOR3bCWUGZxONBfvgxZWYTXrcPn9xPq60M8fJjOcBhrXl6k4160oY02mVm9Vl5qeYk0QxpGnZG3+9+mpih2V/7Jqk+yt2wv54bO0ePoYWP+RnocPVRlV3Hvmnsx6OauuiwImVIUDN/4BrqDB0EQQK9HamlBevtt/E89hTzRtGWpwgR6Sc8t5bfM/OYoaA2oHH4H+y/t597qe7EYZm6XPdeFeboERc1i2eFw0NHRgdvtxmAwxJADv9//gY3dLzQSbe72hxAmyM/P5/vf/37kPtD+eTwevF4vXq8Xv9/P2NgYK1bEGp4tk4FJ+CBUEyiKQm9vL83NzaSnp7Nr1y4sFgs9PT1JrWBYqDCBXtLHOO2Fw+GIRXJRURFrtq7h3LlzSSnHWwxlIJiXx4AkEXjvPTI2bSIQCGAWRYT+fuRdu8ASuyCIra0IY2PI69YhAil6PVRXIzY2kmM04tm9OzKZj4yM0N7ejizLWCwWMjIy+P3I7+l39rMmew2iIDLoHOSd0XfYx77IGCadCZ2o4/2B9zFJpkiyYONoIz3OnkhVwVJBPH8e3W9/i5KZCRMEUJFlhI4OdD/9KYFvfCPm/YtJgBVF4ZkLz3B9yfXU5tbOuYPggboD2Hw2VqavpNfZy2+afpOQOrCQHQs1VSAtLY3iYjXJMRwOR/IPnE4ng4ODeL1eRFHk8uXLEZKQlpa2YO3R42GpjI4SqSSAD1ZfgrnCYrFw2223zemzy2RgjlgsZWB8fJyGhgaCwSDr168nPz8/MlEshiPg1SCK4oKf48jICPX19ej1+pi8h0XZscfBYrRLbmxsJGfzZtZlZGAcHMTb04MAKOvWIe/aNXWi93jiJtEpRiM4HHENbTQ5uHu0m5eaXkIJKIyNjmEQBDJdChdHDtH+4n+x6trbUSYWgXND52iwNlCSrmbvZ5myGHQNcrjrMJWZlYuvMCkK4rlzSKdOIYyMIK9ciXz99chr1iBdvAg+HxRGxd1FEdLTkU6ehHAYJCkpysB7A+/x00s/5fzQeZ6+7ek5OR5qqoBWeSAKYsLqwGJL9pIkkZmZGZNj1NnZyejoKBaLBZvNRnd3N4FAIOKgqCkI0YrUfLFUZGA2HQs/7GQArngMaOfc3d3N2NgYJpMJs9lMWloaJpNpStv6ZTIwRyw0GfD5fDQ1NTE8PExlZSXl5eVTbuBklzNKkkQgEFiQY3k8HhobGxkfH6eqqoqVK1fGTLjJ6oOwUNUEbreb+vp6XC4XNTU1FBYWIvh8yJ2djBw9SvaOHejXr1cXtIlrGCltzM9XAyaBAGhJkrKM4PGoHQLjfGdNDj46fhSn6EQ0i1iDgwijVmSfD48Y4r9//z0efPEtHHfdhbDjWl5pfYVx7zgCV65zQA7wfv/73Fp+KxWZFfO+DleD9NZb6F54AWQZLBakkyeR6uoIfvazKAaDSpgURQ0TaAiH1aZGk/waFou4BMNBvnnim4z7xjk7dJaT/SfnRAY0VaDIosr12ebshNWBRHIGFhpaDkJ0o5roBEVNkQqHw1McFBNJUIwHbSOT7HNNpEkRqGQgKysrCd9ocRHd6+XXv/41P//5z2lra8Nut0eSBl0uF4888ghf+cpXIp9bJgOTMFs74vn6psuyTEdHB+3t7eTn51+1VDDZysBCjBd9fkVFRdNWCSRTGZjPblMLcbS3t1NSUhLbG8FsRqmpwTE4SKiiQs0liHNOcnU1cnU1Un09Sm6uuvCNjCCXlhLeuHHK+6OxOms1D2x4AADpzGnEkWYCOTk43W6uW1VFZlMQ49GjtBQVIowLrGUtRtmIyWjCZDZhNBkxG9Td63ww4z3vcKA7dEi9JhNKBStWIDY3ozt0iOC+fSgZGQhDQyiFhSoh8PnA4yH0mc/EEoRExpsj9l/az6n+UxRZigiEAxy4fID7DPfNasEadA3yq8ZfEZSDWL3WyOvekJf9l/Zz39r7rtrsaiHDBIki3m7ZaDSSl5cXMS5TFAWv1xshCP39/TQ1NSEIQgw50HaaM52Dljz4QTjXeHA6nQl5+H/QoSlNhw4d4utf/zo33XQTer2erq4u7r//fg4cOEBmZmZMIyVYJgNxkUhcWafTRTqZzUX2UhSFkZERGhsbkSSJbdu2kT2DRetShAnmM97IyAgNDQ3odLoZSyE/DGECq9VKXV0dOp3uqlUPM94/KSmE9u1DKS5GvHwZZBll927CO3fO6Nm/vWg724u2g9uN8VddoM/Ho6Qx5ByiPKcc1oQwNzezxZLGxl3/X8xkbrfbcblc6AI6RttHCaQHIhP6QruuiX19MDY2pTJALixE6O+H1FQCjzyC4fvfR+zoQBEEEEXC11xD8LOfjbx/McMEwXCQH134EYFwALvfTkVmBWeHzlKbVct1wnUJH8cX9rE6czXFlqlGRBnGDPxh/4xkINm75UTGFAQhUpJWOBHOiU5QdDqddHZ24na70el0MeQgPT19CulfKvfBRBMIF6pj4VJDe2Zee+01ampqeOqpp3jsscdIT0/nscce49Zbb+Vb3/rWlNL4ZTIwR2g3V6LJKdFwuVw0NjZit9vjSubTYSmUgbksnF6vl8bGRqxWK2vWrEno/JJFBuaSQOj3+2lsbGR4eJiqqirKysquej4JjZGZSfjjHyd8882gKFfCBdEIhRC6u1UL36Ki2N2yLKv/9Hq1dCgYBKcTtNrhid1mvMlcSybTGup4vd6I2130hD6fBUqZqLAgEIjxFhAmqisUvZ7Qpz+NvGkT0ptvIrjdhGtqCO/dC+YrXRcXM0yw/9J+uu3dpBnT8If9eIIeAuEAb1jf4C/4i4SPU55Rzi/u/sWcv8cHlQzEQ3SCooZwOByxWI6+p0wmUww5+CBbEcMfTs6A9sxYrVZWrlwJqC6XGjnbvHkzVquVy5cvxyQbLpOBOUKTu2azOIdCIVpbW+nu7qakpISNGzfOylhH8zZIVkvX2ZIPWZbp7Oykra2NwsJC9uzZk3Dv8g+iMqAoCj09PTQ3N5OTk5Ow2+OsCMc0O3LpyBH0zzyD2NuLIknImzcT+Nu/VY17ANLSCK9Zg3TsGHqfj4LmZnRGIygKcmUl8jS1/aIokpGREaNqBIPBmHa8HR0dkVhxNEGY3G3valDKy1EqKhCam1GqqlRC4Pcj9PcT+tjHYCI2K69Zg7xmzVWPtRj3ekgO8cyFZwjKQQyygZAcotPWSbY5m9ZAK+8Pvc8N5Tcs+LjxkOwWzaA+qwulBkmSFPee0kin3W6nt7cXv9+PIAjU19fHLZldLMwmTPCH0LFQu5fy8vKwTpQ619TU8Pvf/55z586RlpZGT09PJEFZwzIZiINEJ/NEE/oURaGvr4/m5mYsFgs7d+6ckxylqRHJsvScTZhgdHSUhoYGRFFk+/bts07ESaYykMg4TqeTy5cvEwgE2LRp06waQEWPMZdJXnz/fQz/7/8huN0oeXkQCiEdPYpxYADff/5npBQvfOut6F5+GWN9PYokqcl3sowwMoJ07pyqOiQAvV4/xe0uOrwQ3W0vPT2dQCCA3W4nNTV1ejKr0xHctw/9c88hNDervRskifD69YQ/8YmEr8VihQlO9p3EHXBTklaCTlRDfja/jeK0Yiw+C0YpMRK7EFgqZWAx5xC9Xk92dnZM6LOvr4/u7m6MRiOjo6ORBEXNQVEjn6mpqQtKjkKh0IybEkVR/mDCBNrv+ulPf5pz584xMjLCn/7pn/Kb3/yGP/3TP2V8fJzVq1dz3XWxobBlMjAPJEIGbDYbDQ0N+P1+amtrKSgomPONrv3IyZLbEgkT+Hw+GhsbGR0djYQ85io/LlTlwhR4vaoUn5IyYwJhtHpTXl7OqlWrZn2tJ/++s/29db/5DYLTiVJZGQkNKKmpiK2t6N58k9Ddd6tvVBQwmwlWV+N1ODAUFKDk5yPY7eh++1vCN9wwrfIw0/dPSUmh1dXKrwZ+xT/t+ieMkjEiBdtsNvr6+mhvb8dkMpGRkRGz09Oul1JeTuBLX0Ksr1fPJycHuaZGrRaYDqEQ0rFjSO++i+B0IldXY1zg3VpIDvFSy0tkmDIoTL1S2jjmHSPblM39WfeztXDrgo55NSxFNcFSOAGKoojRaGTVKtXjIpp0Op1OBgYGaG5ujiQoRitTiSQoToePWmmhht27d7N79+7I/59//nlefPFFAP7sz/5sWRlIBLOtKIgHv99Pc3Mzg4ODVFRUUFFRMe8FXHt4Q6HQovj2T8bVwgSyLNPV1UVra2ukYVKiIYF4WBRlYGQE8Y03EC5fBkVBWbsWY14e8jS7/OHhYerr6zGbzXNWb2D+xkZSczOkpsbmCEws6kJvb+QlcXAQIRQiWFuLY3SU9IlugIokIYyOItjtarXCHKAZ8ZzqP8X2ou3cvebuyMTc3d1NTU0NFoslJrzQ2dlJKBSK8cpPT08n5dprE3umFAX9j3+M7tVX1d9Lr8d8+jRr09MRduxAmeSYNlf4Qj4EBNbmrI15PdOUiUEw4Al7krpQyrK8qGY/0425FAQkeg6cLqdF89RwOBx0d3erSa863ZSwVaJz4EeNDGillN/61rfYt28fq1evJhwOU1ZWxpe+9CUAWlpaplzDZTIwD8QjA9oi2dbWRk5ODrt378YclRA1H2j+0slKIpwuTGC1Wqmvr0cQhISqIBLBgvsMOJ2I+/cjNDZCQQGIIuLbb1NgNOIvKIComLrX66WhoYHx8fEF6ZSYsJeBoiCMjkIwiJKVFUmck4uLkXp6Yt8bDqsLZFQzIyU9HcVoRPT5Ysd3u1FSUlBS4zTK8XjUnbrdjpKdPe1O/b2B9zg7eJZAOMAvGn7B7RW3Y9bH3sfxwgs+ny8ykff19dHU1BTTtvdqE7nY1IR06BBKdnbkPIM+H5azZ9G9/jrBL3wh/nUMhxFbW8HrRa6shBkmdIvBwpM3PRn3b4FAgGPHjiU1hr8UpYUfBDIQD6IoYrFYsFgsEbvc6ARFp9PJ8PAwHo8Ho9E4pYIhHqlKxGcgFArh9Xr/IMiAdq5PPPEEe/fuZfXq1VOu+7p166irq6OqqurK55L6Lf/AMJkMaKWCgiCwZcuWyCS50GMmiwxMXqCjQwKrV6+mtLR0wSaUhVYGhAsXEJubUWprI9nsSnY2pmPHUC5ehK1bY9QNLeFxIRSXhJQBqxXp2DHEnh6VDGRmIm/bhrxhA6FPfhLp9GmEgYFIzoDQ349SWEj4ppsih5Crq5HXrkV6/33E1FSVXIyNIdhshO64IyYrH0Do60P/7LOI7e1qiEEUkauqCD7wAMpE8xtQF/Wf1f2MQDhAZWYl7bZ2ftfxO+5ec/eM5611RSsoKFC/oyzHZJprE7mWaZ6enk5GRgYWiwVdYyOC2408kQENgCQRTEtDOnWK4F/+5RT/AbG5Gf2//zticzOEwyg5OYT+6I8IfepTU947GcPuYU4Pnua2itvQibrIuWvnkiz8IeYMxMNcw5vxEhRDoVCEHGh5LX6/P9LTI9pBMZFxnU4nwB9EAuGbb75JZmYmFouFoaEhOjs70ev1GAwGDAYDdrsds9k8pdR7mQzEQaITgbZLd7vdU9z1FuvhXgplIBwO093dTWtrK/n5+ezevTuhrPrZjrWgZGBgQDXzid4RSBKyyYS+txebzUZdXR2yLC+YuhEZeyYyEAggHT6M1NWFXFwMBgPC6CjSm2+imM2Eb7mFwOAg+gMHEHp61O9dWUngscdQJhZZ7XyCDz6IEghgPH0aoaEB0tMJ3XEHobvuih1TltG98AJCaytyVZVayuj3IzY0oHvpJYIPPhh5q6YK5KfmY5AM6ATdtOrATIhWBTRomeZ2ux2bzUZXVxehUIjyjg4qPB7CHg96oxG91uBJllHi7ezsdgz//M8IHR0oJSVqmeXwMPr//E+U7Gw1Z+IqONx5mHd636EwtTCSIzCfxM+54qOSM7CQBESn001JUAwEAhHSabVaI2ErgP7+foLBYMRBcfK5aw3gLJaZG0t90PFP//RPgFrC/s1vfpO0tLQIETAajTQ0NLB+/fplMrCQEEWRoaEhWlpaKC4u5oYbblj0WH4yyYD24L777rsLGhKIhwXPGUhLQ4lzncRgkFFFoeP996msrKSiomLBJ8VpycDE9xF6ehB7epA1l0JAKSpC6OhAbGggXFVF6LOfJXznnYj19ShGI/KmTVc8BKKgFBXhevxxml55hfQ1a1BWrFAd/wRBVQqGhsDlglAIsaVFtTueuEffMvZhKhXY2dCAMDys2iRHqQJpBjVnoshSlLA6kAgmZ5pr4QVPRgbhI0cIdXUxnpGBIIoYwmGMbje2zZuRgsGY50s6cQKhq0s1NtLUn5UrEVtbkV5//apkoMfRw6mBU9j8Nt7sfpON+RsjVQVLIdkvhwnmj3g9PXw+H++99x46nY7BwUFaWlpQFCWmtbPL5SIYDCalzDEZ+Ju/+RscDgddXV3s2bMHUEOhLpeLUCjE7bffzsMPPzyltHSZDMwBWoOaoaEhdDod1113XdJiTZrXwGJDCwkAFBUVUVlZuagPykKTAXndOqQjR6CjA0pLURQFd2srLlnGVl7O9ddfP6VRx0JhSsWCzYZ0+jRSQwMAitkMbvfUTP/UVISxMVXCFwSUnBzCEw/zVSFJuFauRL722shLgtWK7uc/R7pwAfx+NanQalXNi4BhXJyiF50xRI2sI8XvB9TmRueGzuEP+2kbb4sczxV08cuGX/LJ1Z9Uj7+Ai1ckvLB1K7ovfIHUn/2MzOFh5HAYvyQxWF1N7+rVOI4dw2g0RqoXirq7MShKrPrDROVFVKJlPBzrOYbdb6c2p5YmaxMXhy+ytXDrkpGBD4vp0HwQDoeTkvisQbuvFEWhvLyc1NRUdR6IclA8duwYjzzyCGazGb1ez1e/+lWuvfZarrnmmkhb6Nng7bff5sknn+TMmTMMDAzw4osvcvfdVyfQR48e5dFHH6Wuro4VK1bw+OOP89d//ddzPW3++I//GFB9Bu69996EP7dMBuLgapOB3W6noaEBr9dLbm5upPY6WVjsnAFZliMhAY1hl5SULPrEseDKwMqVyPffj/jyy4Tq6rCNj+NJScF9++2kbt++aEQAJikDbje6F19EampSM/sFAbGxEdFmI7RiBYLTqSYRShKEQmrL41kuRlPu13AY/Q9/iHT6NHJxMUpODsLgoJqfYDIh79zJOfoZx4fosXEhv4jrJnIG8lPz+aOaP0JWJv0WDgdZgzZ0b7yBjsVbLMNbtiAeO4Y0MoIUDiMVFjJ2zTVsv/nmSJxYK2/0eDyscjrxDw6in5jM9QYDBqcTecOGqQeXZcSLF+k79xan3b+lKKsAc5bq4KipAx8lMvBhyRmYD2RZjqnW0EIBWjigurqae+65h//6r//iP/7jP+jr6+OJJ56goaGBm266iTfeeGNW47ndbjZt2sTnP/959u3bN+P7Ozo6uPPOO/niF7/IgQMHOH78OA8//DB5eXkJfT4etOt877338sorr3D69GnS0tJ4+OGHMRgMkaqJKY3w5jTaRxCBQIDm5mb6+/spLy+nsrKS3t5exsfHk/o9FjNMMDY2Rn19PYqiRBIgf/e73yUlLLEYpYXhrVtp0+sZfvddCvLyKLnhBtrGxlAW2dwomgwIDQ1Ira3I1dUReV7JykJ87TX0v/61GgvX6dSOhTodcm1tRBmYDaKVCLGxEbGujnBlpVqiCCgVFSjDwwjd3Yzmmjlf0EeRN0hQb+bU2jTWKl4yMVKSVsIj2x6JPjD6//ov9M/9Bux2EI6wxWQi/OUvwyx2HSgKgtUKgYDamCje4ud0Ynj6aYSWFuR169Tr0tPDyt/+FnHvXnTr18eGF8rLMVy6REpjI76cHPyKQmhkBI8k0VtVBW1tkXwFo16P7mc/Q//qqxxP78CePcaG5iGUARsrr9kcUQeqUquSvjAvBQH5sOcMJApt7rrauGazmfz8fAoLC/nJT34CEPE9mC3uuOMO7rjjjoTf/4Mf/IDS0lK+973vAapT4OnTp/nOd74zZzKgdZv98Y9/zJNPPhkh0X/zN3+DzWbjC1/4Atu3b4/pWAjLZGBGRO+Us7Oz2b17d2RXmeyWwrA4ZMDv99PU1MTQ0BCrVq2ivLw8MlEkq7XwQpOB6KZC6/7kTyJZwqLNtujkJoYMDAyoC350SMBoRElLQxgdRSktVUsRi4pQ0tMRm5sRenritjK+2ngx/59YdJlUWiivWoVgsXC6KgWbN0xNThXhqioazC4ujVxiz8qpIQnpyBH0P/oR6PUo5eUgy+jb2kj9138luHHjlEZEcb9fTw/6AwcQL11SM/4rKgjefz/y1lhjH+nMGUSNOE1cr2BFBbqzZ5Heegt5/frY46anE/rqV9H/539iuXxZVVbWrsV5992Ytm/H4XTS3t6O2+0mt6+Ptc8/z0CekWMlENRbaE4BYbiBcKuMLdvMm91vUlld+ZFRBv7QcgamGxOuTgZAXfyjfUUm919YLJw4cSKmPwDA7bffzo9//GOCweCsLaM1YtnS0sJTTz3Fk08+yebNm7npppvQ6XTk5uZy66238tJLLy2TgUSgTQZWq5WGhgYURWHz5s1THJuSFb9frDFlWaanp4eWlhZyc3PjeiIkK2Fxvh0SNUQTm6qqqinljwl7AMwDMWECsxlCIVWibm9HGBkBiwVhZASlvBz5uuvUxEKzWfVCqK9HbGpC9vsRFAU5JwcSKFGNVgaU7Gx1MfV4ICocIjgcDFat4OzOYnL0tYTN6nGz3UOcHjjNhrwNZJomZRi/9hpCIKBWPQCIIr68PExWK7rDhwnORAbsdgzf+Y5a5llYiCJJiJcvY+jtJfC1r8X0JRBGRlBgSi5F2GxG7OyMf97l5QS+8Q2Enh4Enw+5tBSDyUQxoPUQDIVChH/6UwzBIIGUbKrGTQQwoJMkTHYFuUchvGEvuZbcJUnmS3Y1gaIoKIrykQgTaE2KZvpNJ5OBZGFwcDBShquhoKCAUCjE6OjorPMWNDLQ2dmJIAjs27ePgwcPYjQaI9dAp9MxNjY25bPLZCAOAoEA586dw2q1XrWePpk1/ws95vj4OPX19YTD4bhER8NCLdIzYb4KhKIo9Pb20tTUdNWmQjPZES8EosmAXFWFcOgQ+h/+EGFkRO3aNxEGCF1//VTDH5sN6ehRxLo6UBTEtDTkzZvVXfQ0C8bkiU5euxa5pgbp/HnCJSVgNkfMjS5dU8aofxh9UM+oZxQABQVZkWkaa2LHih2xxx4aQplcxTAxnpBAiEw6eRKxpUVd9LXeGunpiI2NSG+8EUMGlKwsBEAJhWKSAnU+H/LV3AcFAaW0lOl+VZ1Oh8lkQmc2sz5zJetZSSgUUu2vB9tw6Eq46F0HXmh1tRIKhRgeHiYjI2NerpqJItm7dO05+yiUM34Y3AcnP78L4XURCARi8iRSU1Mj174EN0AAAAAgAElEQVStrW0KAYFlMhAXer2e1NRUamtrrzoZLFWYYD4e/tE2yYmU1n0YwgROp5O6ujr8fj8bN24kP8pAZyHHmQJFgY4OhPFxlMxMmOglEKMMlJUhDA0hdnejmM0oFov6HocD6dw55B07InK+0NurZvyvWoWyapW66I6PI508qbryVVYm9r10OoJ/9Vcozz2HdPkyjIygZGUR+l//i7IbNrLPNxr3Y8WW4imvyevWRYhJhASEwyAIamnkDBCHhtTPRmf8C4Ka8d/WFvPe8LZtyCtXqp0Oy8pAp0Pq6UE2GAh/7GOJnfs0kKurEQwGFIcDJpzqdBOLsPHOO9mzZw8ej4eBgQG8Xi8dHR243e4YlzvNzGahrYOTrUZo5P6DujAv9JiJ/F5LpQwUFhYyODgY89rw8DA6nW5OpnXab7plyxYqKir42te+hl6vRxRF3G43L7/8Mm+88UbcaoVlMhAHoiiyZoa2qvDhyhmY3I43UZvkZIYJZrtIh0Ih2tra6OrqoqysLK7t5mTMt29ABA4H4rPPIpw/f8X+d9Mm5M99LnaMsTE1Dl5crHYbVBS1tNDnQ2prQzx2DCoq1FCB3Y5SUKDGxrWJOjsbxW5HbG9XEwKnweRzUvLyCP7d3xHq61Nd/YqKID2dUqA0tFJdiL1elJUrYyyOJyO0bx+6N99E7OhAzs5GkGXMg4OEamoI3XrrjJdJ0YxNZDlG2RA8HsKTdydZWQQeeQT9T3+K2NEBwSByRgZ9e/ZQtXV+jYPkzZsJ7d2LdOQIwuAgiigi+P2Et2wh9LGPRWxws7OzsVqt7Nixg1AoFHG4i3a5S01NjXFPjGdiM6vv9hFSBpYqTDATnE4nJRO9PZKJnTt38sorr8S89vvf/57t27fPucW0Vkr5F3/xF3z7299mZGSEQCDArbfeSl1dHQ8++CAPRpmMaVgmA9MgkUVDIwPJzAaey+Jss9mor68nFArNuh1vssIEmnyf6LXUmgqZTKZZNRVaKGVA/NWvEN95B6WsDKWiQiUHx4+D0Yiwa9eVe2d8XI1lWyyxnvk6HYrJhLx1K8rq1SgGAwSD6iI4aZIWDAYUt3va7zLt9RIElJKSGPlc6OxE/9xzKhkIBFSnvptvVh0L40yacnU1vm9+Uy1VbGwEQWDk2msxPv44lgQMqMI7dqB76SWVEJWVgSSp7pAmE+G9e6e8X6mqIvB//g9CeztCIMBYWhpjAwOzrq6YAp2O4IMPIm/YgPj++wiBAOHNmwnv3h3zu0TH73U6HVlZWTHtuP1+Pw6HA7vdztDQEK2trQBTmuhEx2hnQrJzBjTysRSJkh/UPAWXy7UgYQKXyxW5J0AtHTx//jzZ2dmUlpbyxBNP0NfXx7PPPgvAX//1X/P000/z6KOP8sUvfpETJ07w4x//mOeff35O40fPn3fffTe33HILzz77LC0tLZjNZp566imuueaauJ9dJgPzgCY/JSpFLdSYiaoRWjnkwMAAlZWVlJeXz/phTGaYAGaeMObbVGhBEghHRhDOnlW76Gle5unpKMXFCOfOoa+uVl0AAYqLkfPyEPv6kKMWFWFsDNLSCN9xB/LGjepr7e2qF4Dff8VtUJbxusYxRO+Mg0F0v/gF+l//GmF8HGn7diwbNiC0tCAEg8ilpRDPVtXjQf/MM4htbcjl5SpxGRlB95vfqKRgGile3rYN/w9+oFY/SBKNDQ2sT7DaQSkoIPC3f6uO29OjVhPk5RG87z7kaSYlJAmlqgoFkEfjhzTmhIlww9VCDjORUaPRSF5eXoRQR5vYOBwOOjs7cblcGAyGKc2Zppsjkh0mWIpKAkVRlowMJDNMcPr0aW688cbI/x999FEAHnjgAfbv38/AwADd3d2Rv1dUVPD666/zd3/3d/z7v/87K1as4Pvf//6cygq1e7evr4+jR4/icDiora3l4YcfTujzy2RgGiSiDGg3diJdsRYKiSgDWkigpaWFrKysebntJTNMANOTgXgtk+fiZrYgCYQOB/h8MHlnbLEgjI2h83iQtTFMJkL33Yfh3/4Nsb0dJSMDPB4Ej4fQbbdFiACoVrpyVRViY6NKMiQJ21gfP0vvZHfOXmoBFAXj3/89ut/8Rv2QJGFqa2PP888jbNkCFgtKfj6hu+8mfPPNMTtq8dIlVe5fvfqK50FhIYLbjXT0qGrfO3lRCoWQTp1CPHdOle3Xr0ea5UIib96M/zvfQWxqgkBA7Y0wyRf9avD5dMTLVdTr43Oe+WC2Kl+0iU10lz0tvGC32+nr65sSXkhPT48kdSV7cV6qRD5IfmhiNmGChVAG9u7de9X5Zf/+/VNe+9jHPsbZs2fnNW50FcGXvvQl3nzzTYxGIx6Ph3/4h3/g0UcfnXENWCYD84AoioiimNS8gZkWZ7vdTl1dHcFgkA0bNlw1mS4RJDNMAMTdtUc3Fdq6deu8ukFOUQa0B3c2O7P8fHWxHhuD4qiku7ExlPR0wjk5V44LhD73ORRRRP/ii4hDQyjp6QT37SP40EOxx9XrCe/di5Kfj9jSAqEQZ6ozuCQLiPZLrJG3YTh3Ad3Bg2reQWoqyDKC34/O50Pp7yd8yy0Ig4Pof/ITtRPi9u1Xzt3hUGP3k0iUYrGo3gThcGyiXziM/kc/QnrjDQRZVq/RW29RUViIUFNzRRVJBCaT2l9hlnC54MiRfC5enBo/TUuD++4LLighWIhduiRJZGZmxjSC0cILWufG1tbWiEe+oiiMjY0hCAImk2nRVYKl8hiAmev9F2PcD3o1wUJAIwM/+MEP6O7u5pvf/CabN2/ml7/8Jf/2b//Gxz72Mfbs2XNVsrtMBuaJZJcXTuczEB0SqKiooKKiYkEevGSHCaKvZTAYjLg+LlRToYgyMDqKePCgmsAny8jXX4/8yU9CYeHMB0lLQ7npJsRf/lItg8vIAIcDweVCvu8+5PR0ddFFfUjHx8eR7rqLtD/6I7XELyMjpv4/BikpyNu3I2/dis1n48TFH5ETXEGbrY1GayNbTp5UfQsmFmLB60UIhQjrdEjDw4R1OpSyMoTGRtWoJ4oMKPn58f0HbDbCW7ZMyRkQz59Hd+QIckGBqmgA+Hxknj0L774L990X/xxkGaG/Xx1zxYpIDoQwPIzuhReQjh9XFZNbb1VbDV+lA2YwCF6vHqMRzOYrBMvrFXA61b8vJBYr/ydeeMHj8WCz2SLqQUtLC3q9PuHwwlyxVHK9IAhLQkJmun6KouB0Ov9g2hd/9rOf5aGJjcbOnTs5ePAg/drzuEwGZo9EJ4RkVxRMJh9afX1zczOZmZkL3oAn2V0SZVmONIJqbGwkLS1tQc9JFEUEpxPp619HvHhRXeQEAennP0e4cIHw//2/U+X/OJDvvBPFaEQ8fFi16c3MRL7nHuRbblHbBMsyHo+Huro67HZ7ZMeZnp5OuscTabYzbahDFDk/cpER9wg1uTW029o52XeSDQad2pwn8kWuEDVFFK8oHBYL4sQEEHlrbS3h9euRzpxROxSaTIjDw2A2E77ppinqiNjYiOL3xyoAJhOyXo/p/Pm4ZEC8fBn9s88iTJQNKlVVBB94ACU7G9NDD6nmQwYDyDLG995DOnUK/7e/PaXZ0GSYzcokQ0UFv3/hF+1kJQNrtd9Go5Gmpia2bt2KKIox1Qv9/f34fD5SUlJiqheia8bngo9KLwRQwwSJVE25XK4lKS1caAwODrIxKvQIkJqaGiFEV/vdl8nAPJFsMhC9ONvtdurr6wkEAgsSEoiHZIZBtFrYhoYGXC4XNTU1FBYWLniHvMzz5xEvX0ZZs+ZK7LygQG0X/OabyIkk70gSym23qRnxDoeqWUd5Utjtdo4fP05RURG1tbUIgoDX643EkVtbW/F4PJjN5sgkn56eHmmjavPZODVwipyUHERBpCSthDZbG5ev2cu1ZjOCzaaW7UmSuhOXZbXuX3vYnc4pdr/o9QS/+EXIyUE8dw7RbkcuLyd0553ImzfHv14Q18xHEYQp7YqE7m4M3/42wuBgxCRIPHsWw+Ag8urViM3NyCtXXmk37HYjHTmC9M47hKOSrmLGWWSDqHjjJdsNENR7P154IRAIRO6ZkZER2tvbkWV5SvXCbMILH2Tzn8UY96OkDLjdbg4dOhTJlSgtLWV4eJixsTFGRkbQ6/UYjca4BGmZDMwTS0EGFEXh8uXL9Pf3U1FRQWVl5aI9aPM1OUoUWnexCxcuUFJSwubNm+dcZ3s1iKKIuatLXTSjd+V6vZpdf/Ikok4Hw8NQUKBmvE+yBB12D9NkbWJP6R71GFHujdqOTpZltm3bRlZWFsFg8MoEHghQEgqhlJcT1OsjE/3o6GjMRN8YaKTL2sXGwo3IioxBMiAgcIIe1n/5UVKe/K4acpBlUBTCBgPK6tUIbrdaupeWFn+Bzcoi+Jd/CTYbgs+ndlKcLsu9tlaV8G22Kwl/Xi9CMEhwyxYm23FJR48iDAwgr10bISVyWhpiQwO65mbVyTB6rNRUhOFhpNOnZyADycu0T3bToJlq/g0GA7m5uRGHUC28oKkH3d3duFwudDrdlPDCdM/PR6UvASSWQOjxeAiHwx/qnAHtnl2zZg2//e1vOXr0aKRbYzgc5j/+4z/42c9+hsFgwOv1cvDgwZiSWVgmA9Mi0Qkhmf0JFEWJuFV5vV6uv/56Uic1o1loJCNMoDUVkmWZmpoaSmfRpGe2EASBkNEYt3OhYrcjvP8+Qk+PusgHAghvvon84IMoNTWR9z178VlO9J1gRdoKVmWtAtTJrqWlhe7ubjIyMjCbzWRnZ1/Z2dps6F56CensWdV3IDsb6ZZb0N9ySyQhUpvoR8dHabzYiNvp5u3xt5EkCaPBiMFgoFfppfXez1J1zQ50r76K4HAQLCpi+J13WNnZCcEgSmkpwQceiKlUmILMzGntezXIGzcSuu02pN/9TiUY6gXEVltLyq5dU8iA2NmpqiPRC41Gumy2mJDGxAmroYkEYuJeb6xGof5/4bFUZCDRMbXwQmpqasS3PhwO43K5IsRyYGBgSnghWnVaqpyBZBMQbdxEmhQBH+owgXb//Mu//As2mw2v14vH48HtdhMMBnE6nXg8Hnw+H3a7PW7YdZkMzBPJUgYcDgf19fX4fD4A1q1bt6C5AdNhMasJJjcV6u7uXvRzEkUR29q10NoKg4OgueANDSGMjaFUVqKsX68uUoqC0NiI+MILhJ94AiSJlrEW3u5+myH3EK80v8KXdnyJ0dFR6urqMBqN7Ny5k+HhYdxud8REKRwMot+/H/H995ELCyEjA8FqRf/882A0Rureoyf6v8r4K7whL+GQOtG7XC6cLicel4f28+2Mp2eR/ulPk5GeTvbx4+gCAdXzf+J7i6dPE96+PdboaLaQJIKf/zzhDRuQLlxQuwLW1tIeDrMujsyoFBaqHgnRLZgVRfU+2LJFtVX2etWmTKiJi4rJpPZomPYryFgsMn4/U3IE0tKm9DSaN5aCDMx3kZQkiYyMDDIyMli5ciVwJbzgcDhiVCeLxRIpm/Z6vUmpXoAPdpjA6XRiNBrj9jL5sOG6666b82eXycA8sdhkIBgM0tLSQm9vL+Xl5axatYojR44kJcMfFqeaIDrpMTs7O9JUqK+vb2HG6u1FcLlUf/tJi5YoitgqK5H/+I8R//u/Eerr1e+k06ld9TZturKQTTj40dkJvb1QVsbLTS9j99spzSjlcMdh1shr0Lv0VFdXs3LlSgRBYGRkhNFRHe31HnJ+/F2yfvkMOpuVQMEKvDuzMGZnQ3ExSkcHvPEG4euuQ5jwD9dQkhZljRplGKlN4pEytdOnMTz3HIpez2BxMUaTCRNgPnMG3Ztvqtn684EkIe/YofZQmIB87Fjct4ZvuAHp0CHVy2Ci5FLs7UXOycH/yCMYBAHdqVMQCqEIglpR8JnPTG8+BKSmKtx88wi1tVMbFS2Gz0CyDYAWK0chXnjB6/Vit9vp7e3F5/Nx8uTJWYUX5oMPcpjA4XCQlpaWdEfGDxqWycA0mE01wWLsnBVFob+/n6ampkhGvRYSSHaG/0KOpTUV8vl8U5Iep7UKVhT130yTZl8f0ne+g/jee2rNWV4e4QceQP70p6802REE1dnuM59B3rED8dIlUBTkjAyk556bOsbEThtFiagCBakFGGUjLSMtHDEc4et3fj2yq1AUhdGeAIe+1MCjnfeQF+hCO6KhvxfDCz/Dde+fYKgqgawsRKsV2elEmdjBCxONjrR/kxcKQRBISUkhJSWFwsJCpK4uJKORTouFTKORgN+P0+/H4PUiHzzI6Nq1kUk+JSVlwSa8eMeRq6sJar0FurvVZkYrVhD6/OdRNm3C//3vEz58GPHs2StugDt2XNXjQVEUUlJkJoU3Fw1LoQwkq3pBu288Hg/BYJCqqqpIeMHhcDA4OIjX640ktWqJrVp4YT5YqmqCREjIH0olwXyxTAbmCZ1Oh9/vX9BjOp1O6uvr8Xq91NbWUlBQEDNhJDNPYaHCBJObCq1atWqKfDeFDNjtqt//hQtqvHnjRuRduyCe6ZDfj+7v/x7h/Hm1nj4tTU1Oe/JJSE1F/sQnYscQBKisRNaa/wSD8NZbCO3tKNXVV8IEPT1q1cHKlbz83r8y5h2jQCjAGXJSml1Kc7CZPm8fq0yr1JCA10vZS7/iL7tfoyTQFXt+KMiA+fhbsPYBtYFQbi6GzEzCE/4HWmll9HXQSEHcOu2oxSQ9Pf2KeVM4jD81lTFRjJBKURQjVQuLtQsM33AD4e3bVbdBQUCurr6izphMhD7xCZj4LRJBshfnD2OYYC5jSpIUE17QEAgEcDqd2O12rFYrHR0dhMPhKdULZrN5VtdpKXIGFEVJOEyghU8+ylgmA9NgKXwGgsEgra2t9PT0UFZWxrZt2+LeyMk0OlqIMEGiTYViiIfbjXjgAMLly5GuesLrr6u++p///BT3O+H4cYT6epTS0oiJjZKSgtDZifiLXyDfeefU9sLR0OuR9+1DfOb/Z+/NoyO563PvT1Xv6m51S6N1tM2MZiTNSDP2bPYstoEbwIDD6/iSF4fcQCAmxOEmx4STG8g5cDjBgDlxLjb2xcbc9yRkIbFzL0uIAwlOCIsZx3aMPTPapZE0Wka71PtS3VX1/lGqUvUiqSW1Fhs95+ickaalrq7qrt/z+36f7/P8fwidnZoQLplEralBec976Fsc5J/7/plYJEawJIjH68EiWJgIT/Dd/u/ywNkHtF3eyy9TdvVlkoKCgoCYJdMTAXF6gunLl3FKEtI73oHDYsFmus5mQqD/23y9zZUDmpuxejzYQ6Hl15VKYQ2H4R3v4MiRI8bfjEQiBINBQqFQhshMJwj6DPumb4olJSgnT27ub5jwRijbr4SdIgMrLZB2u519+/ZliFrNbanx8XHC4TAWiyWjerAWsdyJNoH+2SmkTfB6niQoFvbIwCZRjF16tsnOhQsX8KzSDH29tAkSiQQ9PT0sLCzQ0tJCfX39qjd2c2VA6OxE6OlBbWvL8AIQenq03X9W2IwwMaHZ6WaJgFSvV5sOkCRwOFZNR1RPnED+wz9EfPllmJ6GmhqUW24h6PXy40vPYElZaKpoyjAKOug/yHRk2jhH1v5+lHSahGXlKQ9VELC73UxduMD1ffuI//u/4/F4jF2avijrNzH9nMzNKSSTqnH8qqqAvRH/mTdh/4e/ReztRXA4tGmFo0czxvVEUTRu3jokSeLKlShDQzGi0QjR6DQAbrcHt9tNTY2b48dLNpQBUSzshM/AG5l8gLYwF3pNs9tSkEssp6enc9oLpaWleL3eDGfRnZhggLUtkIsVUvR6xx4Z2CQ2WxnQWwKxWCxvSyAftpMMbKRNoCgKo6OjDAwMrCtUyFyFEMbHc70ArFZwOhFGRnLIAFVVWmlfkjJ+R4hEUA8dMn62ZjpiY6OW+ofW2hgcHGS0u5u3HH4LH77zw8bvZ+/cjZ26zQYIjLpaOB75j5w/n0Yk9uZ34fjSl2goK6MBbaoiGAwSCAS4ceMGvb29Rknf5/Ph9/uRZR+PPOIiGMR4fgBJSqGk3sHv3AVnxTBiLIbc2kr61lsRfD6EVWxgx8ftfOxjPiIR/f2moijLr8vhkPjDP3yJQ4fUjB3gdi/Qb/Q2wU5ECW+GgOQjlqlUyqgeLCwsMDIyQjqdNkiuXorfzvObTqcLskB+vecSFAt7ZGAFbHWbwFhoRkdXbQnkw3ZqBtbbJthMqFCGZsDl0nb62Uil8krIldtuQ2xuRujv1/zw7XYtSEhRcgSEsPaO0zwumF2p0cv2+o3cnA2vHD+O6vwuoipz2XcbNwWfR2HZNmfKcZDoZx6jwaSIczgcVFVVGWJKfeel+9ZPTk5y44ZCf/9xvF4LPp8Nu91BLBYlHI5it/to/H8/gFAD8tJCLixVD7K1B+abYyRiJRIRcDhUU0FFACwkEhaSSTtHj56lqSmQYYyUTqfp7e2lvLzcIAkOR7brQHGw3cRju4VuO1EZ2IrWhM1my2kv6DPtoVDIMEqanp7OmV7YqsqTXo1Y614eiUT2yAB7ZGDTWG//Xm8J9PX14Xa712wJFOM5NwO9CrEWoy9GqJCZDChHj2L5yU9gYkJzABQEzRXQbkdtb8/9Zbcb+aGHsDz4IEJfn0YafD7kD384w154tXRE0Ernvb29zMzM0NLSYowLwjIJ0Mv0ZhKgQz1xgvg73o2/63tI2Ol0n6U8NUPQto9nqz7E84fezyMNq4v2RFFEkkqx2XxUVGgGhw6HhM1mwWKJI8tBAgFNtOrxlCBJGgmrrPRm9G3N2gPVRA70155KKaiqA6dTXeJXma8lmQSrNfcm//zzz1NRUYEkSYyMjBCJRHA4HBnaA4/HU5RF9RdBQLjdlYHtKNkLgoDL5cLlclFTU0MikaCsrAyfz5eR3hiLxXA6nTmW3MU4vkKj5fc0Axr2yMAqWFFsZsJ6KgORSITu7m6i0ShtbW0b9t3f7jYBrLxj0l0Re3t78Xg8XLhwYcOuiBmVgYMHUX75lxH/5V9gyQsAn08LCGptzfv7aksL6a9/XRMARiKoR45o7QMTVqoM6KOcvb29VIoib1JV7H19qEvWwSqZiYr5iMDSf+D5779BQ8fNCFe7QJZJNreiHjvFXVYr73GqawYjzs3BZz9rIxhc/vuJhI2rVwUcDpETJwLU1JRTUlLCwkKSmRmZa9euMTERMASBfr8/76KskwFtd7h8LrTToZ+Tld+T+muuqKgwbqDpdNoUrhOis3MCWZbxeDx4vV5Die7xOPB61/9+f6OTgTdCZWAt6ARkPe0Fc/VgI2Ox64kvrq+vX/Nxb3TskYFNQt+lr3YTMY/VNTY2curUqU3Fkm63gBDyk4FoNEp3dzfhcDh/qNCNGwh9fZoHfnW1Zum7SoJY9mihetttyK2tCMPDoCioBw6sHTFssWjGQSvAKOebnkdPF4xEIpyOx6l49lnNnRDA6yX9lreQft/7wGpd1gasBlGk/C0n4C3ZdsCFlbxTKYFgUMDlUo2k4cXFJKkUKIpATU0d5eXa+6e01EEqJXD27FnKyyWCwSDBYJDp6Wn6+/uXHlNqkAOfz2eUZW02vXUgIgjasWkkSV2yVhBIpSTS6dwWgxlWq5Xy8nLs9nJ+8hMrwSCkUmkSiYTxJUnTeL0qd90VoaZG6yN7vd6CQmS2E3tkYGuw0sK8UnvBnNyoj8XqpHLNxM81njMbez4DGvbIwCootDIA2oKfPVpj3jWXlJSsOla3HlgslqJ7G6wEsxpYf32KojA0NMTw8DB1dXV5Q4WEV19F/Md/hMXF5ZG+1laU9753OfQmz3OlsgPqKytRKyvzPn5dWFhA6O1FEEVs8bixOx4ZGeHatWvs37+fk1VVOB98EKJR1LY2LRJ4bg7x2WexNDWhvvnNmz8OSYJYDNzuNb10S0qgpERmYWGRWCyB3b4fsBIIKKRS2vsyHhfQc6TsdjuVlZVULp0vVVUN1XcwGGRgYIBoNIrL5cLv9zM1VYmi1JNMmgmOgKpqLQJBYGn6QjbIk2GxLC//TH+PpFIQCgm4XFBWZgU8S18Qi6kEAknc7inC4UXGx8eRJMnYAeo3+Owd4Btd3f9G0QyshUIXZnN7oXrJKlxRFKLRqKE/0BM/9faCeXrB/Bx7bYL1YY8MbBL6my+bDEQiEXp6egiHw7S1tVFbW1u0m5rVaiUajRblb60FvRyuVyLm5+fp7u5GFEXOnj2bEbdqIBhE/Od/1kJz9P6+JCF0dSG88ALqO9+54nMVveKhqojf/z7i00/D7CwIAsdVFUkQeK2yEkVROHPmDGVlZYj/9E8wO4va3o7K0q503z6ExUUsly6R3gwZkGXEF15AfOEFCAbB70c5dw7l/HkthhggGsXyne+w7/lXubezjMvNd9JXUrc0+11DLGYjFoNLl8QMHuH1avwiG4IgGGV6vQyaSqUMciBJc4hiGYuLVkRRzPoS8HqhrMyG3a4lZUajUXp7e7FYLNjt9oz2mFbVEVEUTYyY2ykSkCQX9fX1lJVpx6LvAIPBYMYO0EwO5KVpiO3CnmZga7AZYaZeFTBvpMytqUAgwOjoKKlUCrfbbbx34vF4QaQnEom8IeKLN4s9MrBJCIKQoe43twQaGhq2JIp3O9sE+vMlk0muXbtmhAo1Njau+EETRkZgbi6zt2+3o1ZUIFy5gvq2t+VNqlvRjngTEC5fRvzzP9dyBlpbUWUZ26uvojz2GPWf+hQNb37z8rjgEsFSWF4UBEBwODBm+vJBUbRtsd2+orWu+KMfYfnHf4SSElSfD2FhAcv//b8gSSj/5b/A9DSOe+9F7O3FKqu8Mwlvv/Yk/3TLH/PKuQeIRgXKylTcbrjjDtkYqIjHQZKEPItvfthsNsOzvrkZjh1TmZ1NEA5HiEYjhEJh4vE4drud6uoSbDYXoVApwWDQqKCcOnXK8GswCyr1akE6rSwNgujmSM0DoV0AACAASURBVAC57xWn04nT6cyZosg2RrJYLPT09BTXGGkFbPfi/IveJtgo9NZUeXk5sNxe0N0Tb9y4QSgUAuDVV1/NqCCYJ1/06tl6RdxvROyRgVWw3vFCvSXgdDo5d+7clpWetpMM6G2SV155hYqKCiNUaFUoCpjbK4qieQaIYu7/mbAlZOD55zUxYXs78Xichfl55OpqaufnqZyaQjH7BtTVIYgixGIIJSWajE5RIBTSFuxsyDLipUuIP/sZQjCIWluLfPvtqNnue5EI4qVLUFqqjT2CRghu3EC8dAnllluw/dmfIfb0kC4pISlDVLbhUSL88it/SlfDu5mxNaOqmqdSVdVyGGEkAvPzGz8/zc0Czc0uwIWeiKSLugKBgKE9UFUVt9uNKIrMz8/j8/lwOp0ZmhK7naWqAixRKhRFu9YaQRCX2jPkXYzyza8PDAwQiUSw2+1MT08zODgIkON+V6zxtD3NwNZgq+2Ize0FnVz29/cjSRJlZWWEQiGGhoaIRqM4HA5KS0v5yU9+QnNzM7FYrCiVgSeeeIKHH36YyclJ2tvbefTRR7n99tvzPvbrX/86H/rQh3J+ridJ7gT2yEARIIoiPT09JBIJWltb2b9//5beULaLDOihQrIsc/jwYZqbmwv6PbWhAcrKoLMTYWEBYW5Oa4BbLCjve9+KvfItIQOzsyh2O/Ozs8TjcfxlZQSDQUSbDRYXM82DTpzAcuqUFnRUVqYJBufmUOrr85IBy/e/j+W730V1OongRX2xB/Xn11j8FZn4cS2Jz+WCuvSCRhaW4mWN81RejjAxgTA3h/id75AWBNKqis1mx2q1EFNKcacCNPf8E5cbHiCdFnC7VYq1wYpGId8gjNVqo7y8XItNDoepq6ujrq7O8D4YGhoiEongdDozXBOhFItFJJUSkSRQVWVJiKhFEIO2KKTTGkFYK5QJtPe60+k03nt6/1hvL+j9Y939zjyetpHF542uUYDtJwN61WgnWhMul8t4/0Jme+Ff//Vfefjhh1lcXOS+++7jTW96E7fccgu33norx44dW9c5euaZZ/jYxz7GE088wcWLF3nqqad45zvfSXd3N41LJmbZKC0tpa+vL+NnOxmjvEcGNgFZ1ka64vE4brebs2fPbkn8Zza22nQoO1QolUqtr8pRUYFaV4f43e9CIqE1kCcntZVxlXJ7seOSVVVlYd8+LJOTqKWl7N+/H4vVSmhxEVWWUerrM82DXC7Sv/d7WL7/fW0nL0kob30r8rvelbOQMz+P+JOfoJaXc0Op4VvftiAla2lKDTL5bz/iqbJzqBYrZWUqf/uYm3qnU1t9zeY80Siq08n4wgKN0SiiKGolTEHA51dRFRUxLPD/vC3G0fekePxxKxUVasEtgdUQjcI//qOFcDj3/+z2JAcOvIbFkuDkyZOULRkklS6dQ1i+qQYCARYWFhgeHiYcVpmfb0ZRPDidTlwu15KAS7uplpUpuN12rFa54FCm7MXZ3D/Wb/B6JcNsjKQoCl6vN8P7oBBjpDe6ZkA/39u5MOvXdyfsiLMXV3N74dvf/jbJZJLa2loeeOABhoaG+Mu//Ev+4A/+gMnJyXWNSH/pS1/ivvvu48Mf/jAAjz76KP/yL//Ck08+yUMPPZT3dwRBMCyedwP2yMAqWOlDqqoqMzMz9PT0GLujmpqabSECsLWmQ/lChRYWFtb3fIqCMDsLTU1aRSCZRC0rA4sF4dVXtdS6rPl/KG5lQB8XTNXUcLalBf/cHKrVCoqCd3SUVHs7wrlzmsDQ7BlQWsr8nfci3fGrWotAv6aa35ExCCFMTiIEAgT3t/K9b1qYm9V+/7pQSZk6jZRcYN5SBQhEXRWoHR2IP/2pdgylpRAKIY+OMnLwIKPRKHXnz2N//nlj+FAUASmJYBVx33me6moVq1UTCk5PL79OTTOw/vOTTkM4rLUdlu+XKuPj84yPz9He7uPkyZMr3sDz9Wzj8ThtbUEWFuYIhUJEo1FsNptR0q+o8OF2e7BY8hsj5Qtl0jUJupAw324t33ia7ngXDAYzjJF0YrCSMdJOTBPsxMK83WFMsP1koJBpgmg0Sjqd5n3ve58hhl5vFUOSJF555RU++clPZvz87W9/O5cuXVrx9yKRCE1NTciyzM0338yDDz7IySIGfK0Xe2RgnYhGo/T09BAMBmltbaWuro7XXntt2+yBYWvaBKuFCq1b5R8IwPg46uHDZATRKwpCdzfC+LgWM5yFYpCB7HHBlnvuwd7eDv/zf6L852uoikqotonOE29DuLpAaWmaigovjY3aSFsgAE88YSUQyCV2fr/KRz+a1giBy4VqtyNHk0hJrV9ttYJHjZPGjmx3oaY1PgEgv+tdkEwi9vSgjo0RSqcZLy+Ht76V8zffjODxoL73vQiBAKrViiDLIAjId92Fcv488etw7ZqYt7Di82mkYCPQlf+JRILR0VGiUYXGxkaOHHHkbUfMzmqCxVwI2O0lHDlSAtRqr1mWjcmFYHCBwcFhenpSxo5dN0fK1h6AdiMfGxvjxo0bHDlyJCe1ccVI56X/d7vduN1uamtrjb+ni8sCgQDXr1/P8M7XScJOCAi3+/lge8mAfu12o2gxvFQaMwsI10ta5ubmkGXZGIXUUV1dzZTuV5KFtrY2vv71r3P8+HFCoRBf/vKXuXjxIpcvXzaSRrcbe2RgFZg/pLIsG7P19fX13HTTTUYlYDuzAvTnKxYZyA4Vuu2223LKqet+PodD20ZneyFIkrbTXqEvtlkyEAwG6ezsRFVVY1yQdBrh3/8daTZIX7SRZNqKJZQmPNHN041vIaiWYLfH+OAHX6WpyU06Xc70dD2lpXY8nuXrH4tBILA8068eOIDa3Iz9pS5sShuC6MRDhBqm+VfHu4gIXhRF24FPTYHT6YNf+k3UI70ERn5O0uXi0JveRJm+sz55kuS3voXtyScRX3gBpawM+b3vJf1bvwWCQEkJHDumYLOpGb5N8bhmUqSbE60XqqowPT3L1NQUFRUV7N9fQzBoAXKv9+wsfPrT9hU7PT4fPPighG4LYbFYcqoHU1NJ5uZCzM+HGB6eJBodXKoyeGho8OD3+7FYLPT29iJJEqdPnzbCkcxVhOz3o04OVjNGKisrM1oe2d75Y2Nj9PT0ADA6Oko8Hi/YGGkz2O7+/U6RgRUdO7cQhVQG9MTCYpyPHGvyVVpO586d49y5c8b3Fy9e5NSpUzz++OM89thjmz6WjWCPDBQAvSVgt9u59dZbc5Sn25kVAMu99c3eSAKBAN3d3ciyvGqo0Lp7+W436pkziM8+i+r1alvPVAphaAj1yBGtYpAHGyUD6XSagYEBxsbGOHToEIcOHVo+L6+9hvDjH5Os3M9giR+bFZyiRHvwKm+1vsILle8mHvfT1uakpGSRoaEIc3PzxGIx/H6roVC2Wl2AqVpgsSDfey/S7Deo/9kQflkhjZ3/tJ/jB7a7iIYF0mktTuELX7BRUgKxWBRBqOTTnz7HmTNNuSXq48eRnnhixdfpdEJ5eWZOUySi5TFtBNq46Cg2W4rm5mY8Hg+r2VdIkkAwCE6nmkM+YjEIBoWlqkH+aZFAQOCrX/USDHoBrd+vqiqSJGG3x3nPezSyrRtcVVVVGWOOLpdrRVtlc+6CjmxikP05yfbOB23Reumll3C73YTDYSYmJkgmk2saI20GO0EGCknyKyZ2QjxY6POGQiG8Xu+mrmdFRQUWiyWnCjAzM5NTLVgJum/LwMDAho9js9gjA6sgHo9z+fJlAoFATuncDKvVmuuct4XQ2e5Gx3VSqRQDAwNMTExw8ODBzMUzDzYUY3zXXTAzg3jlijaDLwioTU3Iv/7rmbHEWc+zXjIwOztLV1cXLpcrb7ogfX2oySRKbSkCAjabisVuR0mWcCT0cy43vZt4XFgSx3lxOqGuzobPJ2GxJIjH4ywuLhIIzBCNuujqmiMWWzI2qa5m/kMf429/MMRCLELAVsF122FSssVoD1gsUFKSQpYXAAuqWoXFUsHkZObrsNvVfDIKJicF4nFtfDAQ0H6WTGoFlo1OriqKwvXrYwwPS9TU+GlsrEQQLESjmt5zLZSU5A2OXPN3JYm8ZCIWsxOJWEgkFJxOK8eOHQO0Ss/Y2BhdXV1YrdaMzIXS0tKMXd9aoUywdvXAYrEgiiJVVVVUVFQsvaa1jZFKS0s3rBfabo3CVo/4rfScO0UGCq0MbIYM2O12Tp8+zXPPPcc999xj/Py5557j7rvvLuhvqKrKa6+9xvHjxzd8HJvFHhlYBaIo4nK5OH78+KpzzFarlfhGm7YbgP7BMlsEF4KNhgptSOVfWory3/87al+fpnjzeDQ3wlWebz2kI5lM0tPTw9zcHK2trRlEzbwQWHTjoKwPu6DKyJbVrqkNj8dmuJ6VlSlMTaUpLZUIBhe4fv06qVSKaLSSLssJxuxOVFVASAsoyrJWwGpNI0mzVFe7CYdLefFFC5/4hJLRKRFFqKyEL35RyiAEk5MCH/ygnXBY41MzMwIWi0YwnE74b/8tzXrv65FIZCmHQaW9/WZk2Z1T9vd683pCFQ3ZZCIUCjE1FcHlcnH+fLtxAzfv2PV+fzAYZHx8nEQigcfjychcKCkp2XT1ILu0W6gxkh4QtV5jpF8Uk6OdIAPpdLogzUAxLOI//vGP8/73v58zZ85w/vx5vva1rzE6Osr9998PwAc+8AHq6uqMyYI/+ZM/4dy5cxw5coRQKMRjjz3Ga6+9xle+8pVNH8tGsUcGVoHT6TR2KathPcmFxYB+A1vPc64ZKrQKNqxRsFo1ApAvcjgPCqkMqKrKxMQEfX19lJeXc9tttxnjQ9k7QkEQUDs6wONBnJ8FtJKdXYogKmmuV58t+KXoY38NDQ1UVTUYPefOzgh2u0JTUxBRTKN5+9sZHi4BFE6cCHDwYAWybOM//kMkEBAYHRUyJgy1y6DmlNjjcU3x73AsT2Xqvk3RqFYpcDq1x83MQPYlsttB7/zowsrh4WEaGxs5c+YQiYSFdDr3ulqtq3K2oiGdTjM9PU0wKLNvXzUtLVV5SYjFYsHv92dYX+v9fp0c9PT0YLFYMnwPfD7fqtUDM1nI95hCjZEkSTKqB2ZjJLNQciVjpJ1oE/wiVAYKHaEsFhm49957mZ+f57Of/SyTk5N0dHTwve99j6amJkDToZjPeyAQ4CMf+QhTU1P4fNrkzk9+8hNuueWWTR/LRrFHBoqA7SYDUPgCrSgKw8PDDA0NsX///g3ZI6+XeGwUa1UgotEoXV1dRKNROjo6MvpxZmtc/ZgFQYBjx5Dvugvx//4TTaEZxCgIVis9NXdwxXdbXk9/yPX6z/5e7zk3NLioqbETCpWgqiqpVJpQKIGiKDgcMnZ7goWFFLLsJJEoRRCEDO9+WdYW89U4kNOpLewulyZIVBTt9wIBjVRcvizy8MP2nO6Lw6FNP9hsEfr6+lAUhdbWWygv92KxbM+CvxLC4TAzMzN4PG7q62sIBKxA4a02fcduDrMxTwtMTEwY1QMzOXC73XmrB6lUiqGhIVKpVEbuwlraA9DKxLrFM2DkOOQL1jFXDzwez46QgZ2Y998JAgIU3CYoBj760Y/y0Y9+NO///ehHP8r4/pFHHuGRRx4pyvMWC3tkYBWs1454O1GIaLGgUKGVoKpa8uClS1SPjRFqbIQDB7Z0BdHLtNmlWjOhqaury4iAzq4G5KiWBQH5ve8l0nCc//xcL8lwihveFq75TyMHNVLk96vY7RqJ0LwEVAIBIWdcT3tc5s9qauDxxyWSSYH5+fklEyofTz99jMpKG2VllSSTSYLBNOl0GkURSaViyLKIxWJBEKyo6to3SpsNDhxQURSNmIRCcN99aVwulYcftuPzZfbh5+fh+edFrl+XSKeTuN3teDweBEHA71f51KdSrKAXXRP5CNRKpCob6bTM9PQMghCjuroaj8dDJLKx4zBDFEVjwdcd37TzHjT6/b29vRmP079isRidnZ3Y7XZuueUWXC7XqtWDtbQHgiDg8XjweDw5xkihUIj5+XmGh4eN6tX09DSCoOlWttqB7hdFM6DfjwupDOwlFmrYIwNroJAY4+0ODlrrOSVJore3t6BQobxQVcSvfx3LX/0VRKOUShJuVcXS3Y38+c+vGEG8WejHaN69BAIBurq6MscFjcNcoRqQ+4fxXWznXX/dnjUjr+1E7XaVpU0dfj989KNpenogFsv8WzabVo7Pfvnl5dr5DgbnuXixFUXZz7PPiqgqJBI2wIbNBlariMUi4HA4EASZVCpNMpkkHrcSCqUYGZnC4SjB7/fnrd7oP0qntX/v26dVC+z23D784mKKcFhAVWMcPlyGw6GxGC1KeHXV/0qw21V8Pm1qIJ9Y0OfDIFX5MDs7y/Q0+Hw26uqaAAuRSOFEYr1wOBxUVVXl7fcHAgEmJycNrY/X66W2ttYQ9GVXD7JDmfJpD1YjCCsZI7366qtGCyfbGClfLO9m8YvSJih0nLGYlYHXO/bIQBGwW9oE+frpLvNQeoEQ+vuxfOMbqHY7NDSQisWQwmFKXn4Z9ZvfRLnvvmK9jAyYyYCqqsa4YHNzMwcPHlxOFzTdkI10wQKqONqCv/YCODMD99/vyCEDACUlKv/n/yRpaVkWZPb19VFWVsaFCxdwOBzMzrK0aEIiof2NRAJkWUvwS6etWCzWpdcMoqgtQMlkkv7+cWKx2NJ4WxWS1IIsC4AFWPs1qqrK4uIiMzNxRLGW+vp97NuX+Xsb1bpWVmo+AvlNhzQioHsMmKGT0+vXQzQ2nkWWPTmiRY1IbOy4CoW5319eXk5nZyeCINDQ0EAymWRqaor+/v6l48msHtjt9hxjJJ0cFGKrnA3dGMlqtdLY2Eh5eXnBxkhOp3PDosNfJDJQiD9EOBw2LLZ/0bFHBoqAnSID5ucMh8N0d3cTj8c5fvy4sRvaCISXX9aUay0t2veCgGKzgduN+MMfbjkZmJ2d5aWXhrFYSmhtvQ2Ho4QbN7TH2O0q5eXL1YBCicB6EIkIxGLaGKK5aptIaNWCSEQgkYjT09NDKBTi6NGjGfqFykr4whcyF83pafjMZ6y89JKF2dnln6sqyLIIOBHFVpqaWpEkiXA4zNhYnGQyzdycRCikYLNZsVotpNN2VDX3o5tMJpmdnQGgqkqzxxaE4lastMW+8IrC7Ows3d3d+Hw+3v72s9x2mwNJytUG2O2ZZpVbBVVVGRsbY2BggIaGBpqbm3OqANFolEAgYAgCY7GYMS2gjze63e6M6s1atsorVQ/M0wSFGiPpY5Y6OViPMdJOaAZ24jkLmSQAbbpmr02gYY8MrIFC2gRWq7UoJkDrga4ZkGWZwcFBI1To9OnTm3dM029iSzcp/Ryoopg/5q5IkJbs/S5dGuCb3zxHKpWpT1BVldJSlc9/Pk1VVfFJQDacTnLMdbQRvxmCwU4qKyu5cOECi4s2xsdzj8XsHSCK4PMJlJVpGQP6OpJMapWIZBK+9CXbEvmwAW4SCQiHRSorXaiqQjwuI8tpZDmJ0xmmq6sHv7+UWOwgiUSCdDpEaakPv9/H3Nz2ur1lI5VK0d/fz8zMDK2trdTW1iIImVMU241EIkFXVxexWIyTJ08azohmmIOQGpbCqSRJMrQHMzMzhjGMvhjr440bqR6sNlq4kjGSebRxvcZIvyiagfVUBvbIgIY9MlAE6G+6dDpdtFz1tWCxWIwQFofDYYQKFQPqTTdpzejFRSgr04rT6TRCKITyK79SlOfIeD5TewOgre0mUik3Ltey9a6m0Nb61amUiPk+py2muTc+hyO/kc9GoSgKkiQzMTHB3Xcfp6KigpkZ+OQn81v0OhzwP/5HiooKbQxQFFXSaXGpLaA9xmrVfANsNk2L4HYvE89YTOD4cYU//uM0NTX6zy2ABUGQKSmpZ2BggXR6jkjEiig6kSSVUCiKLDuw2USSSTIEelvVnzdjfn6erq4uPB4P58+f39FYVsj016iqquKmm25aF2G22+1UVlZSudQD0acF9OrBwMAA0WgUl8uVQQ48Hs+K1QNZlhkfHyeVSiGKIpIkFRzpvBwZrUE3RgqFQjnGSGaCYLPZdqxNsF33RR2FVgb2NAPL2CMDRYDeG9wuMpBIJAgEAiSTSY4ePbqiM+JGod50E8q73qVFEM/NYQVcoRDqqVPI73lP0Z4HlscFY7EYx48f58qVK8YN1OXSF0cVrTgjkEzqUx7a4jgzA3/4h3aCwdzX7/Op/NmfSUUhBJIkEY+nEAQnJw8fpOr6IOrsLJK7bclVT9MT6FhcFHjxRZFPftJutBoikWWXvhMnNOOhaBQiEcuSdiDb2U8lHhdobFSpr8+sTimKjaGhMMnkDT7xiRIqKyuWkvoCSzvGGIlEE3NzDoJBOzabDbvdhihaKCtTVxX6bRS6LfTk5CQtLS3U1dVtux99NlKplBHA1d7evqn2mQ7ztEB9fb3xPHr1YHZ2lsHBQRRFobS0NMMYyeFwkEqljPf8qVOn8Hg8hg5mvdoDWNkYyex9EI/HKSkpQRRFRFEkHA4b0yVbjZ2qDBRKBvYqAxr2yMAaKOTDIgjCtkwUmEOFnE4n+/fvN0qZRYUgIH/846g33YTwox8hz88zWl7OkY9/PG/08Eaw0rigroUw3xwFYeXrkEwKBIPCksXt8gI3NSVw/brApUsi2fbgXq9CR0fhxxmPx1FVFafDyT2hb3D0gScRE/OoFgv++qNUJR4k3HA0YyGPRlXSac16t7x8Wd8Qi4lEowIvvyxgtS77BQC89JLIW94irxk6FAwG6erqQhRFbrnlFrxeL9PToKo+XC4f1dVw+LBKW5vEwkIYSVpEFOeJRqPY7Xb27fMQiXiwWLQdYzF2igsLC0b09blz5yjZaHJSETE3N0dXVxc+n48LFy5sKVG32Wwreg0Eg0GuXbtGJBLBZrORTqfxer20t7fj9/szzn8+Y6T1hjKZqwI6WdGNkUZGRkgmk/z85z8Hlo2R9ArCVpyjndIMrFX9UVWVcDickzXzi4o9MlAkbLWIUF8A0uk0p06dYmFhgWR2KmAxYbWi3Hkn3HknkWCQ0f/8T44UiQgEAgE6OzsBcvwPBEEwjQuunPqVD5rqXlPxv/iihXQafud37Dmudk4n/MM/JFYlBKoK4XCaaDSJzWbDZrNzIfAsvx96iEhSZcpegUVN47/xKh9Rfp/fvvEd3P/Fk7OQO53Lu31zid5qXbb81V+iJOW6CGa+Pi05c3R0lIMHD3LgwAFEUWR6Gj72MTuhUPa5cgBeSktVHn20iYqK5UjhhYUFIxTI6/Uau1e/35+TWrkadM3KxMQEhw8fpqGhYcerAbIs09/fz+TkJK2trezfv3/bjynbayCdTtPT08PMzAxVVVXIssyVK1dyzr8+LVDMUCZYNkaan5/H7/fT3NycYYx07dq1FY2RNksWd3NlIBKJ7LUJlrBHBtbAThsP6aFC4+PjGYl8wWBw27wNNpRNkAcTEzLd3cNMTk7S1NREQ0MDi4sCi4vaDrq6WsVms9HX10c47AQspNM2g+HHYtp8+/g4pNPadblxQyAQgIEBEX30TpaX05MTCYF9+1T0+0IqhSHMg/yvSVVDWCwe4nELNlsJiqL13u+J/A02JBYdjdhsIONg3uKgITzC7dF/Jiz/6qqvX7+nCgJGfoF+WvWfRaPL5CAW09oi4+MCgUCY/v5+RFGkpeX8UslXe1wyKRAKadWR7EnSeBxCIYFkUsgbKRyLxYxRtqGhISKRCE6n07D/XW1B0D0gbDYbt956a0E5F1sN/Zjsdjvnz5/f0GjtVhxTZ2cnLpeLixcvZthn6+c/GAwa59/hcGSQg2KGMimKsjRlUrgxktfrzdAerFcDslvJgF4Z2GsTaNgjA0VCsclAdqjQxYsXM26222l0pD/Xavnca6Gzc47f/V078Xg9bncLomj+oKp4vSpPPJHk5MmT+P0R/H6VhQWJubkYgqCVYVXVztCQi098wobdrh1HMgl9fdoooNerYrNpC755Jt9uz5xhXylgUt/lBgLjPPlkG6lUHanU8jU99z+GCE+XGGFBALJgBQSqUxNMx5YX8ng89zw5neD1ai2Dm29WKCnRjv/yZXHJh0BrGehEJpmE7m6RBx5IoygWnM6TOJ0OQKC0VOUrX5FYEpkDmsZiPWmC+qy72+02Zq31BSEQCGT0vrMTA0dHRxkdHeXQoUMcOHBgx6sBiqIwNDTE9evXaW5upqmpaVcc0/DwMCMjI3mPKd/5T6fTRq9fr96k02ljMd5s9UCW5RXPy0rGSDpB2Kgx0k5MMKTT6TWJYDweJ51O77UJlrBHBoqEYpKBWCxGd3c3oVCItrY2YyzLjGyfga1EPmfAQqGnC3Z2RpHl81RW2pd2r9qiqKrq0u5V28U7HA7a2hw8/jhIkmASQy0wOJjgS1+qX/KPF7BabQiCHUFwoKoCoqgt0uYihqpq05D66dO9/bOh97ztdjvnzp0jFHJz//2ZpXd/8BCt0svMKAI+n4pFBIuSRhRUbgj7cxZyq5UMNX80qp/P5bHFkhI4d04hFNImJT796TR1ddq56e2N8IlP2HA4ZCoqPFit2rmPx1Vjt79eF8G1kG9BMCvne3t7SSQSiKLIvn37sNlsRKPRglP6tgKRSITOzk5UVTU0FDsN3eI4nU6v65isVmtO9SYejxvVA31Bttls66oe6NoXXT0vSVJBtso6WamtrQXYkDHSbq0MhMNhgL3KwBL2yMAa2M42QXao0E033bRiqFAh2QTFgnl2utAPtaqqjI+P09fXR0VFBWfPnsXhcOByqUa8gb6DAUgkdOtQ7ftlcxsB8AJeamoE/vIv7ZSWprHZJFIpiVAojKJYUFUbkiQvOfxltgzm5gSjpK4oGkGYn9e+19swU1NTGT3v2dnc0vu/1/86h7pfo0qeRJbLsCtpvIlZJksPcL35Tj7zmeWFfXikCQAAIABJREFUfH4ePv95G8mkwMLCsguhomgjh+bT6HRqJCWZhNpaldraNIODg8zMzFNScp6aGjdud+b7cKXdfrGhl5NLSkpIJpNIkkRTUxN+v38penjKGGUzm/Loo2xbCVVVGR0dZXBwkMbGRpqbm7d9B5rvmPTxvv3793PkyJFNLYSCIFBSUkJJSYmxIMuybFQP9AU5lUplpCT6/f6M6sHMzAxdXV1UVlZSW1tr5ICsV3uwljGSniBpNkZKrVSK20IUSgbsdvuOj77uFuyRgSJhszv1hYUFQyFeSKjQdrYJ9JuCLMsF3eCj0Sg/+lE/waDE4cMn8Xr3MT6uLWCJhD6Cp40LbmQ3abFYDDMWLc1PaxMoiogkKaTTCmC+kamoqvY8qqp9JZMCs7Oz9PT04Ha7V+wva+ON2r9fq/9lvjwyz2/Gv8b+xByqxcJg6Sn+ovlPSFn91NZKxghgfT38r/8lZfgfTEwIfOpTNlwuFVnOnP/XLYKDwSBjY1ex2WycPHly6UZV2O4/n83wRq2HzTDvvM+ePWvspFby/L9x40ZGYqC+g13JCGcjiMfjhuPmqVOnMjIrdgqSJNHT00MgEODEiRPGZEGxYbFY8i7IevVmdHTU0HKUlpYiSRLRaJS2trYM69181QNVVTPuY4VUD9YyRlIUhZ///OeGMZJePSjm+yEbhUwThEIhvF7vjreTdgv2yECRsNHKgDlU6PDhwzQ1NRW0u9luMqD3G1eDXtl4+eUJHnnkPKmUy/igSZImhHM44OJFbbddjA+h0wlHjqiEQtDUBF6vSDwO3d3LynxZBkFQ0KsFggDT0wNcvTqyYhsmH0SLwN+7f4tvCb/KO5q6UZwljLjbUQWR0lIVhyNz0dbWyuWfaY6EWol/cTHzb6uqisUSoq/vMmfONNDU1MToaGG7XIdDc2YMhfIHCOU7tkKgqiojIyMMDQ2tuvM2j7Lpo67JZNJYnPTdom6YYy5vr3fXrKoqk5OT9PX1bchAaKugGy2VlpZy/vz5bTXZMS/I5urB9PQ0AwMDRkWvu7ub0dHRjOqBy+UqeiiT2RhJVVVmZmY4c+aMYY40OTlpiGHzGSMVA4VUBiKRCJ58IptfUOz8p2iXYz1tgvWM+pld98rKytYdKrSdmgH9+VabKDCPC1ZVneL6dfdSApz2/7KsEYJUSosGdrk2TgSyXfQURevD67t+pxMOHVIYHdWcCjs6VBwOZanfmSIaVfF6J7FYLMzOzpJKpfD7/Xi93lWJmNMJx44pLC56ed+fnVqqAmjXwOFQc/wMslFdDY88IuW4JQaDQfr7+3G7Ldx++6kcVX727j77++pqePTR3L+ro5Bjy4ZuBpVKpTh9+vT64q/REgOrq6uNzAZFUTJK22NjY0iShMfjyRhrXC2Ex7zz7ujoMBwBdxLm0crdYrSk31sGBgY4cOCAEfKll/MDgQDj4+N0d3cb5Xxze0f3+4DNhzLpGwiXy0VpaWlBxkhmcuB2uzfU+tmrDKwfe2SgSLBarUR1hdgaKEao0HbHJq/0fOl0mv7+fiYmJjh06BAHDx7kZz8TkeVMFX86rS3iqgrRqJCxUy20lG3eAZt5Vzqt7bpTKYFQSPuZfqhWq7aIa/+fQBAUXC4Pzc0XaGtbNFTbQ0NDhmre5/MRDlegqrkrqMOhfe3fr9LYuP7dtrY2qkvHKDMwMMDs7A3OnGmmsbEx48a02o4/e7dv/rubgR7kMzg4SF1dHYcPHy6K+EsURWNcsampKaPXHAgEMkrbZnKgmyLpgUd+v3/bd94rIRKJcPXqVURR3DWjlZIk0dXVRSQSyWmf6E6F+QhaMBhkYmJixfbORkOZdL1A9ntoNWMkPQNicHAQ2JgxUqGagT3x4DL2yECRUEibwBwq1NjYuKlQIT0caTPjfuuBKIo5ZGBmZobu7m5KSkq4cOFCzs3QYsk01tFzjsLh3IpLaamK07n6YlZTk9uH17GwAGbB9muvidx/v510Gl55BRRFQBS9gAVFgd/7PSuPP15BVdU+PB7d9jhGScmCMfMdCrmQJPB4RKxWK1arDUkqjipan15wOBwrLiQ1NfCVr+R/vQ6HmjFWWAzE43G6urpIJBKcPHlyS/vwK/Wa9bHGQCDAyMgI6XQam81GKpWivr6eAwcO7DgRMCcfNjU1Gd4fO435+Xk6Ozvx+/2cO3duzZK7maDp0AmaTg56enpWFIcWUj2IxWIZRmKr2Srrxkj5XBxDoRBDQ0NEo9E1jZF0clIIGdgNkye7BXtkYA0Ua5pA39kUK1RIf6MXms61WZjbBIlEgt7eXubn52ltbc0ojerTAVq/0fz72ox9PA6f+ESaM2cyWw5OZ2GLm/aYXNLQ1JT5/eysgiCoKIomVrRYLEvpi5rPwNCQyEc+Ysd8v/R4HDzzjJv29nrKy6Guzsbiokw4LJNOp5FlLUymtFQjQj6fJohaz845ndYmBW7cuFGQY99Kr7eY0MvK/f391NbWcvPNN+9IHz5bGLe4uMjVq1cNs6TFxUXGxsYMUyR9cSqGS16hSCQSdHd3E41Gd41wUVEUBgcHGR8f33SrIl/1QB8lDAaDTE5OEo/HcbvdGdWDfJHOuk+KvvNfr63yWsZIug9DtjGS2621KNd6D+9VBjKxRwYKQCExxiv18BOJBD09PcbCWaxQIX0BKqQ3Vgzor29sbMwYF7ztttsyrGt1Rq6fBkXJTTwWRW187sCBrVvgVFVFkm5QVlaN1yvi8zkQBI0UxOPQ1SUax6b9XCMIsZhg6BFqa+FrX0st7cpFwG70OZPJIHb7AleuDJFKpYwwGv3GuJKdrz4xspv8+/XFLRKJcNNNNxn+AjsJRVG4du0ao6OjOWY96XTaaC3Mzc1x7dq1jPaOOU642NArYRUVFRw/fnzLRycLQTQa5erVqwBb0qowVwV0JJPJDHLQ29ub8Tiv18vMzAxzc3N0dHRQVVWVUz3YaChTPh8M3YfBbIwE0Nvba1Qy8hkj7VkRZ2KPDBQJ2ZUBVVW5fv06AwMDVFdXc/vtt6/L830t6Olj26UbUFWVwcFBZFnmxIkTGTqH7P5hSYkVq1VbbM0cSpaXe/hbhUgkQldXF9PTdtzuJnw+MSMvYHFxmaCMjwuYnQoBXngBjhzR/q0Js82kZdnzAOqNG5Fe1tbDaFwul0EOdK//wcFBJicnd41/f7Yqf7csbvoYI2iLW7ba22q1rmqKpMcJl5SU5MQJb/Scp9Np+vr6mJmZ4ejRo0ZbYyehX7/e3l7q6uo4cuTItlVHHA4HVVVVeUdL5+bmGB4eRlVVXC4Xs7OzSJK0ZqTzRkOZ8vkwRCIRXnrpJUpLSw09SiqVMrQQgUAAj8dDMBjcqwyYsEcGigSzCVB2qNBW7ba2KylR65+HKC8vN9IFgQx2ryiK8YGtrob2di0m17zwJxKaq2BVVfGrAhMTKgMD44yPj7N//37KyxuRZQuSpGaQgbX8T4JBESjsnJpvRGY7X33nqhvyKIqC1Wqlrq4Oj8ezIyluZiSTScPhcreo8nXyfO3atXX14VeKE9bJwfT0NP39/QA5Y42FkJ9gMMjVq1eNas5uyDrQY5kXFxe31M+gUIiiiNfrJRQKsbi4yIEDB6ivrzfaC9nXwPxlt9uLHsqktwgOHDhgfK+PNQaDQb7xjW/w13/915SUlFBTU0NlZSXnzp3j7NmzG6oUPPHEEzz88MNMTk7S3t7Oo48+yu23377i47/5zW/y6U9/mmvXrtHc3MznP/957rnnnnU/b7GxRwYKQCFtAqvVSiqVoru72wgVOnjw4Jbe9LeaDCwuLtLV1YUgCJSXl1NVVZVBBJbTBZcZPGjitqoqlWAwU/UvCFBVtbGZ99XQ1xfmQx+yEY/X4nJpi0gyKTAxITA1JdDSohhTDWYyoEUja/8uQg4TsBxl6/f76e/vJxgMGqK3YDBIZ2dnxkid/rVdLmh6H7e8vHzXqPLNwsWNjDFmw2azUVlZaZCcbFMkc9/brD0wm+AoisLIyAjDw8O7JusAtBHeq1ev4na7OXfuXFGrjRtFOp2mu7ubxcXFjFaT0+k0roGqqsY10EdpY7GYUcHRr4Hb7V7RVlknBWuFMmWLB81i1erqar785S/zhS98gQ9+8IPYbDZee+01vvrVrzIxMcF3vvMd3v3udxf82p955hk+9rGP8cQTT3Dx4kWeeuop3vnOd9Ld3U1jY2PO41944QXuvfdeHnzwQe655x6+/e1v8973vpfnn3+eW2+9dX0nvsgQ1LVWuT2QSqVWnbHXrXe7urooLy+nvb19W8aMfvrTn9LW1lb0nZ15XLC5uZkDBw5w9epVPB4Phw4dyvhwmkmAGTMzrKiCL1ISMrIsc+3aNV56aZ7HHjuP12s3rIOTSYErV0TSaairUw0yMDcHs7PL5kM69E/BF78o8fu/vzmCNT8/b0xZHDt2LGc3qbvF6V96+It+Q9wKUZxubrWwsMDRo0cNgdhOwtyqqK6upqWlZduEi3rfW68ghEIhwyzH7XYzNzeHqqocP358V5SSVVVleHiY4eFhDh8+nDOGulMIhUJcuXIFl8tFR0fHusiJuYqmXwNVVTNCmfx+fw5hzVc9MC9ji4uLDA8Pc8sttwD5qwcAd911F7/xG7/BRz7yEQAmJiYMfUGhuPXWWzl16hRPPvmk8bOjR4/yK7/yKzz00EM5j7/33nsJhUJ8//vfN372jne8g7KyMv7u7/6u4OfdCuxVBgrAah86c6gQwIkTJ7Ztl7cV+QTT09N0d3fjdrszxgX1KsRK1YBsZLvvFRvmYKGbb74Zuz0z98DtVjlxQiEQEPjTP5VoaNCO5emnRR56aOXd8GY2yqlUiv7+fqanp1dVdTudTmpqaozes55UZxbFqaqaI4rbaE9/ZmaGnp4efD4f58+f3xW7yZ02EMrX9w6FQoyNjTE6OoooiiiKYngbFGKKtFVIJBJ0dnaSTCYz7KB3EuZciI0mV+pVtOxRQp0cDA4OEo1GcblcGa0Fr9e7YvUgGo0yMjKC2+1e01Y5Go1mnEt9YqFQSJLEK6+8wic/+cmMn7/97W/n0qVLeX/nhRde4A/+4A8yfnbnnXfy6KOPruu5twJ7ZGCDyBcq9MMf/nBXGAFtBPrUw8LCQt5xQVEUWVxcZHZ2lrKysh0Tm+ULFhoezs/8HQ4VhwOamlQOHdLIQFubNtFgbhHAsnvhRuUdc3NzBolaKedgJeRLqjOXtXt7e4nH4xlmMLqV7Go34FQqRV9fH7Ozs7S2thZsu7zV2I0GQrIsMzo6apS6KysrV/T7N5ODteJ7NwudnFdVVe3YyGc2zMZGxWjr6FhJ/5FNlBVFMaoH5gke/X1VX1/PoUOHAFbVHszNzW3Kjnhubg5ZlnOqbNXV1UxNTeX9nampqXU9fjux8++s1yFWChUqZoxxISgGGTCnC1ZWVq44LlhVVYUkSfT39xOPx/F6vdve8y4kWGgtlJXJWCzaZEN2g8xi0f5/PdCrATMzMxw5cqQodrSCIOD1evF6vcZNMdvrv7u7e0W3PlgmJx6Ph/Pnz++KZDa9/TQ9Pb2ryMnCwgKdnZ14vd4McpJdwVkpLTB7YSrGuZZlmb6+Pqanp3fNBAMsez+UlpYWZGy0WeQbJYzFYsZnQZ/g0X1Qamtrqa6uNqatdGRrD5588knGxsaYnp7e9DFmv4fXMoJb7+O3C3tkoAAsh+1I9PX1GbvS7FCh1xsZ0Mfw4vG4sRvSkT0u6Pf7DYMVc897ZGSEcDhsGMGYe97FeoPr531ubo6Wlhb279+f929nW/bmC+35pV+Cb34zzuJi7m6urEzml36p8OPSycl2LLjZXv/53PpkWcbr9SLLMrFYbFcJ33Qx6m5S5ZvNeo4cObKmB0i+tEB9xj0QCDA8PGx8FszkYK3Mi2yEw2GuXtWSK3fLuTJrFo4cObJj47GCIOB2u3G73dTV1RGLxbh8+TKKolBZWUk0GuXVV181Pgt6ayEWi3Ho0CHC4TC/+7u/yyuvvMKPf/zjVVX/a6GiogKLxZKzq5+ZmVlRk1NTU7Oux28n9shAATDvnlcLFdqKHv5q2Aj5GBwUCAYVJiYmmJiYoLq6msbGRoJBC5WVmWYg5nFB8wc/X89bvyHOzMwwMDCAIAgZ5GC9Tn2gnXd9PK+srIwLFy7k7Xe7XJoVcTic6+Hv9UL2pdIW/I1fJ3P5fTVyspXItzDpYjxRFHE4HAwMDDAxMZFhiOR2u7f1WM0GQrtJ+KbnCgiCsGGznnwz7vpnQZ+5N5e1zVWcfK0Rs82xOWBop5FMJuns7CQej+8azQIst1Bqa2tpaWkxzpVePdCvwyuvvMKv/dqvUVZWhsPhwO1289RTT3H27NlNPb/dbuf06dM899xzGaOBzz33HHfffXfe3zl//jzPPfdchm7gBz/4ARcuXNjUsRQDe9MEBWBkZIS+vr41VdgvvvgiDQ0NGZnhW4menh4EQaCtra2gxw8OCnR0rNyfvXo1ycGDaUMgqAtu1gt9lCsQCLC4uEggEMhx6lvphqhD1zCEQiHa2tqoqqpa9VgmJ4W8gUcul+Z4WCzofcnS0lKOHj26K8rveuBRtsWxJEkGSQsEAhmK+c2QtEIRDofp7OxEEAQ6Ojp2RVysecFdLZa5mM+n++vrpW1dFJdNDnQnyI6Ojl1hcwzLeQfl5eUcPXp0V2gWFEUx3u/Hjh1bc1etKApf+9rXeOqppzhw4AAOh4P/+I//IBAI8F//63/l6aef3vCxPPPMM7z//e/nq1/9KufPn+drX/sa//t//2+6urpoamriAx/4AHV1dcZkwaVLl7jjjjv4/Oc/z913380//MM/8KlPfWpXjBbu/JV9HaC+vp7Kyso1Pwg70SZIreWis4RUKsXly+PAysQhGFx9XLBQmBPJGhsbc5z6dJVwSUmJ0X7Q09EAI361srKyYIFZMRf8fNitYrxAIGAI27J3uHa7PWfePhwOG9dBd2bL1n9sdtpgowZCW41kMklXVxfRaJSTJ08ags2txEr++uZKWn9/P4qiYLPZ2L9/P7Isk0qldtQRUq/ojI2N0drauiPVr3yIx+NcuXIFVVW59dZb17T0jkQiPPDAA/zbv/0bf/M3f8Pb3vY2wzdmaGho05qBe++9l/n5eT772c8yOTlJR0cH3/ve92haCkvRJ1N0XLhwgaeffppPfepTfPrTn6a5uZlnnnlmx4kA7FUGCoKiKAUtuq+99hqlpaWGknWrce3aNaLRKCdOnFj1cXo5bWKimg9/+OSKj/vpT2OcPLk9YpbsXWswGMwwNDp06BANDQ27YhHRR/N2WzVgaGgor39/odCd2bI9Dzaj/4jH48YYXEdHR9GU5puFniuwb98+2tradoX1sq5ZGBsbyzCmCgQCK4YBbcdnMx6Pc/XqVWRZ5vjx47uiogNaVa6zs5OamhpaWlrWrGj19PTw/ve/n3379vG3f/u3NDQ0bNORvj6xVxkoInaiMrDa85nHBdva2vD5Vp+j1doCxT7K/DDvWlVVZWRkhKGhIWOGeGhoiMHBwYyStt/v39YypVm42NbWRk1Nza7YHYVCITo7O7FYLHn9+wuF2Zktu+dt1n8AGdfB5/PlXAdVVblx4wZ9fX3U1tZy6tSpHbVc1mFW5be1tRmvc6dhDhg6d+6cUdHRFyxJkgySfOPGjYwwILOlcrE/DzMzM3R1dVFdXU1ra+uuuIZmoefRo0fXvIaqqhrOgB/5yEd46KGHdgX52+3YIwMFoFgxxsXGSoJFvS/a39+fMS44M7PzC1k29IkGPcfBLIjTDUjMs/bbNdI4PT1Nb28vPp9vReHidkP3thgZGeHgwYMcOHCg6JWT7CAg3chFvw43btwgkUgYSm3dQvbatWuEQqFd4ZWvQ7d/ttvtu0qVX0jAkN1uzzFF0r3+A4EAExMTJBKJDFtrn8+3pvfEStB1J5OTk7tqlDGRSHDlyhVkWS5I6JlIJPijP/ojvvWtb/FXf/VX3H333buCwL8esEcGigir1Uo8n4pti5BvtHCtccHdAvPC1tjYyKFDh3L8xLMNSBKJhHEz1KNKHQ5HUUcazba9ra2tu6YaEA6H6erqQlVVbrnllm2LXtVDaLxer7FrNV+Ha9euEY/HEUWRffv2EY1Gsdls6x6nKybMY3AbdcfbCmwmYMgcEax73puvw9jYmKEdMVcPChGI6lUKfbJiN0Rrg+aV0dnZSWVlJW1tbWu+jqGhIT7wgQ8giiIvv/wyzc3N23SkbwzskYECsFsrA2YyoKcLDg0N0djYyOnTp3PSBUtKVicD2xXtHQwG6e7uBljXqJLT6cTpdBrq4ZVGGn0+nyFK9Pl8BZc6p6en6enpoaysbNfY9iqKwvXr1xkaGto1Yjyn04nVamVubo5UKsWxY8dwOp2EQiEWFhYYGhpCUZSMRcnv929LqVbXLEiSxJkzZ/D5fFv+nIVgKwKGsj8PsiwbAtFgMGiYIunVNLOlso7JyUl6enqor6/n8OHDO/7eguV72ejoKG1tbWtOZ6mqyrPPPsv999/Pr/3ar/HII4/sCl3P6w17AsICkTTH762A8fFxJicnNz2/Wij0sZ8TJ07Q2dmJKIp0dHRk3ADN6YKagtZCJJJLbrxeOHx4a98KerDQ2NjYlpS5zSON+lhjISONuk/+4uIibW1tVFdX74qdZDQapbOzE1mWaW9v3zUL2+LiIp2dnZSUlNDe3p5z4832mA8EAsRiMSMlUF+YzCmBm4XuSdHb21uwwGw7sJMBQ2aBqH4dwuGwEYqVSCSIRqO0t7fvCtMb0O6zV69eRZIkTpw4saYeRpIkPvOZz/AXf/EXPPnkk/z6r//6rvjsvh6xRwYKhCRJa5bZp6amGB4e5vz589tyTPPz87zyyisIgpDjiLiSedBOwRwsdOzYsW1RKOs3Q93rIBAIZIw0+v1+0uk0Q0NDxhz1bvDJN4fA6Du23bCw6WRufHw8w8+gEOiCOH1h0qdHzCRtoz7/evl9YWGB9vb2bQ89WgmJRMJY2HZL+mE6nWZqaorBwUHjfraS1/92Q9/c6BMfa4kjJyYm+M3f/E1CoRB///d/z7Fjx7bpSN+Y2CMDBaIQMjA7O0tvb++mLC4LxfT0NF1dXUiSxB133JHR5zNXA2Dj5kHFQL5goZ1k7qlUikAgwPz8PFNTU6RSKSwWC/v27ctYlHaKOMViMbq6ukgmk7S3t+8a8xmzgdDx48c3HdGtpwSaxxrT6fS6jKlgOSfE7XbT3t6+K1o7kBkw1NrauivMelRVZWJigv7+fpqamjh48CCCIGR4/euEWU8K1K+D2+3ess+EPvM/MjKSE5K20uN/+MMf8lu/9Vu8613v4itf+cquGX98PWPn36GvE+hGFathOzQDiUSC7u5uFhcXOXToEH19fYZKOrsasFnzoM2iGMFCxYZ+jaampigvL6elpcUopS4sLDA8PIwsyzmjdFvd79YtrwcGBqitreXkyZO7ZgHRxz6LaZEriqJxfvXnyWdMpTv1mRclQRAyTHEKyRXYLuzWgCGzePHmm2/OMFwye/3rj9WrN9njpeZY7WJ8JiRJ4urVqyQSiYKEsel0mi9+8Ys89thjfOlLX+K3f/u3d8V1fyNgrzJQIFKpVEYEZj6Ew2FefPFF3vrWtxb9+bPHBY8ePQrAD3/4Q9761rcaqV36Me5kNaDQYKHtRjKZpKenh2AwaGgDspE90qgbwJhHuMrKyooqUIrH43R3dxOLxTh27Jgx1rfT0KsUkiTlaFG2A2anPn3nKooiHo+HWCyGxWLh+PHju0ZLYQ4Y6ujo2BXkFzTB7tWrVykpKaGjo2PdrbDsSO1gMGhoQMzkYL2mSIuLi1y5coWysjKOHTu2JvmdmZnhvvvuY3R0lKeffprTp0+v63XsYXXskYECUQgZiMfj/PjHP+bOO+8s6uIXiUQMV7djx45l2Mv+4Ac/4I477sBms6Gq6o5WA1RVNebz/X4/bW1tu0LVaxaXVVRU0Nrauq4boh4frH/pIqzNjjTqRj39/f1UVVXR0tKyK8xRzOXk/fv3c+TIkV2jWRgaGuL69eu4XC5kWUaSpAyitl1x2mbs1oAhsy10sRMszQ6iehXBPP64kjmVflx6tamlpaWgqs7PfvYzPvjBD3Lrrbfy53/+57vG2fKNhJ2vQ75OUMiHSH/jy7JclBKvXgodHh6msbGRw4cPZ/xdffd/7do1o+e9Uz1Tc7DQ0aNH1wwW2onjam9vN0xc1oPs+ODVRhrNrYXVFtBkMkl3dzehUIiOjo5dI3rTjyscDnPTTTftmiqF+bhOnTpllLnNEcLmOG3ztfB4PFu2OEuSRFdXF5FIJMM0a6dhPq7Tp08XffHMl3thnuTRzak8Hk/GtbBYLHR1dRGLxQoaK1YUhccff5zPfe5zfO5zn+OBBx7YFUTrjYi9ykCBSKfTa8YT6zv1N7/5zZvenejCKIvFkjNWZhYIzszMsLCwYAh/9PGtsrIy/H7/lpcq9V2kHizU0tKyaxT5eqRvZWUlra2tW7brzr4RBgIBJEkyFNr6tbDb7RmxzLvJJx+WfRb0yYrdclyzs7N0dXUVdFxmoqbvWFVVzdmxFuO16ep3v9/PsWPHds35WlhYoLOzE5/Pt6PHZTZFCgaDhEIhVFXFbrdTV1fHvn37VjVFWlxc5P777+fy5cv83d/9HRcvXtzmV/CLhT0yUCAKIQOgZVmfP39+w+pWPR1vcnJy1XHBfJMC+viWPkqXXc4uKysrathJLBaju7ubeDzO0aNHd40Nbb4qxXbCPN+9uLhIMBgkEongcrlQVZVUKrUrJit0mBMZd5PoTZZl+vv7mZqa2nBSpN7vNqvlzRoQnSD8/+ydd1gU5/r+b4r0IipiR0HqsggEFQSNxm5icixHPd+IoNHYjlFTRE2iRlFj7J4kqDERo1FiOZZ4kmiM0lTETu9Nkc4u7AIa6XaaAAAgAElEQVS7bHl/f/ibySx1V3ZhjPO5Li4vl1n23TbzvE+5b01kfJla+Wxy9GN25aubfu+odRUUFNCjsiYmJvR7QYkiUZsdfX19DB48GI8ePUJQUBBcXFxw/Phx1mTO/s5wwYCaKBQKtSYFbty4AW9vb43TclS9PS0tDRYWFuDxeO0eF2TukqiLkoGBgUp91crKSuO0GzUHn5OTg969e8PJyYk1ne9UDV7X2QBNocxmjI2N0aVLF4hEIq28F+2FOZpHKQmyAcqMSRfNeMweEGrH2qVLF5UST0vvBdNgSBsjltpCIpHQfUWenp4dJlfdFjKZDCkpKRCJRPD09GyS4WSKIl24cAFbt25F165dIZFIMHLkSHz++efw9fVlzcjo3xkuGFATdYOBmJgY8Hg8jWqtzHFBSn6TutBrc1yQMjthivBQY3RUKrstJzSmsZC7uztraqTUaygWi+Hm5saanQRz1810Pmxuzr4jRxoVCgWys7NRVFTEqtE8ZnOZrsyYGqNQKFTei+rqaigUChXNAysrK1RWVrZpMNQZUBr+PXr0UEusp6Oorq5GYmIiLCws4OHh0eZnWSQSYcWKFUhPT8fQoUNRVlaG27dvQywW49NPP8Xnn3/eQSsHtm/fjvXr12PlypXYt29fs8dERERg/vz5TW6vr69nTVCtCez41PyN0ERrgNphZ2Zmws7ODiNHjlSptzODAADtnhRgdvtSf58aoxMIBHj27BmkUimtZc6sdbdlLNRZMHsWevbsCT6fz5psQEVFBVJTU2FpaQl/f3+VE0Rzc/Z1dXV0oEa5NDbulNfGDrmxBTJbdrf19fW04FJH+goYGBjAxsZGxTGTEuIRCoXIzMxEXV0dAKBbt26wsLBAfX29VuWUXwRmuUIdDf+Ogjldoe4UQ2pqKubOnQs7Ozv8/vvv9HMhhCArK6tDTdbu3r2Lw4cPw9PTs81jrayskJGRoXLbyxgIAFwwoDbaNiuiXOikUim8vb1V6u0dJR7UnDMgJfwiEAho4RcTExPI5XJ6rtvW1pYVu0hqPr+2thZ8Pp81PQtyuZwWnlG3pqynp0eLv1DvBTOdXVhYiJSUFBgZGakEapqMNCqVSuTn5yMvL49VI3AAaFtfOzs7eHl5derulvlemJubo6qqCjY2NujTpw9qa2vpko+BgYFKJkcdh0BtUV9fj8TERCiVSlYFdDKZDKmpqaiurlZruoIQglOnTmH16tVYtmwZwsLCVIJ5PT09ODs763rZNGKxGO+++y6+++47hIWFtXm8np4ea3ps2gsXDGiZtoIBalY6Ly8P9vb2cHR0VDnxUb0BTD+BjrzwmpqawtTUFL1796YbuIqKimBlZQVCCBITE9t1QdIGzDn4Xr16wdPTkzXZgMrKSqSmpsLMzKzdqouNRxoVCgXdA1JeXq7RSGNdXR2Sk5Mhl8tZ5eYnk8mQnp6OysrKFx791AVtGQxRJTdmsEaZYjHfD13UuimpYzYZMgHPM06JiYkwMzODn59fm1NF9fX1+Pjjj3Hx4kX89NNPmDp1aqdvMpYvX44333wT48aNUysYEIvFsLe3h0KhgJeXF7Zs2QJvb+8OWKn24YIBNdFGZoA5Lujn56cyY8vMBHS2eBC1VspYyM/Pj56OoC5IAoFAZcaeObGgy0Y4plqfpp7wukShUCArKwvPnj3TWQ3ewMAA3bp1o2fsqU55qrTw9OlTNDQ00GUeKjigAgc2CQgBf7kfUnLVbGkSYxoMtTQLzyy52dvbqzTDCYVC5Obm0hMkzKmF9gTOzOkKd3d31jgNUlLamZmZGDRoEO150BrZ2dkICgqCsbEx7t+/j0GDBnXQalsmMjISDx48wN27d9U63tXVFREREeDz+aipqcH+/fsREBCAx48fw8nJScer1T5cA6GaEELQ0NDQ5nGpqakwMDCAi4sLfZu644JUNqAzpYTlcjl9wlFn/K3xDkkgENDNV1TmoGvXru1O+zK1+6kdEVsapYRCIZKTk2FsbNxkCqQjaXxBEggEqK2thZ6eHmxsbNCrVy907dqVFbVuSknQycmJNSOWgKrBkKura7sCJ+Y0D9WYSGVy2lLpa0xtbS0SExPpUh1bpI7lcjntGMnn81U8D5qDEIJLly5h6dKlmDt3Lnbv3s2KIPDJkyfw9fXF1atXMWTIEADA6NGj4eXl1WIDYWOUSiV8fHwwatQoHDhwQJfL1QlcMKAm6gYDGRkZUCgUcHd3VxkXtLS0hLu7O2vdBQFVYyF3d/cXOuE0boSj5rotLS1VggNNTgBUY1l9fT2rtPspS98nT550uFd9W1CfOxsbG9jZ2dEZhJqamk4daaRG8wgh4PP5rHGb6wiDIUqcihkgSCQSOpNDBQgmJiYqnyOqR6F///5wdHRkTZ+HSCRCYmIijI2Nwefz2/xONzQ04PPPP8ePP/6IQ4cOYfbs2az5vly4cAHTpk1TCf4UCgVdqpVKpWoFhosWLcLTp0/x22+/6XK5OoELBjRAKpW2eUxOTg5qa2vh5OREu4S5ubmpCKawzV1Q18ZCTAEeoVAIsVgMMzOzJkqJjR+zsZMfW/QMgOdjU0yFSLZc1Jg1eDc3tyap5JZGGhtbB2u7B4PZ59GvXz8MHjyYVRe1zjIYYs7ZU0JhVE+OpaUlrQ/CpgZZACgqKkJGRgbs7e3h4ODQ5vniyZMnCA4ORm1tLc6cOQNXV9cOWql6iEQiFBQUqNw2f/58uLq6IjQ0FB4eHm3+DUIIhg0bBj6fjx9++EFXS9UZXDCgAQ0NDW2OuOTn5+Pp06eor6+HnZ0dXF1dm4wLsiUb0FnGQjKZTCWVTYm+UIGBjY0N9PX1kZaWhvr6evB4vDbTjx0FM8Xt4OCgUvLpbCorK5GSkgILCwu1BYQaj9EJhULU1dU1a/7zop/ThoYG2odBUw0OXcJGgyGqJ6esrAxFRUUghKg0iWrTPvhF15eWloaKigrw+fw230tCCP744w8sXLgQU6dOxddff82ayYe2aFwmmDdvHvr27Yvt27cDAL744gv4+fnByckJNTU1OHDgAI4fP46bN29i2LBhnbn0F4Id26y/CVR0KZVK4ePj0ynjguoikUiQnp6O6urqDjcW6tKli4rJCbNLvqKiAllZWVAqlTAxMaGzFAqFotMb30QiEZKTkwFALe/1jqI9AkLMMTrKz761kUYqWFO3Ea6iogIpKSno2rUr/P39WTP1wVaDIX19fdTW1qKoqIgWXWIGa6WlpbR9MLNJtCP6QMRiMRITE9GlSxf4+fm1GWzK5XJs27YNX3/9Nfbv348FCxawpizwIhQWFqoEi0KhEO+//z5KSkpgbW0Nb29vxMTEvJSBAMBlBjSipcwAVTvOz89Hjx49UF9fr2KqwbZsABuNhYDn9eTU1FRIJBIMGjQISqWSLi3I5XI6lW1jY6NTdb7GMOfzqbRoZ+8gKahyhaGhIXg8nk52XcxgjfoBoJI5aDzSyJyucHV1fSFfAV1BGQzZ2NiwypCJOaPP5/NbDFAoDxLqp6amBoaGhjrtAykuLkZaWprafQulpaVYsGABioqKcPr0aXh5eWltLRy6gQsGNEAmk9FqgBSUQ5ihoSE8PDxoLe5Ro0axblywrq4OaWlpqK2tZZVkL9ProLnxt8apbIFAQKvzMUsLuuhKpuSXFQpFE/fIzoQZoHSUbC8F0/yHCtaYI43GxsZ4+vQpjIyM4OHh0WnTFY1hq8EQ8HyXmZSURPuSaBKgN9cHwgyeqZ8XCfqpxsqysjLweLw2zxmEEMTFxWH+/PkICAjAkSNHWPOd4WgdLhjQAGYwwBwXdHJywoABA6Cvrw+hUIgHDx5g9OjRrBkXZKuxEPA8G5CSkoKGhgbweDy107XMETqq8crU1FRlYqE9qVPKaS0nJ4feDXV2mYKCes3kcjk8PDza9ITvCCjlyidPnqC6uhoA6Bl76kebjpmawlaDIebnTFsTKYQQ+v2gfmprazV+PzQdZ1Qqldi7dy++/PJLbNu2DStWrGBNBo2jbbhgQANkMhkUCgVKSkqQlpYGKyurJuOCIpEIt2/fxtChQ2Fubt7p2QCxWIzU1FTIZDJWGQsxT4JUd3l7LrYymYwWQ6K6syknOqZSojonp7q6Oloq2sPDQ2MHSl3BnK7o27dvu18zbUK55kkkEnh4eMDc3LzJjH1njDQSQmipY7YZDDU0NCA5ORl1dXXg8/k63UFTTbvUe1JdXU37YzCbE6nPE3WOoz5nbb1mVVVVWLx4MZKTkxEZGQl/f3+dPRcO3cAFAxpAjSBVV1c3qYNSDYIymQyPHz+GUCikDVCoC5KlpWWHBQbMNDKbjIWAv3a2MpkMPB5PJxdbphMdNZ5FCGm1zs282LJNrY9yZaytrWXVdAXw14WjZ8+ecHFxaTbr1JJjpi5HGmUyGT3ey+PxWDWaV1VVhaSkpE7rW6DeD2bA1tDQAAsLC7os5+rqSjeVtsb9+/cxd+5c8Hg8/Pjjj6x6nTnUhwsGNODx48eQyWRwcXFpc1yQEEKf/KgTIHUxohzSdLUzqq6uRmpqKgDA3d2dNTW7zky9N5buFQgEtJa8jY0NzMzM8OzZM0gkEtZebG1tbeHi4sKahje5XI709HRUVFQ0q2nQGq2NNDIttV90pJGqwZubm4PH47FC5Q74azS1sLAQzs7O6Nu3Lyv6FgghtJKmQqGAkZERbVLWWE6ZOmcplUp89913+Oyzz/Dpp58iNDSUNcEzh+ZwwYAGNG4gZI4LUvPALX2xmRcjZoc8deKjOuTb82ViKuJ1dFNZW1CNeHK5XGfZAE2g6qoCgQBFRUV0ndvc3Fwlm9OZdqRtCQh1JtSFw9TUFDweTyuvU3Nd8syRRnVKPW0ZDHUmlOeBTCYDn89nzWgqAJSVlSElJQW9e/eGs7Mz9PX1VeSUq6urUV1djaysLJw4cQLe3t7Iz89HYmIiIiMjMXr0aNa8zhwvBhcMaIBCoaBNiNo7LsiU7aV+Ghoammj6q7sLZBoLubu7s0YRT6lUoqCgALm5uaxrxKNS72KxGO7u7rC0tFSZWBCJRDAxMVEJDjpK158SEKJkrNm2sy0oKND5xbbxSCNV6mns0kiVJZgGQ3w+nxWNlRTl5eVISUmBra1tuz0PtIlSqaRHQNsyP6ICrSNHjuDPP/9Ebm4u6uvrwefzERAQgIkTJ+Kdd97pwNUD27dvx/r167Fy5cpWPQTOnTuHzz//HDk5OXB0dMTWrVsxbdq0Dlwp++GCAQ1QKBR0dkDb44KUyQwzc1BXV6ei6W9jY9NkPEgulyMrK4s2QWKT6Qtbx/IIISgpKUF6enqrqXdqZ8RsSqSa4Kj3xNLSUqvZF+Z8PpvSyMDzXo/k5GQolUp4eHh0+M6WOdJI/UilUlhaWsLIyAhVVVWwtbUFj8dj3cW2qKiIliVnC/X19UhKSoJSqYSnp2ebI6CEEJw4cQIff/wxVqxYgc2bN6OsrAy3b9/GzZs3YW5uji1btnTQ6oG7d+9i1qxZsLKywpgxY1oMBm7fvo2RI0diy5YtmDZtGs6fP48NGzYgLi4Ow4cP77D1sh0uGNCAu3fvolevXrC2tqaDAF2eqKVSqUqNWywW08pjNjY2UCqVyMnJgbm5Odzc3Fg1z83W5sWGhga6qczd3R09e/ZU+77UPDezCY65U21vqae6uhrJycm0Rj5b3k+mrwDbphhqa2uRlpYGoVAIY2NjSCQS1ow01tXVqZgysWWcEfgrU0E1fbb1ftbV1eHjjz/GL7/8gmPHjuHNN9/s9CkpHx8ffPvttwgLC2vVXXD27NmoqalRMQ+aNGkSbGxscOrUqY5aMuthx7D5S8Knn36Ka9eugcfjYcSIEQgMDERAQADs7Ox08sUwNjZGr169aAc1mUwGgUCAyspKZGRkQCaToUuXLjA2NoZAIACAZg1/OhKRSISUlBQolUr4+vqyJhsAqDr5jRgxQmMRFmoUi+p3aCy+U1RURJd6NBF7USqVyMvLQ35+PhwcHDBw4EDWZAMoX4Hq6moMGTKENb4CgKrBUEBAAExNTekRU6FQiJKSEmRkZMDAwEClKbEjRhqppk9mDZ4NUBuIJ0+eqJ2pyMrKQlBQEMzMzHD//n0MHDhQ9wttg+XLl+PNN9/EuHHjEBYW1uqxt2/fxurVq1VumzhxotrWxK8KXDCgAVeuXEFxcTFiYmIQExODr776CikpKXBycqKDg8DAQI204TXB0NAQSqUSpaWl6Nq1KwYPHkxnD549e4a0tDTa8If66ahdEZsle5mNeK6urloL3vT09GBpaQlLS0v0799fpdQjFAqRnZ2N2tpalWwO5dBIQaXeFQoFq/wOgKa+AmyRrW7NYKhLly7o0aMHPd5GjdBRmZz8/HydjjQyrZB5PJ5GmSddQ/VUyOVyDB8+vM1MBSEE58+fx/LlyxEcHIxdu3ax4jMQGRmJBw8e4O7du2odX1JS0qQXws7ODiUlJbpY3ksLFwxogJ6eHvr06YM5c+Zgzpw5IISgsrISsbGxiI6ORnh4OBYvXoz+/fsjICAAAQEBCAwM1IobGmUsJBQKVS5oFhYW9G6Nmq0XCAQoKytDVlYWvZvVVY0b+CsbQAjB0KFDWde4lZqaCisrK/j7++u0EU9PTw+mpqYwNTVFnz59APzVIS8QCGjTH2NjY3Tt2hWEEJSXl2tFdEmbMPsW2Cbbq6nBkL6+PqytrWFtbQ17e/smI42ZmZlNjH+oKRJNnzNl5GNoaAg/P78OtUJui4qKCiQnJ6vdwCiVSvHZZ5/hp59+wnfffYd//vOfrPgMPHnyBCtXrsTVq1c1mmBpzh6dDc+HTXA9A1qEEIKamhrExcUhOjoacXFxuHfvHmxtbengICAgAK6urmpfkAkhePbsGTIzMzU2FmIKvTSndUB1Y79ocMBMb7MxG5CZmYmysjK4uLiwxihHLpejvLwc2dnZtPGVrk1mNIFKvVNeG2zpWwB0ZzDU3Egj01K7rZFG6juakZFB98iw5XtACEFOTg4KCwvh6upKB6mtUVhYiHnz5kEqleL06dNwcXHpgJWqx4ULFzBt2rQmplh6enrQ19eHVCptEugMGDAAq1evVikV7N27F/v27UNBQUGHrZ3tcMGADqF2Ibdv30Z0dDRiYmKQkJAACwsLlbKCh4dHs5G6to2FmhPeobQOmAGCOjvUmpoapKSkAAB4PB6rsgGVlZVITU2FmZmZ1mbgtQFzioFq3NLX129WmY9Z42aOz+lybYWFhcjOzm6Seu9sOtpgiBpppCZJWhtplMvlSEtLQ1VVFTw8PFjVUyGVSulRS09PzzbHjQkhuHLlChYtWoRp06bhwIEDrAoGgb9s4pnMnz8frq6uCA0NhYeHR5P7zJ49GyKRCL/++it92+TJk9G1a1eugZABFwx0IFRNOSEhgS4txMfHw8DAACNGjKDLCh4eHti1axfEYjFCQkJ0ZizE1DqgggOpVKpiFdy4nsqcM2fbRYM5Zunk5KSz3o0XgZLGraqqanWKgRCC2tpaFUdAanyO+Z5os3YrkUiQkpKC+vp6VnkxAOwwGGpppNHMzIyeXmBbQEzJHXfr1g1ubm5tnj/kcjnCwsIQHh6O//znPwgODmbNd6ctRo8erTJNMG/ePPTt2xfbt28HANy6dQujRo3C1q1b8c477+DixYv47LPPuNHCRnDBQCfT0NCABw8eIDo6GrGxsYiNjYVSqYS5uTmmTZuG6dOn47XXXoOxsXGHfDkptzOqtEBJxFIWwc+ePYOBgQF4PB6rmt0EAgFdj+fxeKza0VCNeJSxlaZ9C8z3hHKg00aNG/hrwqJHjx5wdXVljZslM/XONoMhQghyc3ORl5cHKysrKBQKiMViVow0MhUYXVxc1NKpKCkpQUhICEpLS3HmzBl4enp20Gq1Q+NgYPTo0Rg4cCAiIiLoY86ePYvPPvsMubm5tOjQ9OnTO2nF7IQLBlhCQ0MDduzYge3bt+Of//wneDwe4uPjERcXB5FIhKFDh9KZg2HDhnWYEp5UKkVVVRUKCwtRU1MDADAzM6OnFRp3x3c0CoWCTiGzTX5WoVAgMzMTxcXFWk1vtybby3RobO2x5HI57VPflvJcR8NmgyGZTIaUlBSIRCJ4eHjQDYzMkcbGroDMXhBdNok2NDQgKSkJ9fX1GDJkSJvBOiEEsbGxCAkJwejRo3H48GFWZTc4OhYuGGAJ6enpCAoKQnh4OHx9fenblUol0tLS6J6D2NhYlJeXw8fHhw4O/P39deaIWF1djZSUFOjr69P1d+YutaamBsbGxp0i2csU6eHxeKwSdREKhUhJSYGRkZHOMxVUjZuplKinp6eSOWA2JerCV0BbsNVgCPhrbZaWluDxeK02MDYeaRQKhZDJZE36DrRV7hEIBEhKSkLXrl3h7u7eZoZHoVBgz549+Oqrr7Bjxw4sW7aMNZkXjs6BCwZYhDrjLpRoCKV1EBsbi8LCQnh6etLBwYgRI9CtW7d2XZAVCgXtrubg4AB7e/tmTxbNSfYaGhqqBAdt7VI1hXoN2lpbZ8DsqXB0dIS9vX2HZyoaX4gEAgE9Ww88D6IcHBwwaNAg1mRR2GwwRAhBfn4+cnNz4eTk9EKS35QxFtNSu3G5h8qyaepxQq3N2dlZrT6ZyspKvP/++0hPT0dkZCRXN+cAwAUDLz1UFzjVcxATE4OsrCxaJZEKEDQR2qGyAVRvgCamR0qlkk6XUgECtUulSgvt0ToQiURITk6Gnp4e6/oWxGIxkpOTQQjpFO3+lqD0MNLT0yGTyWBgYEA3JTLH5zprF15fX4/k5GRWGgxJpVIkJyejvr4enp6eWl1bSyONjcs9LX1XKM2F2tpa8Pl8tdQ+ExISEBwcDE9PT0RERLBq+oGjc+GCgb8Z1PhaTEwMrXWQnJyMwYMH0zoHI0eObHYHwbRA1taOm7lLpYIDpVKpYt2sTi2VqWnAtikG5ljegAED4OjoyKq1UY14ffr0gZOTEwwMDCCRSFTeE7FYDDMzsyZKibrenZeWliI1NRV2dnZqaeR3JJSugbod+e2FEg1jBggtjTRqUrIAnn9/Dh48iI0bN+Lzzz/HmjVrWPMZ5WAHXDDwN4cQgqqqKpXg4NGjRyoqiQEBAcjPz0dYWBg2bdoEX19fnVkgU6NzTOtmqpZKBQeN5+qpHTfllsemnWN9fT1SU1NRV1en0lDGBihTJqFQ2GYjnkwmUykrNBbe0Xa5hynby7YGRqZ+f2cqMDK/K9R7I5FIYGxsDKlUit69e8PR0bHNBt6amhosW7YM8fHxOHnyJF5//XXWlGA42AMXDLxiMFUSY2JiEBUVhXv37sHQ0BCjRo3C5MmTMWrUKI1UEtu7nvr6ehWVRIlEQs/Vy2QylJSU0AqHbNk5EkJQXFyMjIwMWkCILWN5wPNdLXOcUdNGNaopkblL1dPTa2L48yLvB9NgyMPDg1WyvZStr1wuV0uopyORyWRITEyESCSCjY0N6uvrIRKJYGJiolLuYY40JiUlYe7cuejfvz9OnjxJm55xcDSGCwZeYeLi4rBgwQLY2Njg/fffR35+PmJjY5GQkABzc3O652DkyJEtqiTqAolEgpKSEhQUFEAmk4EQQmsdULvUzuwyZ+643dzcWGVGQ41aFhUVwdnZWa05c3VQKpUqDo2Nu+OpjE5r6erWDIbYQFlZGVJSUlhZsqiurkZiYiIsLCzA4/Ho4I7ZwEsFb1988QWMjY3Rp08fXL58GatWrcKWLVtYFaxysA8uGHiFWbx4MVxcXLBy5Ur6xEcIgVQqRUJCAj2xcPv2bRWVxICAAHh7e2tNG54JdcHIzs6ma9wKhUJFJVEkEqnUt9sjuqMplPGRtbX1C+24dYlYLEZSUhL09fXh4eGh01HLxoY/AoEA9fX1LQZtTIMhtpVTlEolrQfh5ubGqt0zM4BSZzpFqVTizz//RHh4ON1cWFtbC19fXwQGBmLZsmWwt7fX+brDw8MRHh6O/Px8AM8lyzds2IDJkyc3e3xERATmz5/f5Pb6+nqdj75ypkXP4YIBjjahVBKp4ODWrVuQyWQYNmwYAgMDERAQAF9f33arJNbX19OyuDweD926dWv2uObq25QTIBUcaFvrQC6XIzMzE6WlpawyPgJULxidaRhFNSVSPyKRiHZxrK6uRteuXeHh4cGqAIqSO9bT0wOfz2eVcqVcLkdqaiqEQiH4fL5aAVRGRgaCgoJgZWWFyMhI9O/fHzk5Obh58ybi4uKwdu1aODo66nztv/zyCwwMDDB48GAAwLFjx7Bz5048fPgQPB6vyfERERFYuXIlMjIyVG7XdWAmk8l0sql5GeGCAQ6NUSgUePz4MR0ctFclkRCCoqIiZGZmolevXnB2dtYopckU3aHSpQYGBnRg0N7mN0qkx9jYmHU1bqlUSu8A2bbjpsop5eXlMDExgUQi0Wh0TtcUFxcjLS2NdXLHwPO+isePH8PMzEytAIoQgnPnzmHFihVYsGABduzYwaqgCwC6deuGnTt34r333mvyu4iICKxatQpCoVCnaygvL8fWrVvx1ltvYdy4cQCAtLQ0nDx5EnZ2dnjnnXfQv39/na6BrXBFJA6NMTAwgI+PD3x8fLBq1SoolUqkp6cjKioKsbGxOH78OMrKyuDj44MRI0Zg5MiR8PPzg5WVVZMLskQiQWpqKsRiMTw9PV9IetbAwADdunWjMwlKpRI1NTUQCASoqKhAdnb2C2kdsEFAqDXKysqQmpqKHj16gM/ns2qHwzQY8vf3h7m5ucroXEVFBXJycmhLbebonK5r9QqFAunp6SgvLwefz2+3G6g2oQLjjIwMDBo0SC1hKKlUinXr1uHnn3/GDz/8gOnTp7Pqc6pQKHDmzBnU1tbC39+/xePEYjHs7e2hUCjg5eWFLVu2wNvbW6trKSgowP/+9z86eE5PT8fEiRMxevRoxMTE4OrVq1i+fDkmTgUyJUQAACAASURBVJyo1cd9GeAyAxxah7qIUhLKcXFxyM/Ph6enJ11W8Pf3x+nTp3H9+nV88cUXcHFx0dnFjGp+Y04sKBQKlR1q44sQWwWEAFVfATbWuNU1GGrOUlsmk8HKykqlO16bnwuxWIzExER06dIFfD6fVVLMTDtkPp/fYpmMSX5+PubNmweFQoHTp0/DycmpA1aqHklJSfD394dEIoGFhQVOnjyJKVOmNHtsfHw8srOzwefzUVNTg/379+PXX3/F48ePtfaclEol9PX1cezYMezfvx8zZsygNy3BwcF48OABQkNDYWlpiS+++AJ8Pl8rj/uywAUDHDqHEuWhygo3btxAYWEhTE1NMWnSJLz55psaqyS2dz1MrQOhUIiGhga6M14mk+HZs2ewt7dnlYAQ8LyrPCkpCSYmJvDw8GDVxay9BkONJXuFQiHtmtnYoVFTmKWoAQMGdFpfRUtQQYqRkRH4fH6b0zKEEPz6669YvHgxZs6cif3797OqfAU8LxMVFhZCKBTi3LlzOHLkCKKjo+Hu7t7mfZVKJXx8fDBq1CgcOHBAa+uhSifr16/H5cuXIZVKcfnyZTrguHTpEnbs2AFPT098+eWXaqk6/l3gggGODuXMmTNYunQpAgIC8NZbb+HRo0eIjY2lVRJHjBiBwMBABAYGvpAG/ItAXYTKyspUxhmtrKxUsgedWYNVKpXIz89HXl4eK0sWujIYkkqlKs2ijefq1WkWZQYp6u64O5Jnz54hPT2dVq9s632VyWTYvHkzDh8+jG+++QZBQUGs+iy0xLhx4+Do6IhDhw6pdfyiRYvw9OlT/Pbbb+163E2bNiEkJAQDBw7EqVOnIJPJMGfOHAQFBeGPP/7AsWPHMHXqVPr4nTt34sKFC5g6dSrWrl3brsd+meB6Bjg6jIaGBhw4cADffvstZs2aRd/OVEmMiYnBwYMHsWTJEvTv358ODgICAnS6mxMKhcjLy4OdnR2cnZ0hl8vp3Wl2djZqa2vpHSp1IeqoXTlTCGfo0KGsUmDUtcGQsbEx7OzsaIVCuVxOBwclJSXIyMiAgYGByvvC7AehMilmZmbw9/dnVVMds3dhyJAhavkEFBcXIyQkBJWVlbh9+zY8PDw6YKXagRpbVvfYR48evXCqXiQSwdLSEpWVlfjtt9/w3//+F76+vjhx4gTOnj0LIyMjbNy4EYWFhTh9+jRcXFzg7OwMAFi9ejXS0tLw008/Ydy4cSousn9nuMwAR4eizkwvpZJ48+ZNWkL53r176NGjh4r5kjZUEpkCQu7u7i02k1GmMlRpgRqbY04saFvrgKly2Lt3b9pXgC2wwWCI2SzaWM9fT08PVVVVGDRoEBwcHFi1e66trUViYiIMDQ3V6l0ghCA6Ohrz58/H2LFjcejQIVb1sTRm/fr1mDx5Mvr37w+RSITIyEh8+eWX+P333zF+/HjMmzcPffv2xfbt2wEAX3zxBfz8/ODk5ISamhocOHAAx48fx82bNzFs2DCNHvu9995Dbm4urly5AiMjI9y4cQNjx46Fra0tHj16hN69e0OhUMDAwACRkZH46quvMGnSJKxbt45+TXNzc5GTk4Px48dr/bVhK1xmgKNDUeeETMneTpkyBVOmTKEFbuLj4xEdHY0LFy5g/fr1MDc3h7+/P11W4PP5Gl0sKQGhrl27trlrNDIyQs+ePWm1QZlMRo8zPn36FKmpqTAyMqIDg8aysJrCTG17eHiwquMdUDUY8vHx6bQgRV9fn+4nAJ5fNAUCAdLT01FfXw9DQ0Pk5eWhsrJSZWqhMzME1Ehj//791epJUSgU2LlzJ3bv3o2dO3diyZIlrOp3aI7S0lIEBQWhuLgY1tbW8PT0pAMBACgsLFR5DkKhEO+//z5KSkpgbW0Nb29vxMTEaBwIAEBISAgmTpyI3bt3Y926dSgtLYWfnx8SEhJw7do1BAUFgdoDz5kzBykpKbh27Rrs7e2xePFiAICDgwMcHBwAvDqiRFxmgOOlg6mSGBsbi+joaMTHx0NfX58ODlpTSdSFgBBT64DaoTK1Dqj0tTqPU1VVheTkZNqRjm2pbbYaDAGAQCBAUlISrRBpaGgIiUSi8r7U1tbC3Ny8iUOjrqFeu7KyMvB4PLUCvIqKCixcuBA5OTmIjIzE0KFDdb7OlxlKRCg8PBwrVqzA5cuXMWnSJADAxo0b8eWXX+LevXvg8/mQSCQwMTFBQ0MD/vWvfyEnJwfHjh3DkCFDOvlZdA5cMMDxt4CpkhgbG4ubN2+ioaEBw4cPp8sKvr6+iImJwfHjx/HBBx/oVECoufQ1AJWueCsrK5XdkVKpRHZ2Np4+fQonJ6dmbaY7EzYbDBFCkJubi/z8fDg7O7f62jFLPpRSIqVgSb037cnqNEddXR0SExOhr68PPp+v1msXHx+P4OBg+Pj4ICIiglWCUmyEGh0UiUTIysrCkiVLIJfLcfbsWTg4OKCyshLBwcHIyspCWloa/d2jAsT4+HjMmDGjk59F58EFAxx/SxQKBRITExEdHY3Y2FjExMRAJBKBEILJkydjwYIF8Pf317pscUsQQiASiVT6DiitA6oZsbCwkJbF1aWvgKaw3WBIKpUiKSkJUqkUnp6eGtfSKbMf6r2hFCyZZYXGgZsmUCUVymtDHbGrb775Bps3b8amTZvw0Ucfser1ZgtU3Z9JdHQ0Zs6ciXHjxiEnJwf379/HlClTcPr0aZiamiIjIwNTpkyBs7MzduzYgc2bN0Mmk+H06dP0BMyrUhZoDBcM6IDt27dj/fr1WLlyJfbt29fsMZ1pzPGqQdm4ymQyzJw5E1lZWYiNjUVZWRm8vb3pzIG/v3+zKom6gKl1UFRUBJFIBAC0RbA6LoAdAZsNhoDnafTk5GT06NEDrq6uWnHmUyqVEIlEKlkdhUKhYt9sbW3d5mMxDZB4PJ5a7pZCoRDLli3DvXv3cPLkSYwaNardz+fvyObNm9GvXz+EhITQgZJYLMb48ePh7e2Nb7/9FuXl5bhz5w5mzZqFDz/8EGFhYQCAhIQEzJw5E2ZmZujevTuuXLnCKqvqzoJrINQyd+/exeHDh+Hp6dnmsVZWVk2MObhAQLsQQrBkyRJMnToVGzZsoOvvjVUSP/nkkyYqiSNGjED37t11Ehzo6emhS5cuKC8vh0wmw2uvvQZTU1M6a0A1wFlaWqr0HXRk/0BlZSWSk5NhY2MDPz+/Tg9MmCiVSuTk5ODJkydwdXVFnz59tPa39fX1YW1tTQvOMAM3oVCIZ8+eQSqVwtLSskUdivr6eiQmJoIQguHDh6tlgPT48WPMnTsXDg4OePDgAaussdkAc8deV1fXJENVVlaG7OxsfP755wAAW1tbvPXWW9i1axc++OADDBs2DG+//TaGDRuGhIQElJSUwMvLC0DzWYZXDS4zoEXEYjF8fHzw7bffIiwsDF5eXq1mBjrCmINDVXmsJahUOLOskJmZCXd3dxWtg169emklOKB8Bbp37w5XV9dmL7SUCyB1ERKLxTA3N1cR3NFF8MjsXXBxcUGfPn1YlTaldBcUCgU8PT07paTSWCmR2ZSor6+PZ8+eoXfv3nBxcVGrLHDs2DGEhobio48+woYNG175C1NrMJ0GMzIyYGJiQtsyOzg4YOHChVi/fj0dPFDTBJaWljh58mQTbQYuEHgOFwxokeDgYHTr1g179+7F6NGj2wwGFi5ciL59++rUmIPjxSCEoKSkRMWZMTk5GY6OjrTWwciRIzVWSWR247u6uqJ3795q37dx41tNTQ2tdUAFB6ampu26cDMNhtjWuwD8VX+n3C3ZchJvaGiAQCBAXl4eXfJh2mpTDo2N35va2lqsWrUKf/zxB44fP44JEyawKvBiGx9//DFycnJw/vx51NfXo3v37njnnXfw9ddfw9raGmvXrsWtW7ewa9cujBgxAsDzz8zMmTNx584drFixArt37+7kZ8FOuDKBloiMjMSDBw9w9+5dtY53dXVFRESEijFHQECAVo05OF4cPT099O7dG7Nnz8bs2bNplURqlPHw4cNYunQp+vXrh4CAAPqntbnx6upqJCcnw8jICH5+fhp34zfWOmCq8T179gxpaWkwMjJScWdUtyteE4OhzkChUCAzMxMlJSWsHGlUKBQoKCgAIQQjRoyAiYkJPWpaVlaGrKwsWj/jl19+wYgRI2BnZ4f33nsPNjY2uH///itrnasJ9vb2+PHHH/HgwQP4+PggMjISM2fOREBAAP79739j1qxZSE9Px4cffojvvvsOdnZ2+OWXX9CrVy/k5+drtZz0d4PLDGiBJ0+ewNfXF1evXqVnVNvKDDRGF8YcHLqDqZJIjTPeu3cP3bt3V/FXcHV1hVKpxLZt2+Dp6YkhQ4Zg4MCBOtn9UVoHzOwBU6rXxsYGFhYWTS7y7TUY0jWUWp++vj48PT1ZNdIIPBevSklJQc+ePeHi4tJstoJqSnz69Ck+/vhjPHr0CLW1tejduzeCgoIwevRo+Pv7d6iqYHh4OMLDw5Gfnw8A4PF42LBhAyZPntzifc6dO4fPP/8cOTk5cHR0xNatWzFt2jStr40aE2zMnTt38O9//xv/+Mc/8Mknn8DIyAiffvopDhw4gIsXL+KNN97AjRs3sGvXLly5cgUODg4oLi7GsWPHMH36dADPg2htNJr+3eCCAS1w4cIFTJs2TeUkoFAooKenB319fUilUrXSmdoy5uDoeBqrJMbExCAhIQHGxsawtrZGQ0MDvvzyS/zjH//osBMRsyueCg4IISrBgVKpREpKitYNhrQFZeLTr18/DB48mFXZCmYTo5ubm1olH4lEgtDQUJw9exabN2+GsbEx4uLiEBcXh8LCQpSWlqrlUaANfvnlFxgYGGDw4MEAgGPHjmHnzp14+PAheDxek+Nv376NkSNHYsuWLZg2bRrOnz+PDRs2IC4uDsOHD9fJGtetWwdnZ2eVyavZs2fTzb9UY+aYMWNQUVGBixcv0sqB169fR01NDYYPH65ROe5VhQsGtIBIJEJBQYHKbfPnz4erqytCQ0PVMhMhhGDYsGHg8/n44Ycf2jx+06ZN+OKLL1Rus7OzQ0lJSYv3iY6OxocffoiUlBT06dMHa9aswZIlS9p8LA7NIYQgIiICK1asgIeHB6ytrXH79m1aJZEaZ/Ty8uqwCQFCCMRiMR0cVFZWQqFQwNTUFL169aJr22yow8vlcqSnp6OiogIeHh6sy1ZIJBIkJSVBJpNhyJAhavVW5OXl0Q6DP//8M30RpiguLu70i1a3bt2wc+dOvPfee01+N3v2bNTU1KhsViZNmgQbGxucOnVK62u5efMmRo4cCQD47rvvMH78eAwYMADp6eng8/k4ceIEZs+eDeB59mjgwIGYMmUKvvzyyyavI9ck2DZcrkQLWFpaNrngm5ubo3v37vTt6hhzPHr0CN98843aj8vj8XDt2jX6/6192PPy8jBlyhQsWrQIJ06cwM2bN7Fs2TLY2tq+0qpbuuLUqVNYs2YNTp48ibfffhvA8yazhw8f0hMLe/bsQUNDA4YNG0ZPKwwdOhTGxsY6G2e0tLSEoaEhSktLYWRkBCcnJ8hkMgiFQqSmpkIqlcLKyooODLp27drhI4UikQiJiYkwNjaGn58f68ZtKysrkZSUBFtbW7i6urZ5kSGE4H//+x8WL16M2bNnY9++fc0+p84MBBQKBc6cOYPa2lr4+/s3e8zt27exevVqldsmTpyodim0NaiyAPUvIQRDhw7F8uXLkZycjFOnTiE1NRVz5szB0KFDMWPGDISHh2Py5MmwsrKCubk5zp8/j1GjRsHLywsrV65UySJxgUDbcMFAB6ELYw5DQ0P06tVLrWMPHjyIAQMG0F9cNzc33Lt3D7t27eKCAR0wY8YMjB07VqXRzcjICMOHD8fw4cOxZs0aWiWRmlg4dOgQqqurMXToUDpzQM2oays4aMlgqF+/fgCej8xRJYXMzEzU1dWpzNPb2NjoLJNBCMHTp0+RmZmJgQMHss5pkJI8LigogIuLC/r27dvmfWQyGTZu3IgffvgB3377Ld59911WPaekpCT4+/tDIpHAwsIC58+fh7u7e7PHlpSUNGncbCsbqS7UuTE/P59+3/X19dG7d2/Y2NjAy8sLcXFxmDdvHn799VeMHTsWBw8exN27dzF27FgoFAoEBgbiyJEjGDNmDKvKSS8LXDCgI6Kiolr9/969e7F37952PUZWVhb69OkDY2NjDB8+HNu2baPrZY25ffs2JkyYoHLbxIkT8f3336vM7XJoB2Nj4zY73g0MDODt7Q1vb2+sXLkSSqUS6enpdOZg6dKlKCkpgY+PD0aMGIGRI0e+sEqiugZDpqamMDU1pbuupVIp3ZCYm5tLax0wgwNt7NxlMhlSU1NRXV0Nb29vdOvWrd1/U5tIpVIkJydDIpFg2LBhainWPXv2DMHBwRAKhYiPj2/xItuZuLi44NGjRxAKhTh37hyCg4MRHR3d4lobf+60Jd2rVCqxadMmhIWF4ddff0VAQAAsLS0xduxYzJkzBzNmzMD06dNRV1eHWbNmYcWKFcjOzsatW7foYMDAwAALFiyg/x4XEGgG1zPwkvLbb7+hrq4Ozs7OKC0tRVhYGNLT05GSktJsA5KzszNCQkKwfv16+rZbt24hICCAFkjhYBdKpRJ5eXmIiopCbGwsYmNjaZVEKnOgjkqiNg2GqJIC1XdAmfwwVRI1zWRUV1cjMTERFhYWrHNpBJ67SCYlJaFbt25wc3NrswGUEIIbN25gwYIFmDhxIsLDw18audtx48bB0dERhw4davK7AQMGYPXq1Sqlgr1792Lfvn1NeqZehOzsbGzduhW///47lixZgg8++AA2NjZYuHAhcnNzcf36dQDA+vXrIRAIcOzYMcjlchQUFHDnLy3ABQN/E2pra+Ho6Ig1a9bgww8/bPJ7qiN33bp19G03b95EYGAgiouL1S43cHQelEoiVVaIjY1FRkYG3NzcaJ2DwMBAWiVRqVTi8uXLMDc315nBEGXyQwUHNTU1MDQ0VAkOmhPboZ5PQUEBPaZmb2/PqhQ6IQR5eXnIy8ujywJtrU+hUGDHjh3Yt28fdu/ejUWLFr1UO9SxY8eif//+iIiIaPK72bNnQyQS4ddff6Vvmzx5Mrp27dquBsLG2YWPPvoI169fR8+ePfHbb78hMTERGzZswMKFC/H2229DLpfj+vXrWLt2LQoKCpCUlMTpB2gBrkzwN8Hc3Bx8Ph9ZWVnN/r5Xr15NantlZWUwNDTssFEmjvahp6eHAQMGYO7cuZg7dy4IISgtLUVMTAyio6OxZ88eLFiwAA4ODvDx8UFWVhaKi4sRGxurs5Ml9fmhPkMKhYK2bi4vL6fFdpgqiZaWlpDL5UhOTkZdXR18fX1pHwC20NDQQK9v6NChsLKyavM+5eXleO+995Cfn4/o6Gi89tprHbDSF2f9+vWYPHky+vfvD5FIhMjISERFReH3338H0LTpeeXKlRg1ahR27NiBd955BxcvXsS1a9cQFxen0eNeu3YNvr6+6Nq1K4C/Sg9Uqn/79u345ZdfsHr1aowfPx6LFy+GjY0Nnjx5AqVSCUNDQ0yYMAHDhw+nS2avqtOgNnl5QlaOVpFKpUhLS2sxXebv748//vhD5barV6/C19dX7X6BTZs2QU9PT+WntYxCVFRUk+P19PSQnp6u/hPjaBHq9Z81axa++eYbPHr0COXl5Xj33Xdx+fJlVFVVQSwWY9y4cVi4cCEiIiKQlZUFpVKpszUZGBjAxsaGDkhGjx4NHx8fdO3aFUKhEA8ePMCNGzcQExMDiUQCFxcX1qXQBQIB4uPjYWBgQF9w2oIquVlZWeHevXusDwSA582kQUFBcHFxwdixY3Hnzh38/vvvGD9+PIDnTc/FxcX08SNGjEBkZCSOHj0KT09PRERE4Oeff9ZIYyA+Ph4TJkzA6dOn0dDQoPI7AwMDEEJgZGSEGTNmIDY2FqWlpThx4gTu3buHn376iT6WEAJra2vo6elBLpdzgYAW4MoELykff/wxpk6digEDBqCsrAxhYWGIjo5GUlIS7O3tsW7dOhQVFeHHH38E8Hy00MPDA4sXL8aiRYtw+/ZtLFmyBKdOnVJ7mmDTpk04e/Zsk3FGW1vbZo+PiorCmDFjkJGRoXJCtbW15UZ9dMT27duxbds27N+/HyEhIRCLxbh58ybdlMhUSaT8FVxdXTsklU0IQU5ODvLz89GzZ08QQiAUCiGXy+lxRsq6uTMU4phlCycnJ7V8J5RKJf7zn/8gLCwMW7ZswapVq16qskBHQu3eP/zwQ5w4cQLnzp2jdQQaQzUAZmRkIDw8HBcvXkRBQQG+//77Zq3fOdoPFwy8pMyZMwcxMTGoqKiAra0t/Pz8sGXLFroLOCQkBPn5+SpTDNHR0Vi9ejUtOhQaGqqR6NCmTZtw4cIFPHr0SK3jqWBAIBDQKUEO3XLz5k306NEDLi4uTX5HqSTeuXOHbkq8c+cOzMzMVIIDDw8PrV+MmSI9fD6flt2l1kSNMwoEAtoemNl3oOtpl4aGBqSkpEAsFsPT01OtsoVAIMCSJUvw6NEjnDp1CoGBgTpd48sOs8Pf398fCoUCJ0+ebCK+REEFD+Xl5bh8+TIuXLiA06dPs04l8+8CFwxwqM2mTZuwc+dOWFtbqzXOSAUDAwcOhEQigbu7Oz777DOMGTOmg1fO0RISiQR3796lDZgolUQ/Pz9aCMnb27tdHf6Udr+6Ij1Me2CBQIC6ujpYWFioBAfavCAIhUIkJSXB0tISPB5PrcDj4cOHmDt3LpydnXHixIkWs2McqlC+AAKBAIMGDcLMmTPx1VdfaTRKyqkJ6gYuGOBQG03HGTMyMhATE4PXXnsNUqkUx48fx8GDBxEVFYVRo0Z1wjPgaAuZTIYHDx7QEws3b958YZVEpVKJrKwsFBUVqa3d3xxMrQOBQACxWAwzM7Mm1s2aQghBYWEhsrOzMXjwYAwYMECt5/TDDz9g3bp1CA0NxaeffspdmFqhtQv3lStXMHnyZPznP//BwoUL1QrwOP0A3cEFAxwvTFvjjM0xdepU6Onp4dKlSzpeHYc2YKokUloHlEoiJYQ0bNiwJlbJ1dXVSE9PByEEfD5fLe1+dWFqHQiFQtTU1NBaB1Rw0JbWASVyVFNTAz6fr1YZSywWY+XKlbh+/Tp++uknjB07lmtcawVmIHD06FEUFBTAwMAAq1atgrm5OfT19WnHwfPnz3OvZyfDBQMc7WL8+PEYPHgwwsPD1Tp+69atOHHiBNLS0nS8Mg5doFQqkZGRoSKExFRJDAwMRH5+Pnbu3InIyEi89tprOt85M7UOhEIhqqurYWho2MS6mbrQ1NTUIDExkXZqVKcEkpqaiqCgINja2uLUqVNqSRFzPGf69OlISEhAQEAA7t27hz59+mDbtm108+CYMWNQWVmJM2fONNvrwtExcPkWjhemrXHG5nj48KHG6eKioiLMnTsX3bt3h5mZGby8vHD//v1W70PNeZuYmMDBwQEHDx7U6DE5mkdfXx9ubm5YunQpTp48icLCQqSnp2Px4sUoLy/HggUL8Omnn2Lw4ME4e/YsLl++jIqKCuhyz0FpHQwePBi+vr4YM2YMPD09YWVlhYqKCty9exdRUVF4+PAhHj16hISEBPTp00ctx0hCCE6dOoUxY8Zg6tSp+PPPP7lAQE0kEgmWLl2KqqoqPHr0CD///DNtkhYeHk43Iv/6668oKyvDRx99hIqKik5e9asLJzrEoTbNjTPW1NQgODgYAJqMM+7btw8DBw4Ej8dDQ0MDPU507tw5tR9TIBAgICAAY8aMwW+//YaePXsiJyen1bQu59DYcejp6cHR0RENDQ3Yt28feDwedu3ahdzcXMTGxmLz5s20SiKVOWCqJOoCfX19OiMwaNAgKJVKCIVCZGRkoLa2Fvr6+sjLy4NAIKBLC9bW1k0yGPX19VizZg3Onz+PEydO4O233+bS2K3QWPhHLpfDx8cH8+fPR48ePbB7926EhYVh7ty5uHTpEnr16gVbW1v07dsXP/30EzZt2gQzM7NOfAavNlyZgENtNB1n/Oqrr3D48GEUFRXB1NQUPB4P69atw5QpU9R+zLVr1+LmzZuIjY1V+z6hoaG4dOmSSiliyZIlePz4MW7fvq323+FQn0OHDiE/Px+bN29W6cZnqiRSfQfJyclwcHBQCQ7Uad57UShLZBMTE/D5fHTp0gW1tbV0Q6JAIIBMJoO1tTUuXLiA1157DQ4ODli+fDkMDQ3x888/tzgxw/GclhoFCwoKYG9vj4MHD2L//v3YvHkz/vnPf2LlypU4c+YM1q5di/nz59OjphydBxcMcLAad3d3TJw4EU+fPkV0dDT69u2LZcuWYdGiRS3eZ9SoUfD29sb+/fvp286fP49Zs2ahrq6Oc2jsRAghEAgEdHAQFxeHBw8eoG/fvir+Co6Oju3uGieEoKioiLZEHjRoUIseCfX19SgtLUVoaCju3buHsrIy2Nra4v/+7/8wZswYBAYGdriT4vbt2/Hf//4X6enpMDU1xYgRI7Bjx45W6+oRERHNivLU19drxV2yNbKzs/H111/D3t4eTk5OeOutt+jfzZo1C/369cOePXsAAAsXLsTZs2fh4eGBs2fP0kqm3LRA58G96hysJjc3F+Hh4XBycsKVK1doNzOqFNEcLfmuy+VyribZyejp6aFbt274xz/+gT179uDOnTuoqqrCoUOHMGDAAJw6dQrDhg2Dk5MT5s2bh0OHDiElJUVjCWW5XI6UlBTk5OTAy8sLDg4OLWYe9PT0YGZmhr59+2LQoEGoq6vDgQMHsGfPHtTX12Pt2rXo0aOH2mJb2iI6OhrLly9HfHw8/vjjD8jlckyYMAG1tbWt3s/KygrFxcUqP7oIBJjvSVRUFFxdXfH48WNERERg9uzZCAsLg0QixBf3tAAAGshJREFUgVAoRGpqKszMzFBdXY2SkhLU1NTg6tWrKoEAAC4Q6ES4ngEOVqNUKuHr64tt27YBALy9vZGSkoLw8HDMmzevxfs157ve3O0cnYuenh6srKwwadIkTJo0id6lx8fHIzo6GpcuXcKnn34KMzMz+Pv702UFPp/fokqiWCxGYmIijIyM4Ofnp9b8elFREebNmweRSIQ7d+7Azc0NAPDuu+8CeG7q1dGZAcowiOLo0aPo2bMn7t+/36pOR1ueIdqCunCfPHkSubm5OHDgAJYtW4aamhpcuHAB8+fPR+/evfHee+9h7ty52LJlC65cuYKsrCxMnjwZw4YNA8CJCLEFLhjgUIEQQqfq2HDh7N27N92TQOHm5tZqEyLn0PjyQu3S33jjDbzxxhsAVFUSr1+/jq1bt7aokvjNN9/AxMQEr7/+OhwcHNrcaRJC8Oeff2LBggV466238PXXXzdrnNSzZ0+dPF9NqK6uBoA2gxKxWAx7e3soFAp4eXlhy5Yt8Pb21smazpw5g48//hh1dXU4f/48gOeZiXnz5iExMRGhoaGYN28e1q5di4EDB6K4uBh9+vTB7NmzATx//blAgB1wORkOetesUCigp6cHAwMDVgQCABAQEICMjAyV2zIzM2Fvb9/ifbTh0KjpOCPn0Kg7TExMMHLkSKxfvx5XrlxBVVUVrl69irFjxyIhIQEzZsxA37594ePjgy1btkAsFqNv375tfoblcjnCwsLwf//3f/jyyy9x9OhR1jkoUhBC8OGHHyIwMBAeHh4tHufq6oqIiAhcunQJp06dgomJCQICAlq0NtcEhULR5Lbhw4dj7ty5EIlEEIlEAJ6PHAPPG3m7dOmCM2fOAHjegLx69Wo6EKDONxwsgXBwEELu3LlDPvjgAxIQEEBmzZpFIiMjSVVVVWcviyQkJBBDQ0OydetWkpWVRX766SdiZmZGTpw4QR+zdu1aEhQURP8/NzeXmJmZkdWrV5PU1FTy/fffky5dupCzZ8+q9ZhVVVXE3t6ehISEkDt37pC8vDxy7do1kp2d3eJ9bty4QQCQjIwMUlxcTP/I5fIXf/IcapGSkkIGDx5MBg0aRKZNm0Z69uxJjI2NSUBAAFmzZg25dOkSKS0tJWKxmNTW1pLa2lqSm5tLRo8eTZycnMjDhw87+ym0ybJly4i9vT158uSJRvdTKBRkyJAhZMWKFe16fObn+OrVqyQ+Pp6UlJQQQgjJzs4mU6ZMIXw+nzx79ow+Lj09nfTr14/cuHGjXY/N0TFwwQAHSUxMJD169CBTpkwhR44cIUuXLiVeXl7kjTfeYMWJ8pdffiEeHh7E2NiYuLq6ksOHD6v8Pjg4mLz++usqt0VFRRFvb29iZGREBg4cSMLDw9V+vNDQUBIYGKjRGqlgQCAQaHQ/jvZRXFxMrKysyJo1a0hDQwMh5PkFMDU1lYSHh5N//etfpF+/fsTQ0JAMHTqUrFy5kmzevJn06tWLzJgx46V4v/7973+Tfv36kdzc3Be6/8KFC8mkSZPavY7Kykri7+9PnJ2diZOTE3FxcSHff/89kcvl5Nq1a8TX15e8/vrrJD09nRQUFJCNGzeS3r17k6SkpHY/Nofu4YIBDrJhwwbi7OxMhEIhfVtWVhbZs2cPuXXrlsqxSqWSyGQyolAoOnqZHYabmxtZtWoVmTlzJrG1tSVeXl5NApDGUMHAwIEDSa9evcgbb7xBrl+/3kErfrVJTU1t9fdKpZLk5OSQ77//ngQHBxNjY2OyYsUK1n+GlUolWb58OenTpw/JzMx84b/h6+tL5s+fr9bxzb0mCoWCVFRUkDFjxpA5c+aQyspKQggho0aNIg4ODuThw4dEoVCQw4cPExsbG2JtbU1CQkKIq6sriY2NfaF1c3Q8XDDAQXbv3k0cHR2bPalSu61XCWNjY2JsbEzWrVtHHjx4QA4ePEhMTEzIsWPHWrxPeno6OXz4MLl//z65desWWbp0KdHT0yPR0dEduHIOdWhoaCBKpbKzl9EmS5cuJdbW1iQqKkql9FRXV0cfExQURNauXUv/f9OmTeT3338nOTk55OHDh2T+/PnE0NCQ3Llzp83HowKBhoYGkpqaSmpra+nf5eXlkddee40UFxcTQp5vICwsLFSCZIFAQNatW0fc3NzIkSNHmvxdDnbDBQMcpKSkhIwaNYoYGRmRkJAQEhUVRdcIqS9ycXExOXz4MJk4cSL517/+RS5evNhioKBUKl/qWnmXLl2Iv7+/ym0rVqwgfn5+Gv2dt956i0ydOlWbS+N4hQDQ7M/Ro0fpY15//XUSHBxM/3/VqlVkwIABxMjIiNja2pIJEyY0ye41hhkY3bx5k/j7+5OgoCASFRVF337p0iXi7OxMGhoayOjRo4mrqyuJj48nhBBSV1dHEhISCCGEJCUlkblz55KhQ4eSoqIiQgh5qc8FrxLcNAEH7OzsEB0djaNHj6KmpgYbN26kO4D19fUhFovx5ptv4uTJkxg9ejQsLS0RGhqKyMhI+m+UlJRAIBAAAD2R8LLS0jhjYWGhRn/Hz89PK13cHK8m5PlmrclPSEgIfUxUVBQiIiLo/+/duxcFBQWQSqUoKyvDlStX4O/v3+rjUB39e/bswdixY/HGG2/g3Xffha+vL32Mn58fZDIZTExM0LdvX8TGxmL48OEAgMuXL+O7775DZWUlPDw8EBwcDAsLC1qj4WU+F7xKcDoDHDSzZs3C8OHDsW3bNrz//vtwcHCAt7c3vv76axQUFKio9126dAnz5s3DW2+9BRsbGxw9ehTfffcdtm3bhgcPHsDe3h6zZs2Cra1tk8ehRpSYWgbk/5ucsEGA5EXGGZvjRRwaOTg6g4sXL+LIkSO4cOECJk6c2OT35ubmCAoKwuHDhzFr1iz06NEDAJCQkICwsDCMHj2aHsscN24c0tPTkZOTw4rvM4eadGJWgoMFnDlzhmRkZKjcVlpaShwcHMiOHTuIQCAgEyZMIPr6+qR79+7Ex8eHbNmyhZw6dYoMHDiQ3L9/n0gkErJy5UpiampKJk6cSD788EPi5uZGxowZo1J3bC1dKJPJCCGETJ06lSxZsoRIJBLdPGE1eJFxxr1795Lz58+TzMxMkpycTNauXUsAkHPnzqn9uPb29s2mhZctW9bifc6ePUvc3NyIkZERcXNzI//9739f7ElzvNJs3LiRTJgwgVRXV9O3UX0HV69eJeXl5aSyspLMnz+fGBkZkfHjx5M5c+YQKysrsmrVKvo+1He8M7+/HC8GFwy84kyfPp2EhISQ6OhoIpFIiEgkInv27CE9e/Ykly9fJlVVVWTAgAHk22+/Jfn5+WTXrl3kzTffJHZ2dmTw4MEkOjqalJeXk+HDh5NRo0aRsrIyQggh9+7dI/379yf79u0jhDw/SVy5coVMmjSJTJo0iXz11VekoKCAXgdVt+zZsyf54osvWg0cOqL5S9Nxxh07dhBHR0diYmJCbGxsSGBgIPnf//6n0WOWlZWpNIr98ccfBECLc9q3bt0iBgYGZNu2bSQtLY1s27aNGBoa0rVcDg51CQ4OJgEBAaSyspJIpVLyySefkEmTJhEbGxtiY2NDBg8eTPcAfP/99yQ0NJSEhoaSa9eu0X+D6w14ueFcC19hCCGIjY1FeHg4rl69CiMjI7i7uyM3NxcTJkzAnj17YG5ujp49e2L37t0ICgqi7yuTyfDkyRMMGjQIcXFxWLRoET755BO89957dGpw+vTpMDExwcmTJ1FVVYX4+Hg8efIEZWVluHTpErp164bjx4/D1tYWenp6KCsrQ69evXD16lWMGzeu2TVLpVK1tOb/DqxatQqXL19G1v9r796Doir7OIB/AZcFEtZNZWRVruoiF8FSgRVNTUWhyQsqXgIML1hKxg6JNkBpkTI5TdBMalkLDYmWqUhMgy15CcFSl1WuariCGugAcl9jd8/z/rHukYVdlF4hgecz4x8cz+XhWLvPec7vcuOGwUptISEhaGpqwi+//MJuW7BgAfh8PjIyMvpyqFQ/p1AoIBQK4ezsjIqKCnh5eWHJkiWYM2cONBoNYmJi4OTkZPC/K/IoloE2GerfaMzAIGZiYoKZM2eyTU/++OMPlJaWYvz48fD392f3Cw0NxaeffopJkybBy8sLDMNAqVSyPd7LyspQV1eHGTNmANCWeTUzM0NVVRV77hdffBGBgYHsOePi4uDl5YXk5GQkJiYCAH799VcMHz4cTk5OBsfb3NyM0NBQODs7s61QB6r29nakp6dDLBYbLdlaUFCA6OhovW0BAQH4/PPP+2KI1ADi5OQEuVwOuVwODoeDBQsWgMPhwMLCAhqNBra2tlCpVAAetxkmj+J8dH+o/o1OBgY5hmHYZiE+Pj5shHBHH374IWpqajBv3jwIhUJ4eHjAysoKUVFRGD16NEpLS9Hc3MwGy3G5XCiVShQXF0MsFgMASkpKkJ6ejsLCQowcORLr16/HsGHD0NLSwq4kZGVlwdvbmw1O0tF96CgUCjQ2NsLKyood+0B9Gjlx4gQaGhr0Isc7M9aquXOTJop6Gm5ubl2yaADtJPzhw4fsxF73/xydAAwsA/OTlHpqpqambLQvedSxsCNCCKytrfH999/jzJkzWLJkCUxNTeHh4QFHR0fcvXsXlZWVsLCwwMcffwwAqK6uRlxcHKysrLB8+XLU19dj8eLFyMvLQ0BAALhcLjZv3oy8vDyMHj0aarUaAHDu3Dn4+/t3aRaje5NVXFwMpVJpcMLSeX+1Wt3ld+lPvvnmGyxcuBACgaDb/Qy1aqYf0tSz0NraisLCQixcuBDNzc3dtgyn+j+6MkCxDC33mZiYsF8whp4cFAoFqqurERUVhaqqKnh6eoLL5aKtrQ27d+8Gh8OBVCpFQ0MDfvjhB7aV6vXr1+Hn54exY8eCy+XiwYMHqKmpwbRp07qkIumeREpLS2Fubg5PT092bDqdly6N9brvDyorKyGVSnHs2LFu9zPWqrnzagFF9dRnn32GCxcuoLCwECKRCGlpaQAG9mrcYEf/Vakn6lgLQKPR6D1xKxQKNDU1ISwsDPv27cNbb72FoKAgHD16FJGRkQAAHo8HGxsbyGQyAIBcLkdCQgK4XC5cXFwAaOMFeDwe+3NnSqUSFRUVGDVqFBwdHfXGBWgnDGVlZYiPj4dIJMKaNWuQk5NjdHWAYRiDLVmfBxKJBLa2tggKCup2P2OtmkUiUY+u5+joaLD98ubNmw3un5qaanD/hw8f9ui6/dnu3bsxdepUWFtbw9bWFosXL+5Sm8KQn376CW5ubuByuXBzc8Px48f7YLQ95+fnB2dnZyQnJ7MTAbVaTScCA1nfJzBQA8U///xDNm7cSIRCYbf7aTQaEh0dTSwtLYm7uzuJjIwk5ubmZMWKFUShUBBCHqfqde4ip0sjLC4uJrNnzyZxcXHsOTuSy+Vk7NixJCQkhHz11VckIiKCTJo0ieTm5rL7VFRUsE1WnlcajYbY29uT2NjYLn/XuQ79+fPniZmZGdmzZw8pKysje/bs+VephT1NaZRIJMTGxkbvGF3N+sEiICCASCQSUlxcTORyOQkKCiL29vakpaXF6DH9LRW0Y7lx2l9g4KOTAepfa29vJ0ePHiV79uwhhGgLB6nVaqMfHPX19eTnn38mCoWCLFq0iLz//vukubmZEEIIn88nO3bsYIsP6ejOdeTIEeLj40OOHj1KCNHmNOsmCjU1NSQ0NJRMmTJF79jExEQyYcIEQoi2fvqGDRuIUCgk2dnZJCwsjBw4cIDU19cbHKtarf5Pah3k5OQQAF0KQRHStQ49IdqiUUKhkHA4HOLq6tqjIkfGbN26lbi4uBj9HSUSCeHxeP/3dQaS+/fvEwDdNqZasWJFl1bCAQEBZOXKlb09PIp6ov77YpX6z3E4HAQHB7M/d/eenhACPp/PLn2fOHGCzSJQqVRwdHSEr69vl3PoXgWUlZXB3NwcXl5eALT1zsmjwMJr166hqKgIZWVlGD58OOzt7bF69Wq0trbC0tIS9+7dA8MwqKmpQU1NDXJycjB69Gjs3bsXFy5cwLffftsl8K5z3ELHd6VqtbrXYhLmz5/P/l6dnTlzpsu2ZcuWYdmyZc/s+k+T0ggALS0tcHBwgEajgbe3Nz766CM2HmQwamxsBKBNoTWGpoJSzzP6AojqEx3jDnR/dF/oHA4HMpkMr7/+usHj2tvbIZfLQQgBj8frck6NRoNbt27h/PnzyM/PR1hYGM6ePYvU1FTweDy0t7ejuroaMpkMYrEYycnJ+OSTTyAWi3H69Gnk5+ez15FKpQgMDIS/vz/S0tLQ3NwM4HEQIyEETk5OOHTokF7GQm5uLt555x0olcpevY+97WlSGl1dXZGamoqTJ08iIyMDFhYWmD59+qBtykQIgVgshr+/Pzw8PIzuR1NBqecZXRmg+pShbAXdF6qx4KTW1lbY2dkhMzMTEyZMgJubG+bMmYPZs2dDJBLBwcEBbW1tMDExgVAohFAoRHR0NFQqFe7du4cxY8YgNzcXVlZWWLp0KXteFxcXWFtbo6mpCQCQkpKClJQU+Pr6wtfXF6dOncKZM2dw+/ZtJCUlYcKECcjIyICZmRnGjRvHrg6oVCr8/vvv+Prrr5GSktKv0/ueJqVRd390pk+fjpdeeglffPEFUlJS+mKYz5UtW7bg6tWryMvLe+K+NBWUel7RlQHqP2dqatptlDKfz8eXX34JhmGQnZ2NWbNmITMzE6Ghofjxxx/h7OyMRYsWISYmBrdv3wagnUC0tbVhzJgxUKlUKC8vB4/H03tyu3PnDh48eMC+etB1azx48CASEhKwZs0aZGdnQ6lUwtLSEkVFRdi2bRuqqqqwdu1aREZGorKyEk1NTSgqKsJrr70G4PEEp7/VOdClNK5fv75Hx5mammLq1KmDcmUgKioKJ0+exOnTpzFmzJhu96WpoNTzjE4GqOceeZTSCAAikQiJiYm4evUq7t69yz7pJyYmgsPhwMvLCzNnzsSmTZuQnJyMpqYm1NXVoaKiAhMnTmTPqVQqUVpaihEjRsDOzg5SqRQtLS1Yt24dbGxsAACBgYGwtLSEvb09BAIBRCIRJk+ejKVLl2L9+vUoKiqCQqGASqXClStX8Morr6C1tRVKpfKJE5zn0dOmNHZGCIFcLh9U7ZoJIdiyZQuOHTuG3377zWgJ7Y6eVSooRfWG/vVpRQ1KJiYmbEAfwzBQq9Xs5OCFF14AwzAYP348cnJykJeXh+DgYAgEAvj5+cHGxgbl5eWQyWSYMmUKe87a2lqUlpbC29sbAFBUVASBQAA7Ozu2IuKdO3cwdOhQTJw4EcOGDYNSqYRCocDMmTMhFouRn5+PWbNm4fLly2hsbMSff/6J1atXg8/nIyQkBHV1dX18p/49hmEgkUgQHh7eJTgyLCwMO3bsYH/euXMncnJycPPmTcjlcqxbtw5yuRybNm3q8XXVajXi4uLg5OQES0tLODs7Y9euXU9cVTl79ixefvllWFhYwNnZGfv37+/xtf8fmzdvRnp6Og4dOgRra2s2OLVjzEjn+7Z161acOnUKSUlJKC8vR1JSEqRSKd59990+HTtFGUJjBqh+xdATd8fKg4aqJI4dOxZLlizBq6++ym6rqKhASUkJQkJCAGijwfl8Pmpra9neCBcvXoRKpcK4ceMAaBs5EUL0CiNpNBoUFxejoaEBQqEQkZGRuHnzJpYvX47MzExERET0yn141qRSKaqqqgyOt6qqSu+eNzQ0YOPGjaipqQGPx8PkyZNx7tw5TJs2rcfXTUpKwv79+5GWlgZ3d3dcunQJb775Jng8HrZu3WrwGIVCgcDAQGzYsAHp6ek4f/483n77bYwcOVIvu6U37du3DwAwa9Ysve0SiYQNvux830QiEQ4fPoy4uDjEx8fDxcUFR44ceWJ5bYrqE32dy0hRvYlhmG5rHejk5+cTHx8ftuhRQUEBcXBwIPv27SOEEFJYWEhmzJhBJk6cSGQyGSGEkA8++ID4+PiQoqIi9jz19fUkODiYzJ07l93W1NREgoODyaJFi9gxUYYFBQWRiIgIvW1Lly4lb7zxhtFjtm3bRlxdXfW2RUZGEl9f314ZI0UNBvQ1ATWg6F4pdHwiMxTM5+fnhwsXLrCljX19fREeHo6YmBh4enoiKSkJN27cgLe3NxwcHAAAhYWFGD9+vN678fv376OkpESvPTPDMGhpacGwYcMAwGjdAArw9/dHbm4url+/DgC4cuUK8vLy9O5nZwUFBZg/f77etoCAAFy6dIlts0tRVM/Q1wTUgGcokI9hGLamfnt7O1paWrBz505ERUWhvLwcQ4YMwbVr1+Du7s4WkrG1tcXff//NfskD2gj86upqzJ07l91WW1uLy5cvs8VkaOqYcbGxsWhsbISrqyvMzMyg0WiQmJiIVatWGT3GWL6+Wq1GbW3toApkpKhnha4MUIOSqakp+yXd1taG1NRUpKamYsSIERAKhTh48CDq6ur0nkDDw8NRXFwMgUCALVu2ANAGHg4dOpTtpAgAN2/eRF1dHebNmweATga6c+TIETYQTyaTIS0tDXv37mWb4xhjKF/f0HaKop4OXRmgBj1LS0u0t7cjNjYWMTEx4PP5sLKywq5duzB16lR2P39/f/z111/Izs5mCxVdvHgRo0aNAqD9QmIYBjKZDHZ2drC1taVFZZ7gvffew/bt27Fy5UoAgKenJyorK7F7926Eh4cbPMZYvv6QIUMwfPjwXh8zRQ1EdDJADXpcLhfbt2/H9u3bcePGDZSXl8PPz4/NKtAhj0onL168mN12+PBhVFdXA9A+lba1tSErK4vNQGAYpkufA+qxtra2Lq9xzMzMuk0t9PPzQ1ZWlt62U6dOYcqUKeBwOL0yTooa6EwIjW6iqB7p2LTIkJKSEhBC4OHhQVcGnmDt2rWQSqU4cOAA3N3dUVhYiI0bNyIiIgJJSUkAgB07duDu3bv47rvvAGhTCz08PBAZGYkNGzagoKAAmzZtQkZGRp+lFlLUQEMnAxRF/Weam5sRHx+P48eP4/79+xAIBFi1ahUSEhJgbm4OQDthuHXrll7XxrNnzyI6OholJSUQCASIjY39V0WPKIrSopMBinrG6GoARVH9Dc0moKhnjE4EKIrqb+hkgKIoiqIGuf8B/wzD6Etm/UYAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAGFCAYAAABg2vAPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzsnXmYG+Wd579Vpfvq+3LfbrcPfOAzGNsYkhlICBkIGUgySSabwD5hJ4TJTHZ2EgJkN8nm8ZBjIDBshkmIYQgJhNMwBAeD8YWNDca3Wy2p1fcp9aX7qGP/aKpcUktqHaVuyf1+5uHJWC29Kqmr6/3W93dRgiAIIBAIBAKBsGihF/oACAQCgUAgLCxEDBAIBAKBsMghYoBAIBAIhEUOEQMEAoFAICxyiBggEAgEAmGRQ8QAgUAgEAiLHCIGCAQCgUBY5BAxQCAQCATCIoeIAQKBQCAQFjlEDBAIBAKBsMghYoBAIBAIhEUOEQMEAoFAICxyiBggEAgEAmGRQ8QAgUAgEAiLHCIGCAQCgUBY5BAxQCAQCATCIoeIAQKBQCAQFjlEDBAIBAKBsMghYoBAIBAIhEUOEQMEAoFAICxyiBggEAgEAmGRQ8QAgUAgEAiLHCIGCAQCgUBY5BAxQCAQCATCIoeIAQKBQCAQFjlEDBAIBAKBsMghYoBAIBAIhEUOEQMEAoFAICxyiBggEAgEAmGRQ8QAgUAgEAiLHCIGCAQCgUBY5BAxQCDkAUEQwPM8BEFY6EMhEAiEOVEt9AEQCJcbPM+DZVkEg0FQFAWGYaT/aJoGTdOgKGqhD5NAIBAkiBggEBRCFAEcx0nOAACwLCs9RxQCDMNApVJJ4oBhGCIQCATCgkEJxMckEHJCEARJBPA8L23qkUgEFEVJ/xYEYdZ/AKTnyB0E0UWQv55AIBDyBREDBEKWCIIAjuPAsqwkAsT/BEFAJBIBgJSbeSKBMDExgWAwiMbGRtA0DZVKFRNiIGEGAoGgNCRMQCBkiBgCiEajOHHiBNatWwedTpfVBp3ozj8cDsPj8YCiKPA8j1AoJP2MhBkIBEI+IGKAQEgTUQSITgAATE1NQRAERTdimqZj/pdhGOn9xf+i0WiM80BRlCQOSJiBQCBkChEDBEIaxCcHyjfa+Yq0JdrY4wWCXJhQFEXCDAQCIS2IGCAQUpBIBIh37ADyIgYyWTOZQBD/N50wg9xFIBAIixMiBgiEBMgrBMS77UQbb76cgVzWlDsDAAkzEAiEuSFigECQkapCIBEL7Qxkuu5cYQbxMfG5JMxAICwOiBggEBBbISBuxOlsevkSA/PFXGEGURiJkDADgXB5QsQAYVGTqEIgE2s8mRiIRqMYGhqCVquF2WyGVqvN+LgWivgERJFEYYaenh5UVlaipKQkadtlIhIIhMKHiAHCokTc1BJVCGRCvBjgeR59fX3o6uqCTqeTZhRoNBqYTCaYzWaYzWaYTCbo9fqE71eom2eijX1ychIWi0USCPKKBhJmIBCKByIGCIuOuSoEMoGmaWk64cjICGw2GxiGwdq1a1FSUgIA4DgOPp8PPp8PXq8Xvb298Pl8oGlaEgji/xqNRgAL6wxkihgqEEknzCAXCCTMQCAsPEQMEBYNohMgbk5zJQemA0VR8Hg8sNlsCIVCaG9vR319PQBId8kqlQqlpaUoLS2VXsfzPAKBALxeL7xeL0ZGRuBwOMBxHLRaLTiOQ39/vyQSVKri+VNNJ8wQiURieiLIqxhImIFAmH+K5wpDIGSJeIfa19eHsrIyqXVwrpuMz+dDKBSC3W5HW1sbWlpaYsr4UiG6AiaTCXV1ddJrQqEQBgYGMDo6iomJCfT19SEcDkOn08U4CGazGRqNpqg2ynSqGeYKM4htl4vpcxMIxQARA4TLlvgyQYfDgTVr1sBgMOS0bjgchsPhwODgIBiGwcqVKyU3IBcoioJer0dpaSmmpqZw5ZVXApiZfiiGGLxeL0ZHRxEIBKBWq2MEgslkgsFgKKqNMttqBhJmIBCUhYgBwmVHogoB0XbOJRbPsix6enrQ3d2NyspKbN++HWfOnMm7ha/RaFBeXo7y8nLpMTEPwev1wufzoa+vD36/HxRFwWg0zspDkMf0lUbpTVjJMEO2uSAEwmKDiAHCZYPcbk5UJphtTwCe5zE4OAiHwwG9Xo/NmzejrKwspzVTkc6aDMOgpKRESlIUjzMQCEgiYWxsDF1dXeA4DgaDYZaLoFarFT3ufJNNmCFeIJAwA4GQGCIGCJcFyQYJyREz/9NFEAS4XC7YbDbwPI9Vq1ahpqYmZt1Cakcsz0Oora2V1gmFQpJAmJqaQn9/v5SHEF/NoNVqi2qjnCvMwLKs1Flxenoa0WgUNTU1JMxAIMRBxAChqJGLACB1hUAmG/f09DQ6Ozvh9XqxbNkyNDY2JrSc51ozm/HGSm5KYh6CXq9HVVWV9Hg0GpVCDKKL4Pf7oVarZwmEVHkIhVgCmSzM4PV6EQgEUF1dTcIMBEIcRAwQihJ5w6B0ZggA6TkDgUAAdrsdo6OjaGlpwYYNG1La6Zm6DekwH2OR1Wp1wjwEv98viYSBgQH4fD4AkBwHUSSYTKa85iHki0Q9EUiYgUAgYoBQZCQaJJSuxUtRVNKNOxKJwOl0oq+vD7W1tbjmmmug1+vTWrNQwgS5wjAMLBYLLBZLzHGI/RB8Ph/GxsbgdDoRjUZhMBgQDofhcrlA0zTMZnNB5yEk+k4zCTPIBacYZojviUAgFCtEDBCKgmwHCclJVE3A8zx6e3vhdDphsViwdevWmM1wLop9UNFciNUJYmdEYOZ3EQ6H4fP50NHRAb/fD6vVilAoJM1ikLsIYl+HhUbMJZmLdKsZ5JAwA6HYIWKAUNDkOkhIjtwZEAQBw8PDsNvtUKlUuPLKK1FZWZnVmpeLM5AuFEVBp9NBp9NBo9GgtbUVFRUViEajMW2XXS4XAoEAGIZJmIcw3xtlNvkbctKpZhBFAgkzEIoNIgYIBUs6FQKZIDoD4+Pj6OzsRCQSQXt7O5YsWZL1ugtVWliIqNVqlJWVSWWXwKU8BFEgDA0NwefzQRAEGI3GmI6KRqMxrz0b8vGdpgoziOcvCTMQigEiBggFh5KDhOSI/f7D4TBaW1tj2gdny+UeJsiVZHkIwWBQykNwu93o7u6W8hDiXQSNRqPIseTqDKSL+B7x51amYQbRRSAQ5gMiBggFg5iwNTk5Cbvdjo0bNypyxxQKheBwOOB2u1FSUoKrrrpKsQ0mmRjI1QouFmcgm+OkKAoGgwEGgwE1NTXSOpFIRBIIHo8HQ0ND0vjn+DyEZOOf5zrWhYzhZxpmCIfDEAQBJSUlJMxAyDtEDBAWnPgKAY7j4PF4cr5wsyyL7u5u9PT0oLKyEjU1NTCZTIoJAYA4A0pBURS0Wi20Wm1M7gbLsjFtl3t6euD3+2PGP4sCwWg0pjxn5ssZyIRUYQaXywWPx4NVq1bFPDfVhEcCIVuIGCAsGMkqBFQqVU4bLM/zGBgYgMPhgMFgkNoHX7hwQfGNu1j7DBQLycY/y/shiHkIPM/PmstgMpmkPIRCFAOJkB8jwzBSuaboIIiCWY4oEFQqlSQOSJiBkAlEDBDmnbkqBLLdYMX2wZ2dnRAEAatXr0Z1dXXO66ZiMVYTLDRiTwOz2Sw9JuYhiC7CxMQEent7EYlEoNfrYTKZEAwGwfM8wuEwtFrtAn6C9OB5PsbpINUMhHxCxABhXsnHDAFgpn2w1WqF3+9HW1tbwvbB8535n0uFQjFRCMcrz0Oorq6WHhfzELxeLzweDyYmJvDuu+9Co9HMSlTMJg8hn6ST45BNNQMJMxASQcQAYV7IpEJALAFMx9YNBAKw2WxwuVxobm7Gpk2bkpan0TQtXRiVIpUYyFZ4kDCBcmg0GlRUVKCiogJ+vx8mkwn19fVSmMHr9aKvrw8+ny9m0JO83HGhkg7FDpuZMlc1AwkzEBJBxAAhr4gVAizLAkg9SEhEvPjyPJ+09C8SiaCrqwv9/f2oq6vDNddcA51Ol/JYiqknABEDyiOKS5VKlXT8s5iHMDIyAofDAY7jYvohiGJhPtoupzr/syHXMIN8uiMRCZcfRAwQ8kKiGQLpXkRSiQGO49DX14euri6Ulpbi6quvjokdz7VuPnIG8rFmsVBMoiWV0yR3BeTPl49/npiYQF9fnzT+WR5iEPshKPm743k+76Ij3TBDfItmEma4/CBigKAochGQywwBADGbrNg+2GazQa1WY/369Rm3D87Xxk2cgeIg02oCiko8/jkSicSUO46OjiIQCGQ8/lnp41WKRGEG+fAmeZhBPEYSZih+iBggKILSMwSAS2JAqfbBiQYV5QrpM1A8KLW5ajSahOOf5XMZ+vv74ff7AWCWQDAajWnZ//HVBAuJ3BmQEx9muHjxIsxmM2pra0mYocggYoCQE+KFQEwOBHLvvifeaXi9Xly4cAFTU1NYunQpmpubc4qh5sMZSBV6KKR5B4T83mkzDJM0D0EUCGNjY+jq6gLHcQnbLseHBApJDCQj/m89HA7DYrFIwpuEGYoHIgYIWaP0ICGRUCgEQRBw+vRpNDY2Yt26dYp0DSwWZ0CkGJvkFDLz/X3K8xBqa2ulYwiHw1KIYWpqSpqXIY5/FgUCy7JF892KiHk+8SImPswgJhQDl8KIJMywsBAxQMgYUfEHAgEcOXIEH//4xxURAvL2wRRF4corr5R61ytBseQMFMsFMMpFcWLiBMoCsZMKC5VCcFso6tL4Z3keQjQalQSC6CL4/X54PB64XK4YF2Ehxj+nC8dxCY8tPswgOnykmqFwIGKAkDaJKgTERMFc/jjl7YONRiO2bNmC06dPKzpDAJh/ZyDXpkOF7gw4Jh3o9HWi1lWLFUtWFPSxAoX9farV6ll5CB988AEqKiqg0Wjg8/kwMDAAn88HAFLbZXm5o5JliNmSaTnkXOWOycIM4gho0UUgYYbcIWKAMCeJRABN01KMk+O4rObQC4KAsbEx2Gw2AIhpH5yPMsBiakcMFMadbDKiXBQfjn4IXuDhmHZg0DeIBnPDQh9WShZ6amGmCIIAo9EY01FREISYfghjY2NwOp3S+Of4uQxKC+q5SOYMZEKqckcxzBAKhaSfkTCDMhAxQEhKogqBRAo8mw12amoKnZ2d8Pv9WLZsGRoaGmIuIsWycc/VgTDbEb+FjmPSgX5PP+p19QhzYZwdPYt6U31BH3shi6tEJBIvFEXBaDTCaDTGPC++7fLg4CBCoRC0Wu2sREWdTpe33xPHcXlxKLINM4jigIQZ5oaIAcIs0i0TFNV4fGvTVMjbB7e0tCRtH7yYnQF5mKAQEV0BLaOFQAuoMFSgc6IT62rWFbQ7UMhhgkSk246YohKPf45GozHljm63G36/HwzDJOyHoIRronTXxLlIp6ti/PNJmCExRAwQYsi0QiDdDVbePnjJkiVztg8upmS/RGt6vV5YrVaEw2EptitefNO9WBaqGBBdgZaSFnSjGya1CZ6Ip+DdgWIUA7ls0Gq1GmVlscmdHMdJYQav1yuNfxZDEvFtlzMJ/4nhxIUOxWQaZuB5Hl6vF1VVVTFOwmITCEQMEABkNkhIDk3TKZ0BjuPQ29sLp9OJsrKytNsHF5MzIF8zHA7DbrdjaGgIDQ0NqKmpgd/vh9vtRnd3N1iWlWK7coEgv+gW8gWIF3icGj2FQDQA55QT/aF+BKeDYDQM7JN2bPBvQJ2pbqEPMyGLTQwkgmGYpOOfxTwEt9uNnp4eRCIRqR9CfNvlRIgbbiEkMsaTKswwPT2Njo4OlJaWzgozdHd349VXX8UPfvCDojp3soGIgUWOvGGQPDkw3ROfYZiEG6wgCBgaGoLdbodGo8GGDRtQUVGR9nEVk6Uv3m309PTA6XSioqIC27dvh1arRTQaTVhjLva67+3tlS664sXWYDBIzy80KFBYW70W7eXtAICz3rNY2rAUJrMJFCiYNKY5VlhYiumCPl9Nhyjq0vhneSlvOByWQgxerxfDw8MIBoPQaDSzEhX1er10U7DQzkAmiH+/KpVKEuTyMIPVasXzzz+P//2///cCH2n+IWJgkZKsQiDTi2UiZ8DtdqOzsxPRaBTLly9HXV1dVusWizMQiURw+PBhqFSqGNEjb6wiPjdRjblcIExPT6O/vx/ATGmZ3EFIdVc2X1AUhbVVa6V/R5wRrK5ejdLS0gU8qvTIdiTwQrHQ1Q9iHoJcxLMsGzOXoaenB36/HzRNS0mNY2NjCz7+ORNYlo1xM+RhBr/fn/YgtGKHiIFFhngXG41Gsx4kJEfuDHi9XnR2dmJqagptbW1oamrK2jIsBmdgenoaDocDwWAQq1evRn19bLw83e80PvlLEAS88847aGtrQygUirkrk3epE//TarWKfabLmddGXsNk6SRuKrtpoQ8lLQpRvKhUKpSWlsaIP57n4ff7MT4+Do/Hg+HhYdjtdvA8H5OHkCgkVgikqoDwer2wWCzzfEQLQ2H9Vgh5Q8lBQnJomkYoFMK5c+cwPDyMpqYmRdoHF7IzEAqFYLPZMDo6iqqqKlAUhYYG5bPoS0pKYmxbMTtcdBHEaXmibRsvEAptI1lIrONWPNX/FN6cehN/ufwvoVUVtoASbepiuLOmaVq6e+7r68OmTZukPAT5+GcxJKbX62dVMyg9/jkTWJZNKlA8Hg9xBgiXD/maIcCyLEKhEDo7O1FTU4MdO3ZI8e5cmY9kv0zhOA7d3d3o7u5GVVUVduzYAZ/Ph87OTgWPMrmjkCg7XG7bysvHVCpVzB2Z2WyGXq/PywW3GETHoycfRVSIYsg3hOetz+Mra76y0IeUEnlfj2JBXlYoz0OQN00S+yGI5+zIyIg0/lkuDvJ5vsZDnIEZiBi4jBFFgNjGdPny5YrVEvf398PhcAAAmpubsXLlypzXlZMvZ0C848rkIiMIAoaHh2Gz2aDVarF582ZpQ/b7/Yq3IxZfm05II5Fty3Ec/H6/JBD6+vrg8/li6svlyYrFsJlnAsuzUNGXLm3WcStes78GNaWGAAGPfPAIbl95e0G7A/IQXrGQTlmhRqNBRUXFrDyE+PPV7/eDoqiYSgaTyZT2+OdMSOUMEDFAKGriKwREeznXi74gCBgdHYXNZptJJFu7FoODg3lJasuXMwBkVmI2OTkp9QtIlAw516ady3eebX4DwzCwWCwxFzExritecEWBKF5w4wVCMW1CciJcBNc+cy1ubr8Z9159L4CPXAE+Ci2lBaNm0O/tnxd3IMSG8L0D38P/2PA/sLIiM7EsD+UVC9l2H1SpVEnHP4suwsjICHw+nzT+Ob6aIX78s1LH7fP5YpyNyxkiBi4jklUIqFSqnDfWyclJdHZ2IhAIoL29HfX19aBpGqOjo4pv2sCMGIjPxldiTSC9TTYYDKKzsxMulwutra1obW1NeMHIR3MkcV0lEeO68vin/IIb34BGfqG1WCxJM8MLrfzxuY7n0DHege7pbty57k5MhCbwmv01aGgNKJ6CilaBAjUv7sAzF57BU+eeQr+nHy9+7sWMXlusYQKljlc+/llEEASEQiEpxCAf/6zT6WYJhHTzZjiOS9oAzev1kpwBQvEwV4VApi2D5fj9fthsNrjdbrS0tGDz5s0xltpcTYeyJV9hAiB1y1SWZeF0OtHT04Pa2tq0OiXmg3wOQBKRX3Dr6mYaBSUahNPV1QWO42Im5YkX3EIiwkXw0/d+CgoUolwUj558FJOhSfijfuhUOrAci0gkAl7g8+4OhNgQfnb8Z+AFHvt79+P94fexpW5L2q8XxfxicAbShaIo6PV66PX6mNLcSCQSU+4oJtaq1eqEbZfjv9P40kI5JExAKArSrRDIRgxEIhE4HA4MDAykbB+cj007X+um6vkvCAIGBwdht9thMBhw1VVXxdiWqY7zcppamGwQjljiKCYpit0UAaC7uxsVFRU5lY4NegdxYvgEPtv+2aw3wOc6nsOAdwA0RYMXePz6zK/x+RWfxxWVVwAAfF4fjEYjKJoCBSomr0BpnrnwDEb9o9J7/Muxf8nIHSiWSgI58z2XQESj0cwa/8xxXMxcBvn453iBMJcYSOc6cDlAxEARIp/1nU6FQCZigOM4qZNeeXk5tm3blvIOkGGYWcNAlCDfzoCc8fFxWK1WsCyLVatWoaamJu0NqVjCBLkgvyMT46diN8UTJ05Aq9Um7aaYTkz3+NBx/Pbsb9E12YVmSzM21m7M+BhFVwAAaIqW3IESXQkOf+UwAGD//v3Ytm1bSqdHCURXAPjo/MjCHSjEHgNzUQhzCUQYhkmYhyC2XfZ6vZLrxbIsAoEApqampPOVpmmUlpaSMAGhcMlmhkA6Vr54Z+xwOKDRaLBx48a02gczDBMz9EMp5sMZ8Pv96OzsxMTEBJYuXYrm5uaM72zyaefnY137hB37evbh7zb8Xc7VDjqdDjRNo76+XrJS47spDgwMIBQKSTHd+G6KvogPd7x+B1wBF2qMNXiu4zlsqNmQ8bHJXQHx+Diew6/P/Br3bLoHVYYq6fF8I7oC0rFgxq3LxB2Yr1bESpLvMEGuiF0SjUZjTIvw9957D9XV1aBpWspDuP3222EwGKDX6/Hiiy+C4zisX78eTU1NGZ9Du3btwksvvQSr1Qq9Xo9t27bhwQcfxIoVK5K+5sknn8TXv/71WY8Hg8G8iVkiBooE0QkQrVkxHJDOiTlXAqHL5YLNZgPLslixYgVqa2vTPuGLKUwgrhuJRNDb24u+vj4pBJJtF798iYF8bFqCIOD+Q/fj3YF3saZyDXY27VT8PRKN0pXHdOO7Kf558s8Y8Y2AFVioaTWODx3HqdFTGbsD/+/D/zfLWqcpGmE2jKfOP4X/ueV/Asi/GIhwEfzs+M/ACRwECMBHp4YgCNjfux8fjnyY1mcrRjFQjMcsOnsVFRUx5blnzpzB8ePH8c///M9wuVy4//770dHRAYvFgr179+JjH/tY2u9x8OBB3H333diyZQtYlsV9992HG264ARcvXowJx8VjsVhm9TDJp6tFxECBk6hCINPEomSZ+R6PB52dnfB4PNKdcaZ/zMWUQMjzPARBwPvvv4+SkpK0JyimIp9iQOl1jw8dx5GBIwhzYTz0/kO4pvGaeblTThTTjUajGJ0cxXMvPQdO4ECBwoBnAFWaKjx26DF8f9P3YbFY0u6m+L+u+l+wTdgS/uymtpuk7zLfn5fjObSVtqFEOzvOrKZn+hykQzHmDBS6M5CMRMddVVWFG2+8EV/+8pdx8OBBLF26FMFgEBcuXEh5R5+IvXv3xvx79+7dqK6uxsmTJ7FzZ3JBTlGU5GDMB0QMFChyEZDrDAGGYaRkQ5qmEQwGYbfbMTIygqamJqxfvz7rOt1kUwtzRWkx4HK50NnZCUEQsGzZMjQ3NyuyMRRLmEAQBDz0/kPgBR5GtREnhk/gcP/hnN2BbI9RrVbjvwb/C+OhcVAUBTWtBsuz0Gg06PB34PTYaTSON87qpmixWKQpefLf3+dWfC7l+yldppoMvVqP1z//es7rFGPOAM/zOdX7LwTidTZR0qtYZivmHej1emzevDnn95yengaAGHGcCJ/Ph+bmZilE8eMf/xgbNmzI+f2TQcRAgZGPGQKi6hXt8d7eXsXaBxd6mMDn88FqtWJ6ehptbW3o6upCWVmZYhdaUQxk2tUwnXWVRHQFNIwGGlqDCBeZV3cgHl/Eh0c/eBQsz878rgUevMBj0D+IKkMVToRO4HPXfW5Ws6Te3t6Yboqvjb2GjUs24hNtn0jZTVEULedc57Cudl1eKwmUoBgt92J0BkS3MNFxe71eAFC0tFAQBHznO9/Bjh07sGbNmqTPW7lyJZ588kmsXbsWHo8Hv/zlL7F9+3acOXMG7e3tih2PnML+i1hEiBtKNBpVdJCQuA4AvPvuuzCbzWmXzaVDLj0MUpGrGJCXRjY2NkrDk3p6ehQVL/ncSJVyBuSugIaeGQijZbSKuQPZ8LsLv4Mr6AJDM6DwUT8MmkGUj6JUVwpemLkzju+m6Iv4MBmcRCldivd638Mfuv+Atwffhs6tg4bRJO2mKAgCrH4rvv/c93Hv1ffiu1u/O++fOROKUQwsVGlhLojXrkTOgNfrhcFgUPQzfetb38LZs2dx5MiRlM/bunUrtm7dKv17+/bt2LhxIx599FE88sgjih2PHCIGCgCe56U7n/LycsUGCcnbBwPA8uXL0dDQoOgGVmjOAM/z6Ovrg8PhQFlZ2azSSKVLAeVdDZV2BpQSA6IrwAs8AmxAejzEhvDQ+w8tiBjomeqBSZ24ZPW6puvwk2t/kvBnu8/sxmhwFN/b+j3sGdqDMMIYYUfgXeLFDQ03JO2maDAY8OzIs+AFHo988AjuWn8XSnWlCd+jECjWnIFiO2aWZaVOrfGIZYVK/V3fc889ePXVV3Ho0KGMp5zSNI0tW7bAbrcrciyJIGJgARGdAI7jpDrtrVu3KnLyiT31Q6EQli1bBqvVitLS0ry0uS0EZ0AQBLhcLlitVtA0jfXr18dktMvXVTIWL36fSt/JKfl78kQ8qNRXghdmf59RPnGPCEEQYJ+0o620DQyd+s4o02Md9Y/iB9t/gP977f9N+HOGSvx+51zn8ODxB1Gpr0SzpRkH+g6gTFcGX8SHJ84+gc+0fwZ1prqE3RQPdR/CGe8ZUKDgj/jxg//6Af5u9d/F9EIopLvaYswZKMYwwVwTC5XoMSAIAu655x68/PLLOHDgAFpbW7Na4/Tp01i7dm3Ox5MMIgYWgPhBQhRFQaVSgeO4nC8APp8Pdrsdbrcbra2taGlpgUqlgsPhyMumXQgJhB6PB1arFV6vF+3t7WhoaEi6MSvtDKTqapgrSq15Q+sNuOHOGzJ6zQX3BXzvwPdwx7o75kzOy4Qx/xh+d+F32FK7JWNH4ufv/RyBaAAj/Ah+depXCEaDKNeVQ8NoYJ+04/Wu13Hr8lul58u7KT596GnQoMF/9H8vDL+AO9bcgbA7LHVTTNQsKZtuikpQrGGCYjvmuSYWKuEM3H333fj973+PPXv2wGw2Y2RkBABQUlICvV4PAPjqV7+K+vp67Nq1CwDwwx/+EFu3bkV7ezs8Hg8eeeQRnD59Go899lhQDV5fAAAgAElEQVROx5IKIgbmkWSDhEQxkEvGczgcRldXFwYGBlBfX4+dO3fG1M4Xamw/l3XD4TDsdjuGhobQ3NyMDRs2zJnNnC9nQGkxsJB3hYIg4A8X/4CuyS481/EcPrX0UzCoEyeaHp44DO+gF59e+em01v7hkR/iUP8hQABWV61GhX7uxlbAjCvwVu9bUNEqsDyLnukeVBuqpfwHAPjN6d/gpraboGFip2geHzqOQwOHAHz0vQpAgA3gz1N/xne3flfqpiiGGHLppqgUxbixXm7OgMfjUSR58Fe/+hUA4Lrrrot5fPfu3fja174GAOjr64v5fU9NTeEb3/gGRkZGUFJSgg0bNuDQoUMZ9TfIFCIG5oG5BgkB2W/W8vbBFRUVSdsH58vOXwiRwXEcent70dXVhcrKyoyqIorFGZiPQUXJuOC+gCMDR1Bvrkf3dDf2OvcmdAdGfCP4Ve+vUDpWimvbroVRnbyBCgCcHTuL/X37EYgEpNa86boDP3/v5wixIZg0JnjDXrACi6nQlJRoyPEcbJM2vNH1Bm5ZfkvMa3cd3RVT9QFgVu6ATqeDTqeLGYAT300xfkJefDdFJSlGMVCMCYTpOAO5ks7f8YEDB2L+/dBDD+Ghhx7K+b0zgYiBPJJJmaAYJshkbXGwjk6nw6ZNm1LWrebbzlc6gU68g5evKyZEdnZ2Qq1Wz/mZU62rFMUQJsj0Pf9w8Q/wR/1YVroMQTaY1B14/PTjCPEhuIIuPHPhGXxj/TdSrv34qcfhj/hhUBlgm7Dh/eH3Z7kDx4eOY23V2pj3El0Bsb0vQzPguZlzuaWkBdWGmXkJFEXBrI29eE+FpnCg/8DMuQRBqlygQMEX8eFA3wF8dvlnEx5vpt0U4wVCtl0tgdwSUk8MncCKihUJGx/lk2JMIEzlDPh8vkUzlwAgYiBvJJohkOqPW9ys57ojEAQBbrcbnZ2d4DgOK1euTKt9cL7u4MU/JKXvCuKz9Kenp2G1WhEIBNDe3o76+vqsLpZKhzUutzCB6ApU6atmOqAZaxO6AyO+ETx17inQmPk9PXbyMXx59Zcld0AQBPz8xM9x87KbsaJiheQKmNQmWLQWuAPuWe7AqdFTuPmFm3HX+rvwo50/kt7rN6d/gzAbhppWI8pFoaYv2fQ7G3fi/u33J/08pbpSHP3boxicGITNbsOV666UfqaiVRmNFQaSd1OUCwRxhK5Go0koENL53WbrDHRNduHbb30bn277NB7Y/kDGr8+FYnQGkjUcApQLExQLRAwoTDaDhIBLda6p1PX09DRsNhs8Hg/a2trQ1NSU9gUjn3Y+kD8xEAgE4HQ6MTo6ipaWFmzatCmnpK582O+p1hR/lunmvhBhAtEVmA5Po1RbikA0ID0e7w48fvpxBKIBaGktGBWD0cBojDvw5+4/Y9exXTjcfxiv3vaq5ArUGGrAgwdDMbg4fjHGHfjZez9DmA3jt2d/i7s33Y0aYw0A4Lz7PIya2BCEmlFDRavmLA8Ms2FcUXkFGrWN0I3qsKNxh9JfG9RqNcrKylBWViY9xrJsjEBwuVwIBAJSN0Wx1XKibopA9mLgP8//J0Z8I3jV/ir+ds3foqWkJdePlxaiC1psYmCu8cWJKpIuV4gYUIhEFQKZ9AsQT0iO42YlKMnbBzc3N2fVPjjfYiDRceeCuBEeO3YM1dXV2LFjh5R5mwv5Go2cbM1c7N75FgPeiBfnXedh1pgxHhrHZGgSFo0FOpUOnrAHF90Xsblus+QKMDQDSqDAUDONg0R3wKAyYNexXeAFHkcGjuD5judxeOAwdCrdTCkjD/AUj1HfKKzjVowHx9Hn6cO+nn1QM2qEuBAeO/mY5A48edOTGPGPJDzmNZXJu7i9N/gebn3pVrz0uZew2rx6Xt0WlUqF0tLSmOE3HMel7KYodxCyae3bNdmF1x2vo1xfDk/Eg6fPPz1v7oB4bbncwgRLly6d5yNaOIgYyJFUFQKZIL5OXlEQjUbhdDrR29uL2tpaXHPNNVlviPkUA0om5QmCgKGhIalR0rp161BTU6PI2sD8OwO5rDnfWLQW/Pun/h2+qA9H+4/i12d/jb9s/kt8ec2XwVAMWktm6qMfP/04PBEPNLQGIS6EKKIQIGDYP4xnLjyDJksTzo2dg4pSQYCAnx3/GUo0JdAxMxPXePAIBAIQIMAdcGN5+XJ8ac+XIECAmlIjykdj3IFGSyMaLY0Zf54fvfsj+KN+/OjdH+HZTz674HX78d0UAcxqtzwwMCA1S9JoNOA4blY3xWT85/n/hDfilb6r+XQHxL//YnQGkuV2eL1exTq1FgNEDGRJOhUCmSJu2GIXva6uLlgsFmzdujXn2FW+xACg3N222CgpHA5jxYoVOHv2rOIJPPlwBvJl6S9EAmGdqQ4RLoKfD/4cgUgAJ0dO4r+v/+9oMF/qmBZiQ1hiWgIAUvKcuEmF2BB2HZvJ3qcpGpzAwTHlwL9d/29YX7MeAPBO7zt48tyT4HgOS8uW4sORD7GvZx9o0NLQonh3IFPeHXgXRwaOSP//saFjsFCFF/+laVra7EV4nse5c+ek7zS+m6LcQTAajaBpWnIFzNqZuvhSXSkGvAPz5g6I15aFFlyZMlfToUSVWZcrRAxkSD4GCYkwDIOxsTGcPn0aDMNg3bp1qKysVGTtfJUWArkLjUAgAJvNBpfLhaVLl6KlpQUMw+DChQtFsXEXy5rpcrDvIKwTVqwoX4Feby/22Pbg7k13Sz/fdd0u7LpupjnKwYMHsWnTJumiude5F+fGzkmZ/2Kjn2c7nsWXVn8JgWgAJ4ZPoERbglJdKc65zuGBww+AEzioaTU4YeY84nl+Vu5AJvzk6E/AUAw4gQNDMfjFh7/AD1t/mOtXMy+IeUYlJSVoamoCENtN0efzYWRkRGokZjQa8dTgU3AH3Kg2VMMb9s70LqFU8+YOiPkCxSgGkuUg+Xw+kkBISEymFQKZMDExgUgkgr6+PqxYsSLrbPlkMAyTtzGu2d5tsywLp9OJnp4e1NXV4ZprroFOp8t53VTMpzOQy+9voS6qES6CF6wvgAIFvVqPcl059jr34pblt8S4A4kQBAG7ju26tKF/1P5YzB04NngMroAL3VPdaC5phppWY9g7DOuEFTRocPwlQUlTNCJcBAf6DuALq76Q0WeQuwIAwAkcjo8ex/nK89iGbRmttVDEzyaQd1OUPycUCsHr9cJqtcJIG+ENemdeS80ICo7icKz7GBrWNOS1m2IxlhUCyRMIBUEgYQLCbEQRYLfbUVFRgdLSUsVOfJ/PB5vNhvHxcajVaixfvhz19fWKrC0n32Ig0x4JAwMDsNvtMBqNSaco5mvjng8xwHEcnE4nBgcHYTAYpOxxi8UCjUaT1ma/EM6A6ArUm2bOwUp9JWyTtlnuQCoqDZUIRoPgBV6qAmAoBmP+Mbxke2lmjPJHXQLrzHVQMSrcs+keLC9fHrMOQzFYVbkq488gdwXkaz3V/xS+gdS9EAqFdGYTUBQFvV4PvV6PPV/cA19kJpQg9kLw+X3w+XzQeDU4dOhQXrspFmP3QSC1M+D1eokzQJhBXiEg1vcbDIaYEqJsCYfDcDgcGBwcRENDA3bu3ImzZ8/mbQPIV9OhTNceHx+H1WoFy7K44oorUFNTk/Sily9nIJ+WvtgYyWq1QqvVYtmyZVInO5fLBb/fH1N/LoqE+CSmhXAGolwUL1hfgDfshYt2SY9zPIe9zr347PLPot6cXKhSFIWDXz6Ifk8/vrjni2B5Frtv2o0rKq8AALzR9Qack06wAgvbhE16nS/iw0X3Rdy28racP4N13IojA0dAgYKKvnR543gO5zzn0OHuyEpgzDeZlhaaNCaYNLL4dlyXZ3k3xampqZhuihaLJSYXIZtuisVYVgjMXVpIxMAiJ1GFgBLzA4CZk6+npwfd3d2orKzE9u3bJesvn3fvC51A6Pf70dnZiYmJCbS1taG5uXnOi12xOQNerxcdHR3w+XxYvnw5lixZgmg0Kj0HmLkT8fl88Hg8swSCKAzE0rL5dgZYnkW1sRpXN1w962caRoMIF0n4ujPuM1jJrJQ6CT7b8SymQlMAgKfPPy3lFzRZmvA3q/8mYbmlUjHtRksj/s+O/xPjCgAz519wOoimkiZF3iffKN2OON/dFIs1TJDMGYhEIgiHw0QMLFbkIiBRhUCmLYPl8DyPwcFBOBwO6HQ6bN68eZbDkMv6c5FPMZBq7Wg0CofDgf7+ftTX1+Oaa65Ju01rvpwBpb8HiqLQ09OD8fFxNDU1YePGjVCpVAk3c4ZhUFJSEhMWERvUiAJB7GDn9/vhdrtjRILSPfDl6NV6/HjnjzN6zVhkDO873sdAcABfWPUF9Hv68YrtFVi0FjAUg/29+3HRfRFXVF6B1VWrsbx8Oe7aexdubr85aRvgXDg3dg4vWF/AL6//ZUx3wbGxMfT29s45P6FQiM8ZyAdKdlMsVmcgWXjD6/UCABEDi410KwSycQYEQYDL5YLNZgPP81i1alVSa7yYnYH4tXmeR39/PxwOBywWC66++uqMywQL3RkQBAH9/f0IBAJgGCbpkKhUHBs8hv29+/Hdrd+NaVBz6tQpmEwmaLVaeDwe6a5NPiRHFAnzMUUvGRe8FzDMDOPkyElsq98muQLNJc2gQKF3ujfGHXjD+QYODxxG93Q3rm+9XtHNWRAE/Pupf0evpxePn3ocm2s3x7SLLqZM93RyBvJBpt0UxXNRLLEupu9ZbP+eSAx4PB4wDJP2ALTLASIGMHOyi5twqjLBTMXA9PQ0Ojs74fV6sWzZMjQ2NqZU+wt1967E2vIN1uVywWq1AgDWrl2LqqqqgpgjIK6phP0+MTGBjo4OcBwHnU6HpUuXZiwEolwUu8/uhm3ChmsaromZ4McwDPR6PRoaLmXwR6NR6YLs9XoxNDSEUCgkxX3ld23zIRD6Pf2w+W1Y2rAU7rAbr9lfk1wBsbSwVFcquQPtZe349elfg+VZ9Hv68XLny/jKmq8odjzvDb2HE8MnYNFYcHTwKN4ffh8fWzIz8rWYNimgsKYWztVN0ePxYGJiAuFwGIcPH57VC8FgMBTkdy9eDxOFCcSJhYXyO5gPiBj4iHR6BTAMg1AoNOdagUAAdrsdY2NjaG5uxoYNG9K6OKtUKgSDwbSPORPy2WdA3LR9Ph+sViump6cznp2Qal0lyXXNYDCIzs5OuFwutLW1oaWlBcePH89qrYP9M5n7ETaCP1r/iG0N22KS3uJFi1qtTmjrihdkj8eDwcFBhEIh6PX6GPfAbDYrXlp2dPAoAlwAZboyaNQa7LHvwZh/DDqVDv6IX3peiAvhhc4XsL56PawTVlTpqzAVnsITZ5/ArStuVcQdEAQBj596HBEugjpjHYb9w/iP0/+BLXVbsp4PsZAUkhhIhLybYn19PXp6euDz+dDc3DyrmyJFUQkFwkJ/PvHGLtFxeDyeRTWxECBiAED6G8RczkA0GkVXVxf6+vpQW1ubcT/9fN69q1SqvFUTCIIgNUFpbGzEunXrFIltF1K3QI7j0NPTA6fTiZqampieCNmsGeWi+GPHH0EJFJpLmnHedR5HB45K7kC6G5darcYENQFLlQUtLS0AZpKfEmWOi6Vl8iE52QqEfk8/To6cRLl6RpiU68th1pixs2knNtRsmPX8VRWr8PD7D0MQBGhVWpTT5Yq6A6IrUKotBUVRKNGWxLgDxSYG5iNnQEnERLxE3RTFZkmimzVXN8X5PuZE54XoDBTTOZMrRAxkQDIxwPM8ent74XQ6c2ofnO9eAEqvLX7u0dFR6HS6rGLmqSgEZ0AQBIyNjcFqtUKtVidM/MxGDIiuQL25HjqVDrzAz3IH0lnTE/bgT11/QrWhGp9f9XnQFA2NRoOKigpUVFyqL4tEIlKC4uTkJHp7exGJRGA0GmNyEEwmU1qJYEcHj2LENwKe5zHkG4JGrUGNsQZGjRG3tN8ya5bAq/ZXYZ2wolxXDpZnEWJDoClaEXdA7gpU6GY+s0FlwHR4WnIHgOJqlVvozkA8yWLvNE3DZDLBZDKhrq4OQGw3Ra/XG9NNUXyuvBdCvhITU5UV+nw+4gwQkhOf7S8IAoaHh2G326FSqXDllVfmNPIy39UEYqJkrhcZcYPs7OwETdOorq6GVqtVvI/3fDUISobP50NHRwc8Hg+WL1+OhoaGhBtKOiOM5chdAZ1qxl2oM9XFuAPpblznXecx7BvGVGgKziknlpUtS/g8jUaDysrKmPNTrD0XY749PT2IRqOSQJA7CPEXzQgXwZqqNej2dUthgjJdGVS0CiF2dijtqXNPIRidCYGF2TAifAQaWoNB7yDe6Hojpx4DjkkHzo6dBS/wGPQNxvzsw9EP0T3dDa2gLToxkOp4eYHHhyMfYn3N+pjQ0kKRydRSeTfF2tpaALHdFL1eL9xuN7q7u8GybMJmSUqEvFI1HPJ4PIuqkgAgYgBA+ncMcmdgYmICVqsVkUgE7e3tWLJkSc4Xm3wn+QG533F4PB5YrVb4fD4sW7YMDQ0N6OrqQjgcVupQJRbKGZCXQzY2Ns45MjpTZ+DY4DHYJmwIcSHYxm2I8lFoGA18UR9esr0kiYG51vSEPXh/+H1U6CvgjXjxwfAHWFq6VEreAyA14NnesH3W6+NrzwVBiGlOI78gxwuEL1/xZdA0jYfGHsLO1p3Y1LAp5bHevvJ2bK3fCn/Ejw9GPoAv4kOtsRYbajdgXfW6tL+7RDSXNONfPv4vCLOzz0GdSodGcyNGfaNFJwZS/Z0e6DuABw49gH+66p9w6/Jb5/HIEpNraaG8m2J1dTWA2efjxMSE5Ggp0U1xriFFxBkgJEWlUiESieDkyZOYnJxEa2urNFRHCfJdWgikVsOpCIfDsNvtGBoampUUmY9NO1/rptpkBUHA4OAgbDYbzGZz2uWQmToYDZYGfGn1lwAAp0dP45zrHG5uvxkl2hJUG6pjjicV513nMeofxarKVbBoLbBN2GLcgRHfCO558x54I14c+coR1Jpq5/wcOp0OOp0OVVVV0jHI79jGxsbQ1dUFjuMQ0UTw24HfYp93H575zDMoMZck3cC+eMUXAcx0IQywAbSVtqHP04eb2m6a1YY4UzSMBje03pDyOcWUMyCeS8m+S17gsfvsbvR5+rD77G58eumnoVWl17sjX+Sj6VCi8xFQrpsi6T4YCxEDaRIKhdDT04NIJAK9Xo+1a9cq3gAmn2ECsXlSpuvLE+cqKyuxY8eOWbW3+apUmE9nYHJyEh0dHYhGo3O2SY4nU2dgaelSfGP9N+AJe3Bs8Bg4nkO5rhx3XnlnzJqpEF2Bcn05aIqGUW0EJ3A4MXhCcgeeOvcU+r39EAQBv3z/l9j18V1pH6P8OBLdsYVCIfzs2M/gYT2wTdnwxMEnsMk8M71QXsEgTwob84/h9Ohp1BhroFPpwFAMjg8dx8qKlXm3uotJDMgbniXiQN8BnBk7g3pTPbomu/An558W3B2Yz6ZDqbopejwe+Hy+tLopzjWXYDGNLwaIGACQ+sLLsiy6u7vR09MjJY6tWrUqLxeWfDoD4vrpbtpihUBnZyc0Gg02bdoUU9IWv26xOAPxfQZCoRBsNhtGR0fR2tqK1tbWjC9q2fYueKvnLfR7+lFjrMGfnX/GjUtvxBLzEunnqdY87zqPfm8/qgxVGPINAQAC0QC+f+j76PP04WvrvobfX/w9KIECKOCP1j/i21u+Pac7kA4URcHDe/Cn/j9BR+tAqSi8x76Hb2z5BoL+oJQUZrfbY7LGT3pPYsw7hnW1M2GBBnMDnFNOWMetWFO1JufjSkUxiQF547NZP/vIFWB5FiW6Evij/oJwBxa6HXE23RTFa2EoFIrppghAKpNcTBAxkASe5zEwMACHwwGDwYDNmzfDaDRi//79WVvtcyFu1vm6cKUrBqampmC1WhEMBqUe+6mOJ5/OgNLiSLT0eZ5HT08Purq6UFVVlXEZaPyamYoBT9iD1xyvwaA2oM5UB+u4FW8435DcgbnWDHGhWfb6/t798IQ9ePrC02DBYsg3BK1KCxo0piPTWbsDiXjmwjOYDE3CxJig1Wlxcfwi3h17FzcuvRE1NTUAYrPG+9x9ONY7M8J40jUJjUYDjVaDgBDAoe5DWFm+Eiomf5ejYhQDiTZX0RWo1M/cFVcYKgrCHSjEqYVzdVMcGhpCJBLBsWPHpLLI48ePQ6vVkpyBxYr8IiG2D+7s7IQgCDGWsfhHmi8xIK6ZL8ttrk1bfpfc0tKC1tbWtD5nMTkDFEUhGo3iyJEjYBgmpeORyZqZigHRFWgrawNN0ajQV8S4A3NtXJ9o/gQ+0fwJ6d/DvmH89L2fQkWr4A648evTvwYAqGn1TEMtjlLMHRj1j+KPHX+EXq0HHaGhVWkhhAU8cfoJXN9yvWT5y7PGNSUa3KC9ASzPIhwOIxgMYmR6BG8Pvo1WvhWHAodQYi6JCTEo2bmuGMVA/PGKrkCQDaJEW4JANABgZsDUQrsDxTKbQN5N0e/3Q61Wo6WlBX6/Hx6PB06nE2+99RacTif27duHN998Exs3bsTGjRvx8Y9/XCqPTIddu3bhpZdegtVqhV6vx7Zt2/Dggw9ixYoVKV/34osv4oEHHkBXVxfa2trwk5/8BLfemn+hR8SAjOnpaVitVvj9frS1tc1qH0zTtHS3mu6wnUwQ/5hSJbbkun6izVUeCqmurs74LrlYEgj9fj/sdjvC4TCuuOIKNDQ0KGJtZioGRFdATavB8ixYnoVZY0bXVJfkDmS65i9O/AKesAelulK4A24EQ0Foaa00aZChGEyFpxRxB5658AxGA6Mo0ZbAw3oQDUVBUzQujl/Evu59uLHtxlmvKdeX46/a/yrmse8f/D6sfituvOJGfGz1x6QyR3nnuvg5DHq9PqtNfb4nQOaC2HAo/nMO+4bRO90Ls8YMf/RSh0ejxoiJ4AS6prqkcdHzzUKHCbJBbCUu76b44IMPAgCuu+46/PVf/zVqampw8uRJPPLII1Cr1bj99tvTXv/gwYO4++67sWXLFrAsi/vuuw833HADLl68KE2qjefYsWP4whe+gB//+Me49dZb8fLLL+Pzn/88jhw5gquuukqRz50MIgYwo2rPnDkjtQ/etGlT0jtiJcYYJyPbJL90iQ8TCIKAoaEh2Gw26HQ6bNmyJab/eLoUegIhy7Lo6upCb28vKisrodFo0NSk3CjbuTbu+LvS867z8Ef9oGkaI/4R6XGTxoRjg8fw9XVfl16XDsO+YbxiewUMzUBFf9RRTQB48GCFS+eqmlbjyOCRTD/eLEb9o6g11sIf9cPH+WChLdCrZzZpd9Cd1hq90714vuN5hLkwfnvut/j6uq+jrq5OuvPieV7qfe/1etHX1wefzweGYWYJBL/gx2uO13Dbyttg1iS2doupo1+yHgP15no8f+vzkiMgR8NoUG+un4/DS0ixOANyUjm8fr8fa9aswc0334w777wz4XPmYu/evTH/3r17N6qrq3Hy5Ens3Lkz4WsefvhhXH/99bj33nsBAPfeey8OHjyIhx9+GH/4wx+yOo50IWIAM5tOeXk5VqxYIbWYTUY+xQBFUfM2rEjMno9EIli5ciVqa2uztlELNUwgFzsGgwFbt26FIAg4efKkgkeZuTNw1ZKr8JNrfwIkeIlZYwZNzb4rTIXcFQCAakM13EE3qg3V+N1f/S7GOq4zpW9zJuPBjz+IEBvCfYfuw1H7UfzTVf+Ev77irzNa4/HTjyPABlCpr8RUaApPnnsS3/nYd6Sf0zSdsLWtaOd6vV709vbC5/Phncl38O70u2CnWdyy4haYzWbodLpZ4b9iChMkEy41xpp5Ppr0KEZnIJkDKwgCvF5vzJhxJZiengaAlGHJY8eO4R//8R9jHvvkJz+Jhx9+OOf3HxkZwfDwMNRqteSEyBs4ETHwEc3NzYrMJ8iVfPcaCAaDOH36NFwuF5YuXapIn4R8CZhcxMD09DQuXryIcDgcI3a8Xu+Cj0VmaAbtZe1zPi8dgRFhI3jN/ho4gcNUaCrmZ1OhKZweOy05DUpydPAoHBMOaGgN3ux5E9e3XQ+L9lJdNsuzoCk6pgGSiOgKqGk1GJoBQzF44uwT+Nrar6Fcn/xCmUggjHhH8Ju3fwOWZvHO0DtYxiwDwojpk2+xWBCNRotmsyomFwO4NAL+cnIGfD6fon0GBEHAd77zHezYsQNr1iSvnBkZGZEScEVqamowMjKS5BXpcfr0aTzwwANSjxyxSZy4n506dYqIgUzJd/lfvnoNsCyLQCAAt9uNJUuWxAzayZVCyhmQN0cSSwXlf/DZDipKRb7WTAcVrcJ/W/vf4Aq4Zv2MoRnsaNih6HEBQIgN4fWu16Gm1ajV1GLAO4BD/YfwmWWfATBz4fvpez9FibYEd2+6e9brRVegVDvjZJg0poTuQDq83fc2JiOT2FC/AY5JB3xVPnx66adjSsqcTif8/pmwTCgUigkx5CP3J1fmakVcaAiCAEEQik4MzOUMKCkGvvWtb+Hs2bM4cmTuMF387z4XV0t0mf7hH/4BgiDgscceQ2trq5TEGwqFMD4+jra2NiIGMiWfjYEA5e+yBUHAwMAA7HY7AKChoQGrV69WbH2gMHIGeJ5HX18fHA4HKioqEjZHynTNdMmXGEjnOGmaxve3fV/R954L0RVoLWnFmG8MRrURb3S9gZ2NO2HRWnDefR7vDr4LNa3Gp9s+jdbSVum1A94BPN/xPKJcFJOhSVCYGR0e4SJ44uwTuGPdHVK4Yy7G/GPY170PFfoKaBgNTGoT3nC+gWubrkVJSUmMzdvR0QGe52GxWOD1euFyueD3+6HRaGIqGCwWi+LNxDKl2IYUiX/7xXTMQHJnQJyqqFSY4J577sGrr76KQ4cOoaGhIeVza2trZ7kAY2Njs9yCdOA4DhzHQaPR4NSpUzhw4C3oXwwAACAASURBVAA2bJg9UVSEiIGPyGY+QT5Q0nkYHx+H1WoFx3FYvXo13G533vojiHcHSt7RpLtxu91udHR0gKIorF+/PuWwKHHjVvJY8yWG5hIYE8EJ/OLEL/D1dV9POqBIaeSugJiLUGesg9PjxKH+Q7ip7Sa83PkyAtEABEHAa/bX8Pdb/l56PS/w2Fi7EZOhSdgmbKg2VEuljmaNGZyQ/ve4r2cfxgJjUgb9EvMS2CZsONh3cFblgtjatrHx0jRFec25x+ORmtLIu9aJQmE+BUKxiYG52icXKsmcAa/XCwA5OwOCIOCee+7Byy+/jAMHDqC1tXXO11x99dXYt29fTN7Am2++iW3btmX8/gzDSJ/vjjvuwMWLF4kYUJJ8iwElnAe/34/Ozk5MTEygra0Nzc3NoGkak5OTebuDB5TPKJ5LDAQCAVitVkxMTGDZsmVoamqa84Ik/lxJMbBQYYLXu17H271vQ6/S4/7t9yv6/sk4O3YWI74RhLgQOsY7MBGagGfaA4ESsL93P5osTTg+fBx1xjpE+Sj29+3HX7X/leQONFma8Nxnn8OjHzyKJ84+gZbSFvzHp/4jbTdAxB1wY1/3PoS5MByTDulxf9SPN5xv4BMtn4gZi5zo9y2vORdhWVYKL4idFMW2tvEOQqaDcdKl2HIGOI4DRVFFdcxinkOimyOv1wu9Xp/zjdPdd9+N3//+99izZw/MZrN0x19SUiKVbn/1q19FfX09du2aKff99re/jZ07d+LBBx/ELbfcgj179uCtt95KK7wQz3333YfS0lKUlZWhrq4O9913H2iaxoYNG1BSUgKTyRTTLpyIgQyZD2cg2w1bPm2vvr4eO3fujLmjyVe+g3wI0nyIAZZl4XQ60dPTgyVLlsz6nKkQNwQl776SiQGKonISHKkExkRwAi91vgSe53Gw/yBuG78NKytWZv1e6bKqchW+ufGbYDkWDM3gw1MfYs3qNTMtXjVmvGJ7BYFoAI3mmTtw67h1ljvQ7+nHXude1BhrZkYYO9/A31zxNxkdB03RuLr+amzkNs76mUE1OzyUrvhTqVSzutZFo9EYgTA0NIRQKCQNxpH3vVdCIBSbM1CI3QfnQrwOJnMGzGZzzjcLv/rVrwDM9CyQs3v3bnzta18DAPT19cX8rrdt24Znn30W999/Px544AG0tbXhueeey7jHQCQSwd69e8HzPAKBAMLhMNRqNe68806pX46I2WzG4OAgEQMimYQJ8jGuVySbDZvnefT398PhcMBisSSdtpcvMSB3BpReV74hivMSxI5eV111VcZxPbkzoBQLkZT4etfrGPGPoL28HV2TXXjB+kKMO3Co7xCODBzBvVffq2joxqwx42N1H8M33/wmrmu6DmtMa7Ctfht0Oh3Ouc5JroD4nlWGqlnuwCu2VzARmsDy8uUYEobwsu1l3Lj0xozcgXJ9Oe7acFfaz8/FCVKr1Qn73ovhBY/Hg8HBQYRCIej1+pjwgtlszvgOs9gSCItNvACX8hxSiYFcSeeacODAgVmP3Xbbbbjttttyem+1Wo1XXnkFLMuC4zjo9XoMDw+DZVmEQiEpedDn80nXbSIGMqTQqglcLhesVisAYN26daisrEx6IclXPwDxDljpEITcGfB4POjo6EAgEMCKFStQV1eX1QUzH8JlvsMEoitgUpugolWoNlbHuANhNox/+/Df0D3VjWubrsX2hu2KHttbvW/hg+EP0Dfdh2+Wf1N6/EDvAQSiAQSjwZhmShRF4UDfAbSWtkquQLm+HBRFocZYg+6p7qzcgUxRcoNNJBAikYjkHkxPT0ujdQ0GQ0x4QV7bnYhi21yL0RkQjznROaGUM7CQUBQl5ceEQiEcPnwY119/fcrXEDGQIfNRTRCJROZ8ntfrRWdnJ6anp7Fs2bJZrZOTrZ3Phkb5cAY4jsOFCxcwODg4Z3fIdBD/wAvdGQCSH6PoCrSVtgEASrWlGPOPSe7Am91vwj5hR4SP4KlzT2Fb/bacL2xvON/A5trNKNWW4ulzT4MXeIz4R/Au/S4+iU8CAD7V9imsqEjcd31F+czjr9hegSvgQktpC4JsEMBMCWQ27kAmzEfTIY1Gg4qKClRUVEiPRSIRqUnS1NQU+vr6EIlEYDAYZoUYxA212MRAMfYYSNXy3ePxKFpWuFCI59GpU6fwyU9+MuH1ee/evbjrrrvQ29tLxIBIIVUTpNqwI5EI7HY7BgcH0djYiCuvvDLtOGU+xYDSJXs8z2N4eBg8zyMUCmH79u1J+3lnguhizJczkO0GlGxNX8QnxeWdU07p8QgfweGBw+hwd+DpC0+DoijUGevw4eiHODp4NGt3oN/TD3fQjR8c+gFuaL0BOxp3wDphRZ2pDlOhKRycPIip8BRqdbVoL2tP2UyJ4zkcHTwKk8YEd+BS22IVpUIwGsTZsbPY2ZS4TWuuLFQHQo1Gg8rKypgKl3A4LIUYJiYm0Nvbi0gkAqPRCLPZLFm7xXLHXYzdB1M1HPJ6vTCZTPN8RMoTDAbh9/vR3d2N5uZmBINBRCIRqNVqqFQqaDQauN1uqQSbiIEMWahqAp7n0dvbi66uLpSVlWW1Oc5Xq+NcGR8fR0dHh7Texo0bFb2QK30nn2o9pR0DNa3GLe23IMDO7k+volU4NXoK9gk7aow10Kq0cAVdWbsDziknvvTql1CmLYMr4MIbXW/gnOscAECn0qHSUAmb14Y9jj24a9Pc8XuGZvCVNV+BIAizxi9TFIWlJUszOr5MKKR2xFqtFlqtVhIIgiDEOAijo6MIhUI4dOiQJBDEEIPRaCw4gVAsokVOKmdA6e6D8414rp86dQp///d/D4qiMD4+jm9+85tQq9WSKxUKhfD2229jx46ZxmREDHxEITkD8vUFQcDY2Bg6OzulshC5DZnp2oXsDASDQXR2dsLlcmHZsmWoq6vDgQMH5r1kUYn1Xuh4ARzP4XPLP5fVmskEhlalxVfXfjXha8JsGH/7X38LiqKkHgBV+qqs3YHdZ3ejd7oXDt6BlpIWuANuuINuqa5fRaugoTV40fYibr/i9pSthAFgPDiOI/1HYFAb8BfNfwG9Ov3JmLlSSGIgHoqioNVqUVVVhaqqKkkctLa2SgLB7XbD6XSC4zgYjcaYEIPJZFrQO/NiC2sAqQVMsYcJxPPcbDbjuuuuw5kzZ2AwGODxeDA5OSklD1IUhb/4i7+QehoQMZAh8+kMeDweWK1W+Hw+tLe3o6GhIacLWr6a4wC5CQ2O49Dd3Y3u7m7U1tZi586d0Gq10vestBhI1xmYCk2B5VlUGpI3MUq03ohvBLvP7AYv8GilW1GprURJSUlMTW86x5gp+3v3wzZhQ5gLx4QQApEAnrnwTEZiwDnlxKv2V0GBAsuxiHARsDyLQDSAfk8/NMxMKWeEj2A8OI59PfvwhVVfSLnm8cHjGPGPgKZonBw5iR2NyrdKTkYhi4F4xPNdp9NBp9OhuroawMxnCIVCUohhbGwMXV1d4DgOJpMppoohk3MtV4rVGUgVJsj2hquQuPLKK/Gv//qv6Onpwfnz5/GZz3wm5fOJGMgQcbPO18WFYRhEo1GcO3cOw8PDaG5uxsaNGxXpHJivagIgu7ttQRAwOjoKq9UKrVY7a4RyPksW51qTF3js696HEBvCF6/4ItRM8ryMeDGwx7YHw55hhMIhPHvmWXy+5fPo6uqCIAgxF2yLxQK9Xp/wPMomlNHAlOH2yo8DDAOhtATApXWbLJmNbN59djemwlOIcBHQFA1XwIV6wxKM8SNYZWzB7eu/CgECOi52YPny5dhWn7hDGn3qFNQvvohx7yiOLB9BRVsrwrSAd/rewabaTfPmDhSTGEjWdIiiKOj1euj1+hiBEAwGY5ok2e12CIIgCQTxXDMYDHkRCJebM+D1etPqFljIdHd3w+FwwGAwoLq6Ghs3bkRPTw90Oh00Gg20Wi00Gk1MvhkRAx+R7oVC3mBH6da+HMdJLVEtFkvS/vrZks+yyExdB6/Xi46ODvh8Pixfvhz19fWzfgfyBkFKks5G2z3VDfuEHRzPwTHpwKrKVWmt1zfRh99/+HvQERoVhgpc5C6iZlkNNpg3IBAISHXpAwMD8Hq9YBhGuliL/4nDc9IWA8L/Z+/No+Moz3z/T1X1pn2xJMuyLUvyhje8G/CGMVtIGDYHklySEJJAAiF3uBBzwyHJncmQX0IIM4FszAwkXAIBJgTCEpLBYHAAs9kYsLVv1r5ZS6u71VtVvb8/StXullpSS+q21Vx9z9Hxkdz99lvVVe/7ref5Pt9HoOzfz6aXX2ZTrwssFvTFc1E/9zlE8eRIAJyMCqi6iiY0FEnBF/Qy2N1EuqbT1P8eZx0pYNEt/8RruQVsW74tasMf629+g/1f/gU0jfcWq5zwaKx6vwLvtV+g1nn8lEYHElHtkShMJhImSRKpqamkpqaG/OtNgmCmGEYShPAUQ1pa2rRJUjJGBibqWJjsAsLnn3+eX/3qVxQVFWGxWEJVaikpKWRmZoa6evr9fr785S+za9euWTIwWZgX0HhhpsnCNNOprq4O+UmvW7cuLmOHw+whkAgmH2vUIRgMUltbS2trK8XFxaxfv37MagjT4vRURwZ0ofNB5wfouo5VsXKo/RBLcpaMGR0wqxOam5v5tzf/jV5fL6vnrUZRFGp6a3ih7gW+ueGbpKWlkZaWxrx584zP0XXcbndo0Ta765mMXQhBb2/vhNa38qFDWJ56Cux2REkJBAIox44heb0Ebr8dJik0/d3Hv8MVcKELHYtkAV1D0nQGlCCLgg7sQqK1/CDL77oL+YtfjH5O6uux3303QtfpzXXw2mIvcwIyykA/qQfeJHXnmlMaHUimyMB0789wglBYaPR9EEIwNDQUSjG0t7fjcrmQJGkUQUhNTZ3UufqklRbGu2Ph6cC2bdtQFAVZlmlra+NPf/oTPp+PlStXEggEKC8vp6GhgaysrJDB0SwZCEMsT4ySJMX1CXtgYICqqiq8Xi/Lli0jKyuLgwcPxmXskUhkHfNEG6zZPbGmpoasrCy2bt0aE/tOVJfB8cY0owLzM+ejSArHncfHjQ6Yi+wHNR9wTD3GvJx5WC3G5p3tyOYv9X/h8mWXMy99XsT7ZFkORQNMmN74LS0tDA4OUl1dHXK2C08vhNelK2+9haTr6GYTHpsNfdky5Lo65GPH0CdhZepX/exr3IdVtmK1WREIpIEBCApSJBv/X+tyLhnIx2oJIlVVMae8HGn37lHjWP76V1BVSE3l4LwATZk6mQGJmlwBneX4gkuo76/ng64P4m6KFA3J5PefiPtTkqQQGQ0nCB6PJ5RiaG1txe12I0lShP/BeOksSEyUNNHQNG3M9tXJXk0AsGnTJjZt2gTAk08+SXt7O3feeSfLlp2s4rn33nspLy8PdbFNrm9whiAeIkKv10tNTQ3d3d2UlJRQWlqKxWLB5/Oh63rCnt4hMTfveALC/v5+KisrCQaDrFmzhvz8/JifPBIVGRiL9IVHBVKtRopmrOhAIBCgpqaG9vZ2rFYrPVk9dDV0YVNsOP1OwKitD2gBXqp/ia+t/dqEczO98YeGjK5/a9euDTnbmWrg5uZmgsFgqOxscV0ddrsdS/jTr9UKQiANDk7q3Ngtdn73md/R7+s3/qBp2Pd+BzQNOTObTZ4srEKG4YU05cSJqONIPh8MzyUzIHFR8/B5Cxpz9BVuBosloplQIpFMaYJTRVzMqEB6enpEtMpMZ5kEweVyIcvyKJtlkyAkY5pgrMiAEAKXyxW39sWnC0II/H4/DoeDe+65hxtuuIFly5aF9haLxcLtt9/O5s2bKS8vZ9GiRbNkIByxiramQwZUVaWxsZHjx48zd+5ctm/fHupgZY4NiTHykGU5IbbB5tgjN22fz0d1dTXd3d2UlZVRUlIy6UUj7mTA58PmdCKGRtfpw8moQJotLbQhplpSaRhoCEUHhBC0tLRQW1tLTk4OK1asoKWlhWVzlnH92usjxjNvvsm2GA6/Fkc625k3uqk/GMjMxPHxx7h0HZvNhs1uw6X4WKRr6GENd2JFRARECBz2ZcjV1YhFYWMFgwAExlg01R07sN13HwSDnNtu49x2YyzJo6Hu3IkvBl+CeCLZ0gSna66yLIcIQvh8zAjC4OAgzc3NuN3ukN7F5/OhKAperxeHw5EU53kiAWGyRwYkSQqlFgsLC3njjTfYs2cPc+fODe0r9fX1tLe3h/xqZsnAFDAVMiCEoL29nZqaGlJSUkYp502EP70nokVqorwGwgWEmqZx/PhxGhoaKCgoYMeOHTgcjimPGxcyoGlIBw8ivfsuCysryTh4EGn3bsT27RDW8bDX20uGLQOBIKAN20JLkJOSQ7enmyJrEeXl5aEoR0FBAT09Pei6zrmLzuXcReeO+FiNYDAYQeyklhbkjz9G6uhAFBSgn3mmkesfgfFcDcPLzuQvfAGr00mOz4c3JYUGTwfv+ao5I/MMAgMDpB05EpFisNvtsS/YkoR61VXYfvxjpK4uRG4uBINIHR3opaWcWLOGaDRH37IF9TOfwfLCCxAIIGQZSQhEWhqB7343ts+OI5KNDMyklIYZFcjIyKCoqAg4qXdxuVw0NjbS19dHZ2dnSJgWHkWY1PV2ijBRaWE8GhWdbph7ya233sott9zCrbfeylVXXUVBQQGdnZ3cfffdnHHGGSxfbliFz5KBKWCymoG+vj6qqqoIBAKcccYZFBYWjnlzmKK5RKn+E0UGzHPS3d1NZWUlVquVTZs2RbSCnQriRQakN99EfvFFRHo6wcxMhN+P/OKL6IEA4lOfCr1u87zNnFlw5qj3BwIBmhqaeK/mPUpLSyktLQ3dbJMpA5Srq7E8/TT09UFaGlJVFeLDD1GvvBJ9zZqT853EmPqaNQSvuw7L3/5GWmcHrRke2s9YSN7WT7Nt6WbcLkOk2NjYGBIohpODiQSK6uWXI504gfWpp5Da2sBqRV+zBu8dd6B2dUV/kyTh+/WvsW7ejPXJJ5F6e1HPOYfALbdEHOepwiwZiC/C9S6dnZ0sWLCAvLw8PB5PKMVgXm8WiyUivZCZmYnNZjut38dYkYFgMIjP50v6NEH4NXTxxRdz33338eMf/5gbb7wx1HV3z549/PSnPw1pSGbJQBji7UI4NDREdXU1J06cmFSYPJHNkBJlPGQSgc7OTpYtWzZtgyQTcSEDQ0NI77yDyMiAoiKEqqJmZSECAeRDh9DOPhuGozSSJOGwnIxihAsfs7Oz2bZt26hyz4nsiEP/p6oo+/cjuVzoKw0XPwFIDQ0o+/ejL1sWysVPFvqWLQTWr6el8Qi1XQcozp3PcX8/q3FSPL+Y+fPnA8YiaC7Wg4ODdHZ2hsK74eWN4QJFZJngDTegXnWVkS5IS0NfvRodYCwyAGCzEfzGNwh+49SmBMZCspCBZBI7wsmUpqIoowSxmqZFVMz09PSECGm0CMKpnHO0yIDL5QJI+jTByOvnsssu47LLLkNVVQYHByO6bZqYJQNTwESbtaqq1NfX09TURFFRUchRL1Yk0g8g3sZDwWCQ+vp6WltbSUlJYfv27XFNb8SFDDidSIODiOE6bFmSELoOOTlw/Dj094fIQOTbnFRUVBAIBEIpgWiI9SleOnHCCK/Pi6wqEEVFyG1tRhh+2BdgKqZDukXhmNKLnpZKjiOHfn8/5T3lLMhYgCwZi0O7p50nq5/k+jOvp3j4s4LB4En9QVhnPdP21lys03NyEFvDzIUS2L0z3jidefjJIpnmCuOXFiqKQlZWVsSTtqZpoQoG00lxaGgIu90+iiDYwlJ48cRYAsLBwUFkWY5LU7TTiccee4zPfvazOBwODh48iM1mC/UkcDgcDA4OkpKSMms6NF2MFRkwnyJra2tJT0/n7LPPnhLDTIaGQkII2traqKmpIT09nZKSEoaGhuKuc4gLGUhLg9RUcLuNf0243ZCSAiNKHMO9EEpLSykrKxs3ohPzxq0ohsJ+5PFoGkKWIVxXMIXNoNXVSqOzkXmpBtkoSiui0dlIq6s15ED4cuPLvNX2FiXZJVx9xtUAWK3WUa13wwWKpu2trusRNenmgpkMG9dsmiBxmGw1gaIoZGdnR2imzJJa88c0X7Pb7aNSDNNdY4QQ40YGMjIykur8j4SmafzqV7/iH/7hH7BarfzjP/4jFosFWZaRZRmLxYLVasVqteJwOPjTn/4EzJKBCEwmTRAcVlObOHHiBFVVVei6zqpVqygoKJjy4pPINEE8yMDAwACVlZX4/X5WrlzJ3LlzaWlpCYXY4om4kIHMTMT69Uj79iEsFsOk1+lE8ngQ27ZBfj5wkuBUV1eTlZUVc2fIWMmAyMtDLy1FOXoUfflygxzoOnJrK9qSJYiwiMFkIwO60CnvKcen+tCEhjvgBsCv+UPRgebBZt5uexurbGV/0352Fe8iPzU/6njhjXMg0tUu3LQG4OOPPyYrKyu0aM9URflMnFM0JCMZmO58zZLacI2RSRDMFENHR0copTWyzHEyBMFc/8aKDCS7+yDA3XffTVZWFrqu89WvfhVVVUMNisx/PR5PxPc2SwamAIvFgtfrBQyDiurqavr7+1m8eDGLFi2a9o0xUyMDPp+Pmpoaurq6RonoEtX3IF4CQn33buRAAOnDD0lpbkbJzERs24Z+ySWAsQhUVFTg8/lYvXr1pMhczBu3JKFddBGS04lcXX1ybkVFaBdfbJCDMEyGDLgDbtxBN9n2bFyBk6Qsy5aFK+DCFXDx6vFXGfAPsHLOSspPlPN68+uh6MDEUx/tahcMBnnjjTfIz89naGiI48ePRwjGwkWKiQr3xopkigwkm2YgUQ6E0QhCMBiMSDG0tbWFTLlGphjGqhYYjwyYZYXJcq1Eg6IonH/++Rw5coT169dz0003xfS+WTIQhsn0JwgEAlRWVtLS0sKCBQtYs2ZN3Ba8RHZGnAoZ0HWdpqYm6urqyM/PH+WNAIkTJsattNDhQL/iCti6lRPvvYctL4+Ms882UgIVFbS2tlJSUkJZWdmkDZnGMzEaCVFURPD665GrqpAGBhBZWUaUYIRmYbKLUaY9k0sXX4omRn8HiqTQNdTF221vU5hWiCzJ5KXkTRgdmAjmhjVv3rzQk1m4YCyaQDGWxToRSCYykEyRgUTZm48Fq9VKbm5uhADO1LyYBKG1tRW/3x/h2mn+mGurGTIfCbfb/YkoK6yrq2PPnj3s2rWLbdu2sXbtWkpLS8ftxjhLBiYJXdcZGBigr68PSZI455xz4n7xzKTIQE9PD5WVlciyzIYNG8a8mGZ6ZCCEggICJSVgs4VSAhkZGTGnBMbCWHOMugFlZqJv2TLhmJMVEI7n8W9GBValG9ajc9PmTjo6EMv8ognGzKe5wcFBnE5naLE2HRTNKEJ6enrCNpVkIwPJNFeI/pR9qhBN8xLu2jkwMEBLSwt+v5/U1NSQ58nAwEBk1QxGhPCTQAZycnK48sor+eCDD9i3bx95eXmsWrWK888/n3PPPZeCgoJRTapmyUCMEELQ09NDdXU1mqbhcDhC3s/xRqKrCWIhAx6Ph6qqKgYGBliyZAkLFy4cd6Ge8ZGBMKiqSk9PD5IkhTQP01l8p6L8j2XMmF/b0IDy7rtIgQD68uVomzZB2FN3p7uTQx2HUDWVyt7K0N9VXeWNlje4qPQisuyJq6uO9jQXLlA8ceIEDQ0NaJoWEiiGixTjsTEmGxlIlsiAec/PtPmOdO0E45pzuVx0d3cDcOzYsVDVTH19Pc3NzQwODsalkuDvf/879957L4cPH6ajo4Nnn32WK664YszXv/7665x33nmj/l5ZWckZZ5wx6c+fM2cO9913H0II3n77bV599VX279/P3r17sVgsnHXWWZx33nl85jOfYenSpcAsGYjAWIuFy+WiqqqKwcFBlixZQmpqKpWVlVFfGw+cTp+B8LLI+fPns2PHjpjSH8kQGQgGg9TV1dHV1UVGRgZbtmyJS6h6vDTBVDegmK2xn3sO68MPw8AAEiCsVrRt2wyXv+HKiQx7BlcuvxJNH/292xQbKZY4dQ0UItSPYCLY7XbyU1IorKgARUHdvBmvEKFwb3hXvfDUglkaNdnzmixkwPSlmGmb61iYqWQgGux2O3a7HSEEbrebzZs3EwgEGBwcpLKykv3791NRUYHL5WLt2rVs3LiRTZs2sWvXLlYO+4LECo/Hw9q1a7n++uvZs2dPzO+rrq6OqEAzBbyTRfh1tHXrVrZu3cr3v/99amtrefHFF3n++ee57bbbeOONN2arCWJBIBCgtraWtrY2Fi5cyLp167BarTidzoQ9ucNJTUKixh6rLLKjo4Pq6mpSU1MnXRaZiCd4mLjDYCwwj62qqor09HSKiopQFCVuOetERAZg4jSB1NBgEAFVRSxbhpAkcLuxHDiAvno16jXXAJBmTeOi0oviPj8AdB3bX/+K/YUXQhbF6mc/i7Zz57jEwPLUU9jvvhuprw8kCVFQgOVHPyL1kktCAsXwpjnhnvjhjnZmFGEiwppMZACSY3OFk+LBZDi3JsyyQkmSQlUzX/nKV/jKV77C3r178Xq9XHHFFRw6dIjnn3+egYGBSZOBSy65hEuGxcmTQUFBQVSb+snC7EFz9OhRWltb6e3tpbOzk5aWFsrLy6murqawsJDt27eH3jNLBqLAFMzV19eTm5s7Kp+cSIEfJD5NMHJsp9NJZWUlPp9vQrvksZDINMF0zoXL5aKiooKhoSFWrFhBYWEhtbW1cSVb5rkaa8OZykIZy3uU99+HgQHEsmUnN970dITNhrJ/P+rVVyMfO4ZcUQFpaahbt0IU57HpYNG+fTjefNMgRKmpKIcOoRw7hn/vXrRPfzr6vA8exH7HHUjBICI93Whg1NmJ45Zb8L74IvoKo1FSeNMc0xN/pEAx3LBmZAVDONlLFjJgEt9kmCskpqFaojGW4RAYDGtkvwAAIABJREFUAsLi4mKuvPJKrrzyylM8M1i/fj0+n4+VK1fyve99L2rqYDyY1/m+fft46KGHmDNnDk6nk8bGRnJycti4cSPf+c53OOecc0ZZxc+SgRHo7Oykuroai8XC+vXrowrmzJB4onJ7ifYZMBccv99PbW0t7e3toVLBqT4tz7Q0gaqq1NXV0dzcTHFxMRs3bgwd22TU/7FgIjIwVUwYGfD7jdTAyM/UdeTaWhyf+xxKVZXx/7KMtaCAwJ13ou3aNb2JBYMohw4hNTSw6OWXETk5iOHNWhQUIDU1YX30UbTzz49qr2x99FGDCGRlhUiMyMpCcjqxPPEEgR/+cMyPjiZQNC1WR6rJTcc1UxCWDG2MzWs9WTbYRJUVJhLjtXB3u92nxYp43rx5/Md//AcbN27E7/fz+9//nvPPP5/XX3+dnTt3xjyOuQa99957/PGPf2Tx4sXccMMN3HPPPSxYsGDc986SgTDouk5DQwNlZWXjeuubF5Kqqgmpn050NYGqqhw/fpy6ujpyc3PZvn37KL/9ycLcYONNkCZLBsLTHWlpaVGrPeKRehg5nvnZ8RxzovG05cux2GyGk+KwUYrU04NcVwd2O1J5OcJmQ8rKQp8/H6m7G9uPfoRvxYqT1szHjmH7xS+QmpoQCxcS+Pa30c8c3agpNK/aWux33YVcW4vkciH6+yEYRC8oCIkWRV4ecmcnUksLYsnonoZSfb1BAsLvL0kCIZAbGyd7qrBYLKMEimYueHBwkN7eXgDeeecd0tPTI9IL8RIoxgvJlib4pEUGTlf74uXLl4e6BwKcc845tLS08LOf/WxSZMD8Lj7/+c+Tm5vLwYMH2bdvH4cPH2bp0qXs3LmTNWvWkJOTM6qT7CwZCIOiKGwN914f53WQWDKQqDTB0NAQAwMD+P1+1q1bR15eXlzGNc/J6SQDbrebiooKPB4Py5cvZ968eVEX+jEjA14vBIOQkRGzEA4SRwYmgr5xI9qOHVj270fYbCBJyLW1CIfD2JhNq2WPB6m3F7FgAXJTE8qBA6jXXIPlqadw3Hor+HzGgO++i+XFF/Hddx/q//gfoz8wGMR+110oFRXo8+YZjZ8GBlC6u6GhwWi0BEiBAMJiMWygo817+XKU8vJIwaEQoYhG2po1iLw8gtddR/DLX46waY4VNpuNvLw88vLy0DSNAwcOsHHjxpCLYmdnJ7W1tQghIshBRkYGKSkpp40gmGWFM4mgjIdkjQyMRwZmSmnh2WefzWOPPTal9y5evJibbrqJm266ierqat544w327dvHE088QU5ODlu2bOG8887j4osvDpGfWTIwArE8kUmSlNBQfiLGDu+gaLVa2bZtW9w3bRi73n464040ZngFRHFxMRs2bBg33TEqMuByIR08iHTsGJKqIoqKEOecE/WpdqzxIL7HHpMo0WIhcMcd6CtXorz2GnJLC6KgAO2ss7C8/PLJXgg2G5LTiSgsNEL8b74Jdjv2//2/DSKQkmJsuLoOXi/2u+5C/exnYQTRVd57D7m21mi05HAYlQspKSheL1JHB5SVgaYhdXej7d4dYa8cjuCXv4zlL38x5pSWZmgGBgfB50OurkbSNERzM/bDh1HeeQffgw9O61ya59E0oZk7HBURQkS03DUFiuHd90yicKo66iWTxwAkb2RgpGmaidMVGYiGI0eOMG+Me2gyMKMOX//612lra+O5557jl7/8JQ8++CB//vOfueyyy4BZMjAKMZd0zTCXwLGgqiqNjY00NjZSVFTEmjVrqKmpifsNbI4XbxIzHhkQQtDZ2UlVVRWpqakxG0BFRAZUFfnFF5E++giRn49ITUWqqUFqb0f73OegpCSm8cz5xBMxjZeSgnr11ahXX43yzjtY/+3fELm56AUFRsg9JSXUHElqbETq7UV5913kt95C6u83IgjmtSDLBnEYHMTywguoI0qipN5eI9dvboySxNDcudg6O5F8PiM9YbOhr1lD4H/+zzGnrG/Zgv/++7H98z8jd3UZ8xtu1CQNXz/S8LFb//AHAjfeiL5hw+RP4DDM8zhyk5UkKSRQDM1N18cVKIaXOca7KZf5+cm0uU62SdFMwFhzFkLgcrki9ChThdvtpq6uLvR7Y2MjH374Ibm5uRQXF3PnnXfS1tbGo48+CsDPf/5zSkpKWLVqFYFAgMcee4w//elPobK/ycLlctHQ0EBTUxMdHR1UVlZSX18fqo6zWCwsXbqUkrD1bZYMTBGJJgPTHdvcKKurq3E4HJx11llkZWXR39+fkIiGJEkJKS8ca0y3201lZSUul4szzjhjzJTARGNKx48jVVYiFi+G4RyayM5GqqpCPnIEPQYycLrSBCOhl5UhcnKQurrQV69G7uwEp9N44hcCubvbSCeYaQQw2hBr2sm+CMO5ezye0eOXliJSUsDlguGnJ81uR2Rnw9CQYa9ssSDmzJmwvbF62WWon/oU8kcfQSBA2hhlWEJRsPz3fxNIABmIBlmWQ1GB0FzDGuaYTZp8Ph+pqamjHBSnuzEmk8cAJG+aYDwBYTzSBIcOHYqoBLjtttsAuO6663jkkUfo6Oigubk59P+BQIDvfOc7tLW1kZKSwqpVq/jLX/7Cp8eoyBkLJpm86aab+Oijj9B1HY/HQ2ZmJitWrODGG2/k7LPPjuqxMksGpohE5vXNNMFU1emmicbQ0BDLli2jqKgoNE6iVP+QmPLCkWQgPCUQ7v0wGUREf/r6jI1rhJhGZGdDS8ukxj0tkYHw1xcUoH3601iefhpUFW3lSuTqauSBARgaAkAKBg1hod1uPI2bZMBME/h8YLOhXjTal0BfvRpt2zYsr7yCCAQQNhspPT3I/f0gy0ZURdexPvkkyltv4X3mGSM1MRZsNvTNm8HnQ0hSKBowCnFoWQtTL9eL1jAnXKDY19fH8ePHUVWVtLS0UQ6Kk9ncZ9MEicdYAsJ4RgZ27do17v37yCOPRPx+xx13cMcdd0z7c83vYtmyZSxfvpwNGzawZs0aiouLJ3zvLBkYgcm0MU5kZAAmz7rDTZIWLVoUUU4XPvapKFuMF0wyIISgq6uLqqoqHA7HpE2RgJBgLYJgmFUUqhph4St5PONvZGEwBV+nOzIAoF56KXphIco77yD19aHt2oXtgQeQVNV46rdajRy9z4eelobschkEwO83zg8g0tNx/PCH+O+6CzF/fvik8P/LvyDmzsXyt78heb0ISUIoCuTlhTZtoWlILS1Yf/97Anv3TjxphwPtootQXnkllCYIfaSmoQ7nNKeLeG6y4QJFMDYSn88XiiCMFCiGRxDGEygmW5rgkxQZ8Hg86LoeFzJwuvGDH/wg4vdw/4oxq+QSPqtPKBJJBsJLF2O50XRdp7W1ldraWrKzs8dtumNu2IkwYUlUZEBVVQ4fPszg4CDLly+PiHTEhIYG5P37kSoqID2dlJUrYViYI8rKEAsWINXXI0pKjA2tpwc0DbF2bcwfkQgyMKXxZBl9y5ZQI6RQTX96OpLbfVLBryjIgQDaggXIAwNIHo/R2bG0FH3ePORDh7D95Cf4H3ggsrIiI4PAnXcS+Na30Hp7cd98M2lHj0Y+vQ870ilvvQW33TaqNXM0+H78Y1KHTZQkXUcoCpKm4b/jjlCVwlRxKox8JEkiJSWFlJQUCgoKAIMghDsotra24nK5UBQlghyECxSTjQx8kiIDLpfR+numCAinA3ONl2U5lMKdCLNkYAQmExlI1BO2yd5iGb+3t5fKykp0XefMM8+c0MvavAnGy5tNFfGODGiaRnt7O16vl/z8fNauXTt50VZ9PcovfoHU0YGYMwfJ6STj6FEKli+HnTshNRX9H/4B+a9/RWpuNkLm2dnoF12EWL065o9JhCVxXMYzx0hLM57+g0EjJaCqhvJfUYwuiosXo4eFEvWiIpSjR5ErK9GjWbFmZqI5HKhpaaPLMDXNqAw4coTU889H3baN4Fe+ghhuiBJ1mkuWMPTee1gffhjl3XeN0sJrr0WbpAPbWDgdoXdJkkhLSyMtLS2kCg8XKJoiL4/Hg81mIzMzM3QPBYPBhAgU4w1d109pK+p4YCwBocvlwuFwJMV5nwhTIWjJ9S3OICQyMiBJ0oThfK/XS3V1NT09PSxZsoRFixbFdAEkkgzES0AohKC7u5vKykosFgtWq3XS3uChOb36KlJnp7GxSxICUFNSyD52DKm21rDyXbAA/StfgZYWo7SwoAAm6Q8+LhlwOrE++yzK3/9uNOXZvRv1yitPpijGGG9C6DpSczOS34++cGHU8dQdO7A5HDA0hMjNBbfbiAKoqvE0Hwwi9fQgDQ4iUlMRpu9ESgp0dRkVB+OgY8sWig8dMoyP0tKMOXV0GKQjNxf8fqzPPYdy+DC+f/93xKJFY44lhh0S442ZZEU8nkDR7Kjn8/l44403QqWQ4RUMMy0kr2laQrxWEgUhxJhrn+kxMFOulakifA0OP5aJjmuWDEwRFosFv9+f0PGjkQ1N00KlgnPnzmXHjh2jnKTGgxk2SkRUIx56hPDWycuXLyc9PZ3Dhw9PbTBNMyoF5syJfHrNykLy+aC5GcwQtNUKZWWM+yzu8RjueVar4UEQ9gQxlqthT10d6d/+Nkp1NZLZHOXtt1EOHDBC8ON8d+NFBqSmJqy/+51Rlx8Mos+di3rFFWgXXBBxrKKsjOD112P79a+NDRuMjdpiQV+zxiAAQ0NIHg9yXR1abq5R4tfXh+TxYPs//wcpGEQ76yyCX/0q+oh2qt0bNhC49lpsTz4JfX1IgQAEg4j8fPSlSw0ClpuL3NSE9emnCdx++3hnOCGYSWQgGsIFilarlY6ODlavXh3SH/T399Pc3EwwGCQtLW2Ug+LpDNMnW2mhGT4fKzIwUwyHpoOpXg+zZGAEJpMm8EQpv4oXRm6s4QI6m83G5s2bp9zdKlEiwulEBjRNo6GhgcbGxojWyS6Xa+rRBlkGh8OwzQ37c0ikNgkSJe3bh/KHP0BnJygKoqwM/YYbEGvWDH9UpKuh1+ulsrKS9D/8gblVVXhzcggO36RWVcV+4ADup55CueYaUgYHkdxuw6Rn+Ol+3OvQ7cb2858j19WhL1iAsFqRurqwPvQQIjMT/ayzTr52aAg0DX3hQqTubqMEUJYRc+caTYIkCZGfj+TzITmdxmuEQK6pAU1DHhZWWp55BuWtt/A99FCokZB5jv0//CHa5Zdj2b8f5cABw5jojDNOkhJFQTgcyIcOxXy+44mZTgbCYWoGbDYbc+bMCfVGEULg9/sj/A/q6uoQQpCenh5RwZCamnrKjjfZBITmuvdJjQy43W4ee+wx8vLySE1NJS0tjdTU1NCPqWtxOByjjLRmycAUkcjSwpHju1wuqqqqcLlcLFu2jPnz50/rgk0kGZjKuGZKwGazhfwQwsecMhmQJMSOHUiPPgqDg0ZtvK5jaWrCn5sbsyZA+uADlF//2gitFxcbm2RlJdJ996H+9KdQUBBKE5gdL+vq6igsLGR5ezuK3Y4yXJamaxqqpiENDKD9938z8PbbzKmuxiYE5OURvPxylGuuGTftoBw+jNzQYDx5mwr+khLk6mosr75KIIwMWF57DeWdd9DWrYPUVKSuLiz79xvpArcbkZGBKCxEDwaRuruRhoZO9hiYPz/U84CcHKT2dqwPPYT/vvtGnWd9yxYCW7ZgcziQo5VkBoNGueZpQDKRgbF8BiRJwuFw4HA4ogoUXS4Xra2tuN1uZFmOSC2YAsVEnINkExCqqjqmoG5wcDDpIwPd3d38/Oc/Jy8vL7R/mBo0RVFQFAWbzYaqqqxcuZJf/vKXoffOkoEpItFtjC0WC4FAgMrKSlpaWiguLp5STX00JKrd8GQFhENDQ1RWVjIwMMCyZcuiNocyn7inuqDru3dDUxPye+8ZaQFAzJlDy5lnUhjj5iS/+qphtBOmWxDLlyNVViIfPIh+xRVIkhRql6zrOhs3biQ3NxfZajXq98OOx6bryJJEYVsbhe3tBObMIaAocOIEym9+Q01bG4PnnosQgtbW1pChjbmASSdOGMLAEdeCSE9HrqhAPnoUUVCAmDsX+d13jdcNRxzEnDlGT4G+PuOYhhc/SdfRtm3D/2//huXJJ7E99NBJImBMHFJTUQ4eHPdcqeedh+XJJ5G6uxH5+UZ0wOlEkmW0T30qpvMdbyQTGZhMNcFYAkXTYnlwcJDGxsYIgWJ4iiEea0mypQnG00p9EtIEBQUFPPDAA6HrwPwZGhrC6/Xi9Xrx+/309fWF2oKbmCUDIzATqgmEEAQCAaqrq8nOzmbr1q0RlqnTxeluNxyue5g3b14oJTDWmDCNBd3hQP/GNxC7dkFrK9jteEtLcVZXxz5Ga+vopjuybGx0J04QDAYJBoNUVVWxePFiSktLT/ZquOACLG+9hfB6AZAGBoxN2OtF7uhAW7cOS36+cSPm5yM3NrKusZGma6+lqraW3pYWGoeG0BSF9PR0srKymKso5AlhiP/MBX1oCPmDD5BcLlJef92wKd69G7KzI1scWyzGZ/7979DbC6qKpGno+fkE9u5FLFwIWVkG2QhvJARGZGSC7pb62rUEvvUtbA8+iNzUZHy2w0Fwzx7Uz3wm9nMeRyQbGZjOXM2oQEZGBvOHPSI0TQvpD1wuF52dnXi9XhwOR0R6ISMjY9Ki4mQrhZyJHQvjifT0dC6KYhgWC2bJwBSRqMhAf38/lZWVeL1e5s6dy5o1a+K+kCUqTRDLuD09PVRUVGC1WmPSPYQ3QJryoiPLiBUrwMx1u92TI0MlJTCyy56qIoSgz2bjgzfeQAjBypUrR/UM1666Cl57DcvrrxupCk0zBIiFhUhOJ3J7O1pmJgzn70RWFpbeXuY2NWF56CEWnTgBioJ3+3a6L7uMfl2nLjeXQEoKGe+9hzp/Phabjaw330Tu6zM+VFHA48H6X/+FvmQJIi8P4fef/IzMTLTVq9GH0yR6aSnqpZciysqMQ9u9G+uDDyKdOGFUF0iSYUwUDBIMMwAaK42hfulLaNu3oxw8aIgPN240Pus0bcjJRgbivbkqikJ2dnbEvRYMBkPkYGBggObmZgKBQMhB0YwghEekouGTFhlIdjIAo0WSzc3N9PX14XA4SElJISMjA4fDMapt/SwZmCLiTQZ8Ph/V1dV0d3dTVlbG0NAQDocjIYvY6RAQDg0NUVVVRX9/P0uXLmXhwoUxe8VDfDsCjtnCeAzoF12E8tZbRiliURGoKnpLC31ZWRzLzmbFihXU1dVF72yXkoL3X/8Vxz33YHnpJURentFDwOEwOgv29yP396ObbocDAzA4SMbXvkaK2400fz4iLY3UZ56huK6Ogl/8ApYvN57g//M/sX30EfbyciwmEQCEriPsdmRVRW5oILBiBUpjo6EFGLYeVi+9lOAtt0Q1BBJLlhC4/XbsP/sZUnu7edLQzjmH4PXXx3TORGkpamlpzOc4kYi3/0MicaqetK1Wa4RAEYgQKPb09NDQ0ICmaaMcFMMFiskmIJwoMhBuOZ2sCG8a9/TTT/OHP/yB+vp6nE5naI1yu93ccsstfO973wu9b5YMjMBk7Yin+9Sh6zqNjY00NDRQUFAQKhWsrKxMqG1wosjASIIUfnwTpQTGGtMcJ57znIwOQaxahXbbbciPP47U3MyQ309XYSGB667jrPPPx2q10tDQMPam43CgFxWhbd2Kvnix8TdNM3L69fWIvj6YMwe5sxO5ogICAaRAAEWSkFtb0RcuRF+0CLm8HMvrr6NeeilSaSn86EfY7rwTq5nyGO7+J+k6+P2oVitKMMgJVcV7+eXkNDZiS09H3roVffv2cZ0B1WuvRd+8GWXfPiSPB23dOrRdu0a1NU4GJFPzn9M5V7vdTn5+fsi4TAiB1+uNaNBUXV2NJEkhcqCqKsFgMGmiL+NFMlwuV0we/jMdJqHct28fd999N7t378ZqtdLU1MQ111zDY489RnZ2dkQjJZglA1ERi5ucxWIJqcenwoyFEPT09FBVVYWiKCHBmQlFUQgEApMeNxYkMk0QPueenp6QcdBUSyFNJWw8yUB4l8FYFzCxdSvdZWU0vP46ss3Gkt27yQo7nonmKObMMULtJhQFdedOrAMDSIEA8vHjSL29xobucCAkCU2WkQG5tdUI1+s6cm3tyTHcbiyHDxvOij09J/8+TAgsw2mNdEXBk5pK5bnn0me3Y7FYyKyoiLDDjSYm05cti8kKeKZvAsmyUcHMetKWJClUklY4HLkaKVDUdZ2PPvoIq9UaoT/IzMyckWZEp6Jj4emGuXf95S9/YcWKFdx///3s3buXzMxM9u7dy4UXXsg999wzqjR+lgxMEZPtHxAOt9tNVVUVTqdzzJC5xWLBOyw6izcSXVro9Xqpqqqit7eXZcuWxZwSGG/ceEcGIPaQrN/vp6qqiu7ubpaefTaLFi0adTySJGH9+GOUhx9GqqlBzJuHfuGFcO65AGjr16O8+y5SYyNiwQJjY+/pQb3oItRLLwWbDft3vwtWqyEy9HoNkaLVCl4v0nAaQITlNCWPBwIBRHY2IiXFKAvUdeN9QhiCPyDj3XfJeP99FqenE7z6ak58/esMDpekmWIy0+0ufEFPlqfpiZBsaYKZbIcbLlCcN28eHR0dnH322SENQvg1ZQoUw8scT7d18SddQAgnr/fe3l4WLlwIQF9fX4icrVu3jt7eXo4dOxYhNpwlA1PEVJz8VFWlrq6O5uZmFixYwJlnnjkme050d8FEkQGXy8Wbb75JYWEhO3bsiJ5Hn8K4iYoMjAchBC0tLdTU1DBnzpxx3R6zjx4l67nnkIJByMpC/vhjpI8/hu5uuPJKRFkZ6jXXYHnpJeT6ekPUOH8+6mWXoa9aZQxitRreCHPmIDudRqdBi8XoMjgwgD5/PuowuQAMl7+FC5Grq9FXr0b54INQz4HhA0A4HEZUwmqFwUFsjzxCXl4eWV/7Wmic8IW8r6+PxsbGUK44nCCM121vJiPZIgPJQsLMNcRms5GamhrhDxIMBkMVDE6nk9bWVvx+/ygHxYkEiomY83gCwk9Cx0LzWs/Pz6e3txeAFStW8PLLL3PkyBEyMjJoaWkJddw0MUsGoiDWpjOxigiFELS1tVFTU0N6ejrnnHPOhOGoRJoaJcJn4MSJEyHB0aZNm+IqxElkZGAsuFwujh07RiAQYO3ateM3gFJVCvbvR/J6IawHAm1tKM8/j7RzJ+TloW/eTGDVKsOUR5LQFy0KKfwBtF27sD7+uKERmDsXqaPDePoXwmjcc+uthg2yCUUh+KUvYb/7boMsrFiB1Npq9CHIyUHy+RDFxSfz/Lm50NWF9cknCX7lKyHNwEgx2chccXi3vXByMBkb7NOJZCIDyaRvMO+faPO1Wq3k5uZGpD7DBYrh64XpoGiShLS0tIR9X6qqRn1AEUJ8YtIEZuTj6quv5siRI/T09HDttdfyzDPPcO2119Lf38+SJUs4++yzI943SwamgVjIwMDAAJWVlfj9flauXMncuXNjutAT6WMQT6Lh8/moqqrixIkTFBQUMDQ0FHdF7qmMDIRHb0pKSli8ePHEaaCuLuzd3WhmGZ6JwkKoqUGprYWPPsLy9tvg96Nv2IB6wQURRAAg+MUvIr//vqELkGUC6enIioK+fTv+H/8YMXfuqI/WLr4Yv82G9fHHkRsb0TduRL38cggGsf3sZ6MEfyIlxTAcGhoKGQ5FOz/RcsVmtz2n00l3dzdDQ0MAlJeXk5WVFXrSmyk5bxPJRAam6zNwKqFpWsztcWF8gaLL5aKjo4OampqQQDE8ghCvyqr/F0oLTWzfvp3t27eHfn/iiSd49tlnAfjiF784GxmIBZOtKIgGv99PTU0NnZ2dlJaWUlpaOqlFMtFpgumSgXDbXbNhUn9/P42NjXGa5UkkggxEE/x1d3dTUVFBSkpKTNGbEOx2I5wfDEb+PRAARcHyxz+iHD5s9ESQZXjtNZT9+/HffXdEd0Qxfz7+3/wG629+g/LyywQkCemaa9Buv32U22A4tPPOM5T+Pp8xF1lG2b/fICZh/gJoGtLgoFHRMNJEaQKEd9szvRRcLhfvv/8+aWlp9PX1cfz4cVRVjfDKH1mKdjqQbGQgmSID0yF+Y5FO02J5cHCQ5uZm3G43FotlVNpqKgLFiaoJPglkQFVVLBYL99xzD3v27GHJkiVomsaiRYu49dZbAaitrR11DmfJwDQQjQyYm2R9fT1z5sxh+/btpKSkxGXseGG6DoS9vb1UVFQgSVJEFUSibI4nJANCQE8P0sAAwmqF+fMnLIGzud3Ir7+OrOv4cnIoVxT6PB6WL18evfeDudFH25Tz8nCvWEH+oUNQUGA0QFJVOH4ckZ2NcuSIYQNs5iP9fpQPPsDy4ouoX/xixHFYH3kE23/+J6gq6ZqG8sADaEeP4nv44fEbK0mS0XZ4GNqOHegrVyJ//DEiIwPJ5TKEibqOlJ+P5c9/NtooT2OTNIVupcN+AkIIfD5faCFva2ujuro6gkhMZyGfKmbJQGKQiL4EsiyTnp5Oenp6yC5X07RQVMps8zw0NITdbh9VwTCRQHEsAaGqqni93k8EGTDPwZ133smuXbtYsmTJqGNetWoV5eXlLF269OT7TuksP2EYuWGbpYKSJLF+/foIQ4/JYiYKCMNTAkuWLKG4uDhiMTgtNsfBINLBg0iVlYbqXlGgsBB9504jTB8FUnk5y598Eoeu4w0EcHu9LFizhlXf/S62kaH4ri7kv/411HFP37AB/dOfHjV2z6WXkjk0hP34cWPDBcSiRYiiIsNLIFyYZLcj7HaUN9+MIAPye+9hu/9+I32Rno4WCCADlv37sT78MMFvfSv2k2a14vvFL7D98z9jfekl8HjAakWfPx80Ddu994Kuo372s7GPOQEkSQp1RZs7fB7D0wtmtz3TUMtcyLOyshKaXkgmMpBMmoFT5T6oKApZWVlymWqXAAAgAElEQVQR4j5VVUPkwNS1+P1+UlNTRzkohs9xrDSBy+UC+EQICF977TWys7NJT0+nq6uL48ePY7Vasdls2Gw2nE4nKSkpo0q9Z8lAFMS6cJibqsfjGeWuN90bOpECwsmSgfCUQEFBAdu3b48qHjsdkQGpogLp8GEoKoKFCw1y0NSE/MYb6JdfPjpC4PUi//732Pr7aS0uRlIU8jMySG1tRX/5ZfQvfenkawcGUB54AKmiwqjzB+QXXkCqrUXbu9cQ5A1Dzcuj5/bbSevuRuroQOTkILZsQX7iiZifvq3PPWdUAgy3FgaM+QcCWJ9+enJkABBFRQS+8x2Ujz5CWCxG1GJ4IZRaWrA8+STqZZcl1EgoPCpgwlSaO51OBgYGaGpqSnh6IVnIQDJpBk6nJ4LFYhklUAwEAiHS2dvbG5G2MslBIBAYs2OhJElx7QFzunDXXXcBRgn7T37yEzIyMkJEwG63U1lZyerVq2fJQDwhyzJdXV3U1tYyf/58du7cGbfwZ7ipUSK8ymPdtHt7e6msrAQYZYwUbdzQpt3WhnT8uLG5zZuHKC0NbUSTxZhkQNeRqqoMIZyZ37daEYsWGR0K29uNvgJh0I4dw3PsGO65c8lMTycvL8+oHvH5kN9/H33PnlAzHvndd5Gqqoy+Bmar4IICpKoq5HfeMSIEw5AkCd1uR+zcSbgsUd+wAenxxw2bYfPm8/mQ/H60HTsij2doaHRzIDCa/Qw/uUwWckODoV1YuDBiXJGdjdzdbXQXHNFPIVZMtX5/pNJ8ZHrBdLoLb8VrRhCmcn8lU2Tg//U0wXRgs9nIy8sLCeNGXlednZ0EAgE+/vjjiNbObrebYDB4ysscE4Vvf/vbDA4O0tTUxI7hNcbr9eJ2u1FVlYsvvpibb755lJ/FLBmYAoQQdHR00NXVhcVi4eyzz457rslk3Im44WIhA+G9EpYsWcKiRYsmnIe5aUtvv438+usnNzCrFbFuHfpnPjOlp9AxyYCmGeY8I6MUVqshlgsGQxuz+Z11vv8+S4NBZKuV9PT0k5uEzWaI7QKBk535GhoMAhN+05i/19XFNEexaRPqZz6D5YUXDJdASQIh0DZtMsyGwg9n82asTz1l6A1M4iQEkq6jhqmCJwORk2Mcm88XoSmQvF5ESkqEidHpwljpBdPpzul0Ul9fH8oTm5ULZjh4oqfTZCIDyZQmmEluidEQ7brav38/q1evJhAIhDxRbrnlFlJSUrBarXz/+99ny5YtbN68OdQWejL4+9//zr333svhw4fp6Ojg2Wef5Yorrhj3PQcOHOC2226jvLycoqIi7rjjDr75zW9O6ZgBvvCFLwCGz8BVV10V8/tmyUAUjLdwOJ3OUFfBvLy8UO11vGHeZKqqxt2RbLxwvq7rNDc3U1dXR15e3rhGO9HGtfb0IB06hLDZYOVK4z88HqRDh5AWLUJs2DCl+UYlA1YrYt485KoqRHjEYnAQUlMRw0/iHo+HiooK3G43q7ZvJ/vjj/F2dxupBTA23K4uxMaNRvteExkZIRe/CKgqjPjOx/SmkGUC//iPaJs2GaWFgQD6unVGe+ERIUn1iivQf/tb5PJyhCyj6DqS34/IySF4880xnauR0DdsQF++HPnoUSMCYLcbJG1wEO3aa0cdx0xBtFa8Zp54cHAw1GkvGAyGOu2ZPyPr1JOJDMxGBhIHcw0JF7AuX76cK6+8kt/+9rf8+te/pq2tjTvvvJPKykp2797NK6+8MqnP8Hg8rF27luuvv549e/ZM+PrGxkY+/elPc8MNN/DYY4/x1ltvcfPNN5Ofnx/T+6PB1HJcddVVvPDCCxw6dIiMjAxuvvlmbDZbqGpiJJGbJQMxIhAIUFNTQ3t7OyUlJZSVldHa2kp/f39CPk+SpIT2EIi2ufb19VFRUYEQYkoCSEVRSOnuNjZj01UPjDI2ux2psnJKZGA833+xejWirQ2prs54Cvb7we1GbNyInptLQ10dDQ0NLFiwgHXr1mG1WhEXXYT13/8dua4OcnKQnE6YM8cI+4dvIhs3wr590Np6kjh0dBhEY9OmUXMcM2yuKGg7d6KHuQdGRVoa3v/6L6z334/1mWfQBgdRL7gAfe/emHoERIXFgv8HP8D+T/9k+BcEg5CainbhhQRuvHFqY4bhVG6yI/PEQogII5vwOvVwchAMBmfJQAIw0yMDI2GupSPnnJKSQkFBAYWFhfzud78DCPkeTBaXXHIJl1xyScyvf/DBBykuLubnP/85YDgFHjp0iJ/97GdTJgNmj5iHH36Ye++9N0Siv/3tbzMwMMDXv/51Nm3aFNGxEGbJwIQIf1LOzc1l+/btoT7QiSz/g8Q2FAof1+/3U11dTVdXF4sXL6akpGRKC5I83CBHCMHIpVdYLEYIfgoYt5pg/nz0iy9GKi9H6uiArCzEWWdxoqCA8rfewmKxcNZZZ0WohPXLL6etq4vFHR3YfT70TZsQ550X6e4HiDPOQP/855GffRaGdRPk5KB/7nOIcLLD+GQgVkdLMBoaBX74QwI//CEHDhxg06ZNpE3SE2DUmIsX4/vtb1EOH4a+PsSiRegrV06rrHAmQJIkHA4HDoeDgoICYHQjnYaGBjweD7Isc/To0QiSMBM3smQSECZbZEBV1TFNklwuV4SviBmVSjTefvvtiP4AABdffDEPP/wwwWBw0lFhMwpWW1vL/fffz7333su6devYvXs3FouFvLw8LrzwQv785z/PkoFYYN6MpnhOCMG6detGOTYlUvGfyPHNyICmabS2tlJbW0teXt6UPRHCx/Xl5iIGBpBcrpOiPlVFcrun/HQ7Ycni/PmI+fMRwSB+VaW6tpauo0dZunTpqPJHqbIS6f33yaquJrB2LdqnPgVj5QYlCf2SSwwRYFWVYQt8xhlRSxYns+EDEAwiV1YiDQ4icnPRly+P2lI4bk12rFa0Efajn0RESy80NDTgdDrJyMjA6XTS0tJCIBAYVb2QSBvcWJFMmoFTVVoYL5jzjfYdjyQDpwqdnZ0hPYOJuXPnoqoqJ06cmLRuwSQDx48fR5Ik9uzZw/PPP4/dbg8dt8VioW+48Vk4ZslAFAQCAY4cOUJvb2/UenoTibQMTuT45g389ttvo+t6VKIzFUiSxFBBAYGMDFI+/NDY3CwWwyt/2TLEmWdOadxYHAiFELR2dlJdXT1mUyHp9deRn3wSyeMhzeUitbkZpaoK7RvfgLKysQefOzeqFXDE2JMgA1JnJ9b/+3+Rq6tB0xBWK/qqVQSvuy6iXPF0b0yfFEiShN1upySssmSkyrx2uDX0yOqFeDTamgxm0wSJw0ztWDjyPjfXkenc/4FAIOSnIEkSaWlpoeuqvr5+FAGBWTIQFVarlbS0NFauXDnuYpCMaQIzJQBQUFDAkiVL4rb4SJKEYrUS2LoV+9KlSNXV4PcjFi9GrF49phf+RJjIv8DlclFeXo7f7+fMM88MhYwj4HQiP/+80S1w1Sr8ra3YMzJIaWlBfukl9FtumdLcTMRMBoTA8tRTyMeOoS9ZYlRCeDwohw8jsrJQv/rVyY95mjCT5xaOaALCaOkF0wbX6XTS2NiIx+OJcLlLdBteIUTSRQZOd0viyWCivgSnIzJQWFhIZ2dnxN+6u7uxWCxTMq0zr53169dTWlrKD37wA6xWK7Is4/F4eO6553jllVeiViskzzd5CiHLMstiCGmfCjIQr/FHtuMFWLBgQULsRHVZRpx55pQjAdHGDAaDEAggVVSAy4UoLkYtKqK+oYGmpiYWLVoU1XbThNTQgNTTY4T5wegsKEmIwkKkmppIH4ApYDyRY8TrWlqQq6rQi4tPlkSmpSGKilA++gitt9doOTyMZNlwZzJi2WCj2eCqqhpyuAt3uQuvXsjKyiI1NTUu95F5/SRLROiTFhlYMEW/jengnHPO4YUXXoj428svv8ymTZumXEUmhKCkpISvfvWr/PSnP6Wnp4dAIMCFF15IeXk5N954IzdGEQ/PkoExEMtTmUkGElW6FK80wcDAABUVFaiqGmrH+8orryTMLTDe48qyjLW5GeW3v0Wqq4NgEL/dTlNZGQNXXBG9qZAQ0Ntr1NhnZhoNgiQJdB2G84ZCCON1smz8TAMxkwGvFykQMLoHhk/X4UAaHDSMh4bJQLJsCjMdUyVUFouFnJyciC6cZvWC0+mkq6uLumG/iZFNdMJztLFivJbAMxHJJiAcT+PgdrvjkiZwu92hawKM0sEPP/yQ3NxciouLufPOO2lra+PRRx8F4Jvf/Ca//OUvue2227jhhht4++23efjhh3niiSem9Pnhe9EVV1zBBRdcwKOPPkptbS0pKSncf//9bN68Oep7Z8nANGCGnBIVLptumsAsh+zo6KCsrIySkpLQzXCqyxanNaaqkvv440h9faiLFtHn8aD19FDy4Ycs2boVYRIBIQx3wD//GfmllwzvAKsV/YIL0L71LURREVJTE2LxYqN3QDCI1NGBvnv3tOvtYw3p64WFiOxsI0phliuC8Xt+PmK4vauJmR4ZSAbCEk+yHq0Nb3j1wvHjx3G73dhstlHNmSZaI8zvOlk22GQUECY6TXDo0CHOO++80O+33XYbANdddx2PPPIIHR0dNDc3h/6/tLSUl156if/1v/4Xv/rVrygqKuKBBx6YUlmheZ23tbVx4MABBgcHWblyJTfH6FEySwbGQCyLe7gxUCLIwFTTEGZKoLa2lpycHLZt2xYqhzSRyD4C8R7XUVWFvaWFwdJS+vv6SE1NpWDFCpTWVnjlFdTLLwdA+dWvkJ9+GunYMcMYyGaDjAyUZ55BrqhA/d73kJ95BunYMVIHB7FZLIi1ayNshaMiEEA6csTwL1i8eJTFsXncMW3cWVmoF1yA9Y9/NBwOMzKMbouShHbhhRFuismw0SYDEmk6ZPrZj+yyZ6YXnE4nbW1to9ILZvVC+MafjGmCZCEucGoEhLt27Rp3HXjkkUdG/e3cc8/lgw8+mNbnhlcR3Hrrrbz22mvY7XaGhob47ne/y2233TZqDxiJWTIwDciyjCzLM6ahEBgOieXl5QSDQdasWRNdTEfiOgwmYly1txfV78cbCFCQn49jOMQu0tKQ3G7w+ZDfeAPp+eehp8d4U0aG0bTI60XMm4dUU4PU3o62dy/yRx/hPHoUy8KF2C+9NNJ1cASkykqUn/4Uqb4+5DyoX3wx2re+FWGtPBF5DN+QtIsvhvR0lL//HamvD33pUtRdu9C3bIn87BkuIEwWnGpRnqIoZGdnRzSCCTdH6u7upq6uDiFEKL2QlZUVyhEnCxn4pEUGkrl9sbm+PPjggzQ3N/OTn/yEdevW8dRTT/GLX/yCc889lx07doxLjGfJwDSRyPJCRVHw+/0xvTY8JVBaWkppaem4N2qi0gSxlAHGimAwSE1NDQOaxmqHg6L09Eh//b4+xMqVkJaG9OqrSLKM5PEYJY2yHPLkl/x+I4VQWQlf+AL6ggX0FxcbngrjtSx1u1F+9COk+npESYkxXl8f8tNPI+bNQ//850/OZYyNWwhBf38/iqKQkZFh3IiyjLZjB9q2bYYRk90+pgHQLBmID073BhstvTA0NITT6cTlcoXSCwAff/zxpNILpwvJKCCMJsoTQuByuT4x7Yu/9KUvcdNNNwGGQPH555+nvb0dGD9KNjOvshmAWBePRFYUxLJhCyFobW2lpqaG7OzsqCmBqY49FcQjTWA2FaqqqiIjI4Oi3btxf/gheXV16HPmQEoK0okTYLOhX3qpsfEPDCDsdqThUj3g5AZrfj9hKv1YBH/Se+8hHT+OKCs7GQXIywOPB/nFF9GvvjpkFBSNDAwNDVFeXo7T6Qw5y4Wr0DMzM7GN0/dhpkcGZvLcwjETXf3M2u9wd8mBgQE++ugjsrOzQ90bfT4fqampEdfNyPTC6UIyCgjHMlVzu92npbQw3ujs7OTMEVVcaWlpIUI53vc1SwamiUSSgYmiDk6nk4qKCgKBwLgpgWiYqQLC8KZCK1asoLCwkK6uLpquuoqFzc3IBw6Ax4NYsgT98ssR27YZb1y7FqmmBlFSgtTbazxxD2/UYmgIcnPRwroExpLjlwYGjOqDEZ0WRVqaUYro94c6HIZv3Lqu09TURF1dHfPmzWPlypVIkoTX6w3lkevq6hgaGiIlJSWCHIS3UZ1pG1iyIlkaFZn9SIqLi0N/CwQCoWump6eHhoYGdF0fVb3gcDhO+TEmY2Qg2nw/SZEBj8fDvn37QsdaXFxMd3c3fX199PT0YLVasdvtUUnRLBmYJk5HZCAQCFBbW0tbWxulpaWUlZVN+qacaZEBXddpaGgY1VTIHDNot6Nffz36NdcYbYtzciLse7VLL0V65x2k5mZDI9DebrzOZoP8fLQf/hAWLw69PpbIgFi40Hi/2x3RYVDq70dfvz4yZTFMBgYHBzl27BiqqrJx40ZycnIIBoOhBTzcJjcYDIYW+hMnTkQs9FlZWaiqSmCK/RxmEYlkIAPRBHk2m428vLyQQ6iZXjD1B83NzbjdbiwWy6jqhXh3Ox2JZIwMRFsnh4aG0DQtqTUD5vW9bNky/va3v3HgwAF0XQ89UP7617/m8ccfx2az4fV6ef755yNKZmGWDIyJWBePRPYnGEk0hBC0tbVRXV1NVlYW27Ztm3ITm5kUGejt7aW8vBxFUdiyZUuE8ApG6BDS0oyfkSgrQ/vnf0b+05+QDh9GLF2KKCxEbN9uVAuMcPOKhbSIDRvQN21CfvNNo0Wyw2GkJ1JS0PfsiexwOPx08c4770QQtPGiD1arlTlz5oRMoMLzyIODgwSDQSoqKqivrw9FDrKyskhPT58xT2TJsMkmS2QgFnV+eHrB9K3XNA232x0ilh0dHaPSCyOjTtOFECIpIwPR9BculwsgqdME5vX9r//6rwwMDOD1ehkaGsLj8RAMBnG5XAwNDeHz+XA6nVFTybNkYJo4VZGBwcFBKioq8Pl8rF69moKCgmktcDMhMhDeLTFaU6HwMWMhGGLpUrTvftfQCExgJBRyNRwPioJ2113wyCP8/+x9eXRjZ332c7VLtiXb4228ju0Z2+Nl9sWztdBDoTQfJ+Q7H03KyUISkkIK2RoKLaH9gLQhhZIQSHICpUkLnBDOYS0H2iRQEoYs5JucmbEteZVt2fIua9+udO/9/tC816+kK1vLlS25es7xgWhs6erq6r6/9/k9v+dh/vu/wfj9ELq6wN14IwQqjnhtbU1Uh9MGSMReluM4cBwHhmHiUtMS3yt9o29sbITH40FbWxvUajU8Hg+cTidmZ2cRjUbjVOg7RRMXC4qlGMh26kGpVMJkMsFkMqGlpQXARnvB4/HEsU50OJPJZMr6uiHfx2IqBlIxA16vF1qtNinLpBgxmEMYWakYyBH5Lgai0SjMZjPm5+exb98+dHZ2yvIFzKfPQFqhQtdEj9XV1ZKhQonPmZFYLQ31dbqOgaiqAvfAA8BHPxoTJtbUiM/PsixGR0exvLyM+vp6BAKBuEKA4zhxISLvQRCEuOuF/FuqaFWFQoHq6mpUXwswEgRB1B7QNLFarU4SJxbTjTqfKJZiQM65fan2QjAYFFmnubk5WCyWrNsL5N5RbG0CKWbA4/FsTPr8D0apGEiBTKYJ8rGoCoIAh8MBlmXh9/tzaglIIZ/xyJvtuEmoUCgUSlv0KOe4Iv2cGRUYFRVi0JIgCFhYWMDo6Ciqqqpw4cIFcddOFnye50UVO31z5Xk+7t9J0UBA2INU1x/DMDAYDDAYDGi4FqWcaHIzPz8vRvSSwsBoNMJgMPyPvOEVUzGQT3Mkct1ItRdIemMwGBRFrXRbKnHRLzbrZCC1gHC3TBLkilIxkCNUKlXaXgDpwuv1wmw2IxAIAACOHz8u+5cuX8VAKsYhGo1iampKDBXq7OxMe346H8VA2sxAAsi4oM/nQ19fH+rr68XFmyzs5KZOdvw0yOdIbkrkGAiLQAqEUCiESCQi/mzGHkiZ3JCIXrfbjYWFBYyNjUGhUMQVB7mKzIpltLCYioHtNkci7QUClmXh9XrhdrvhcDgwPT0NjuOSphfIsRbDeQUgFt+pNAPl5eVF817yhVIxkAI74TMQiUQwOTmJubk5tLW14dChQ6IqNB/FwHY5EK6srMBsNkOn00mHCm2BQmAG6HHBxsbGuGkH8jyBQADT09OoqqqC0WhM6zNL1A8QkejExASqq6tFcWEq9iBVgSAV0evz+USamBaZ0eLEsrKyXXdTLJZioBDiizUaTZKolW5Lzc/Pw+v1it8fq9UqXj/5nl7IBeT7I8UMeDyeop4kkAulYiBHyLHDTjTZOXv2LMrLy+N2jXK7kG2HgDAUCsFisWB9fR1dXV1obm7O6qZM99vluqlnwgwQi2eO43D8+HGxfw9sqKpNJhPa2trgdrsxNzeHSCQijgiaTCZUVlZuKdYKBAKwWCzw+/3o7+8X3eoS2QO6FUG/n620B2RXR8CyrFgc0Al8ScZICT4LxYZiKQYK0etfqi3F8zwWFxcxNTWFYDCI5eXlpPaC0WhERUVFwbyfzYoBuUKKih2lYiBH5MoM0C2B3t5ekXYGIN7c8zUCmM/nnZmZwcTEBOrr63HhwoWcFhRyQ5FzlCkdZiAajWJychI2mw3t7e3o7OyM28HTfX+1Wo329nbx38gIj8vlgs1mw8jICNRqdVxxQER+PM/DZrPBarVi7969OHz4cFzxJzV9QGsPyP8mfp7k+klVIGg0mjiLXJ7nxQS+3WSMVCztjEJ0SpSCQqGATqeDRqNBX18fgA3PDI/Hg/X1dczMzCAajYq6FVIY6/X6HXmPRC8g9drFnksgF0rFQArku01ALzRtbW04fvy45O4/X9MK+SoGyCIYDodx7NgxkW7MBfkoBrZiBtbW1jAyMgKtVisyNQRbaQMYhoFer4der08S+blcLpE9YFkWBoMBLMuCYRjRcTGday9RewBs9EVJgSDFHmw22qhQKDIyRtLr9eB5HuFwGFqtdstj3imUmAH5kfhdlPLMIPcCj8cj+qPQDBX52Q7mabNQJZ/PVyoGUCoGckam0wSkJTA2NoaysrKkhSYR+d7BywUSKmS326FWq3Hu3DnZbmx0MSAXUjEDZFxwZWUFXV1daGlpERcSelyQ9HczMaeiRX6kGJyfnxcpypGREdFQqrKyUtyJZyK03Iw9oNkM+m82Yw82M0ZyOBzgeR6/+93voNVqC9YYqRB68emgWI4T2Np9UKogJroVOr0xEAhAp9MlMU9yXzubtVpLmoEYSsXAJkgnKCaTnbvP54PZbIbf70dPT09au8DtVv1nCkEQsLS0hNHRUZSXl+PgwYOYnZ2V9aZGzpGcxUAiM5A4Lnj+/HnR+4A2DyLIRUntdDphNpuhUqlw+vRpsRgg7IHb7RbZg3A4HKc9MJlMaY8I5oM9oI2RjEYjnE4nzp49K97gXS5XkjFSrgY3uaKY2gTFUgxkw9JJ6VY2ay/Q7EGuY7GpxgqBWJugubk56+feLSgVAzmCMAObUZH0WF1rayuOHTuW9m6vkGyDE0FChbxer0hxr6+vy368ZHHKFzNAjwv29/ejvr5e/D2aDSDHku1NKRqNYmJiAouLi+jo6EhyXEw1Iki0B/Pz82IRQRcHJpNJNvaALhbov5FiD8g5UalUScZINEVMDG4SjZEqKiq2JZ63mNoExXCcgHy5BKnaC6RAoMdiE103M2kvbMYMlHwGYigVA5sgXWYAkM7KpnfNBoMhq7G6fJka5VJkkFCh6elpNDU1xY3Z5WtkUe5igAgzrVYrpqamJMcF6cUx15nq1dVVWCwWlJWVYXBwMK2YaWBjRJAUKDzPx2kP7HY7QqGQKNQi7YXtYA9SfTc200xIGSPRN/h8GCMVUzFQyON5NDbrwecC+tqhr3m/3y8Wl0TYStoL9PRCqmPajBkotQliKBUDOYJcYInFgM/ng8VigdfrRU9PD/bu3ZvVDSnfzECmN0qHwwGz2QyFQoGTJ09uHiokI+R+3mAwiGAwCLvdjhMnTsQleCX21nMpBFiWxdjYGNbW1tDV1YXGxsacFiZiHEQbxZBdOCkOLBaL+HukOJCbPeA4Dk6nEwzDgGXZLbUHmRgj0cWBHPPrxVQMFFObYLuOlRa2EkSj0bjWlM1mQyQSQVlZmaTr5lbMwG6IL84VpWIgR5AMctLXp1sCLS0tcbvNbJBP22AgfQ8D2od/s1ChfPoXyFEM0FMcSqUyTugoJxtAWKGxsTFUVVXh7NmzeVPcp2IP6AKBZg/IT7oGQ4nsQTgcxvj4OFwuF7q6usSWixR7UCjGSMVQDBRL0QLkjxlIF6laU+S6J8UlwzAwGo3ifS5x8kUQBPh8vk1F3P9TUCoGNkGm44WkJaDT6TA4OCgL9ZTPNgGwdTGQTahQNozDVpCjGFhdXcXIyAh0Oh0GBgYwOjoaVwhsZSWcLoLBoMgKHTx4ME6DsB2QYg/C4bBYHBChJP175GezwlUQBCwvL2N0dBTV1dU4e/as2LdNZatcCMZIxdKLLzZmYDv0HumCbi/QxSXxzZibm0MwGBQnX4xGI1577TV0dnYiEAjIwgw8/fTT+PKXv4zFxUX09fXhiSeewIULFyR/9/nnn8ftt9+e9HgwGNyx9MTC+TSLGAqFAhaLBaFQCN3d3TlTwTTyxQyQHdtmhUY2oUK0576cO4dcioFwOIzR0VGsrq6K44Jer1cyNChXNmBubg6Tk5Oor6/HwMBAwfSAtVot6urqknbhRHuwuLiIYDAo0qykxUB24eQcOp1OyQJnK2OkrUKZ8mmMVCw77mIqBjiOK3hnSrq94Ha7YTAY0NzcLLYXXnnlFXz5y1+G0+nEnXfeiT/8wz/EqVOncPr0afT29mb0Wbz44ou4//778fTTT+PcuXN49tln8f73vx9msxmtra2Sf2M0GjE2Nhb32E7GKJeKgRzAcZxoyVlWVoaTJ0/Kfpw3dL8AACAASURBVPPPRxASsNHeyEeoEFAYxQA9LlhdXR03LkhGC+ViA8jYKMuyOHz4sCxmS/mE1C6cZg9Ii4NhGOh0OgSDQRiNRpw8eTLt9Mx0Q5kyZQ8yMUYymUzgOG7TJM1CQbEVA4XiI5EOiICQbi/8+Mc/Rjgcxt69e3HffffBarXi3/7t3/DAAw9gcXExo5TYr371q7jzzjvx0Y9+FADwxBNP4L/+67/wzDPP4NFHH5X8G4ZhRIFtIaBUDGyCVAuDIAhYWVmBxWKBTqeDyWRCQ0NDXnaB+erBp3puOUKFgNjNQs7zkWkxsNW4ICkG3njjDVHYlokKn4DneczMzGB6ehotLS3o7OwsqpskjUT2IBQKYWhoSLRrDYfDeP311+PYA2IwlIn2QG72IJUxEikQOI7D0NCQSA/Tx11In1UxmQ4VU+ECpG6H+v1+RKNR/Pmf/7kobs200GFZFpcuXcJnPvOZuMff+9734vXXX0/5dz6fD21tbeA4DkeOHMEXv/hFHD16NO3XlRulYiBD+P1+WCwWuN1udHd3o6mpCZcvX84LlQ/kr00A5C9UKJMQoEyeN53nJIvzVuOCGo0G58+fF9XIRIVPYl3TcQB0u90wm80AgBMnTuwaRTItfqyursbhw4dFSpj08Al7MD4+DgBJ2oN0KeSt2INsQploY6S9e/didXUVAwMDEARB9GwgxkhEVLnTxkhA8WgbgOJlBhLh9XoBIE5AmOn7WltbA8dxSa2z+vp6LC0tSf5NT08Pnn/+eQwMDMDj8eBrX/sazp07hytXruDAgQMZvb5cKBUDm4D+YpKZ9OnpaTQ3N+Pw4cNxs/X5WrDzJSAEpEOFzp8/n7PqXS53w8Tn3KoYcLvdGB4ehiAIkuOCtHkQCVtJVLNL5QckzvBrNBpMTU1hfn4e7e3t2LdvX1HtkjZDOBwWi10pbUBiD5+osck5W15eRiAQECcAaO1BOucoH6FMgiBApVKhvLxcvCZSGSMRQ6ftNkYi77NYriO524D5RipmgCQWynHeEwu5zbQqg4ODGBwcFP/73LlzOHbsGL7+9a/jySefzPlYskGpGEgDpCWg0Whw+vTppB3gdizY+YAgCOJMulyhQkB+jIc2KwaIs9/c3Bw6OjrQ0dGR1bhgqhl+stDZbDZ4vV4xpbClpQVVVVVFY3e7GWiDrJqaGpw5cyat3T3DMGIPv6WlBUA8e7CysoKJiQkAMcEU7XuQLXsAZGarLHVTTscYyW63IxwOb4sxElBcbQK5HAi3C6mYAY/Hg4qKipw+z5qaGiiVyiQWYGVlJe1JIuLbQr4rO4FSMbAJgsEgrly5Is5Tp6LOVSpV3gRK+WAdIpEIJiYm4Pf7UVdXhyNHjsj6xc6H8VCq5yTjgnq9PuN0wXSg0+nQ0NCAPXv2YHx8HD6fDy0tLdBoNHC73bh69SoikQgqKirEha6ysnJHVcGZgrSIPB4P+vr60poa2Qyp2ANSIJBrT6/XxxUH9ATAVkg3lMnv94PneUSjUUSj0YI1RiLvoVgW2GJrE6Q6XsIM5FIMaDQaHD9+HC+//DJuuOEG8fGXX34Z119/fVrPIQgCLl++jIGBgayPI1eUioFNoFAooNfrMTAwsOkuRqVSIRgM5uUY5GQdEkOFqqurUVNTI/sNaDvaBITOXltbQ3d3d1yhJve44MrKCkZHR2E0GnH27Fno9fq4fw8Gg2IvemZmBl6vF1qtNq44kIuKlBN0gmZtbW3abECmoNkDEggTiUTi2IPJyUnwPB+nO6isrMyaPaDHPBsbG2EwGDIOZQK21xipmIqBYmoTkE3BZm2CXPHggw/illtuwYkTJ3DmzBl885vfhM1mw8c+9jEAwK233oqmpiZxsuDzn/88BgcHceDAAXg8Hjz55JO4fPkynnrqqZyPJVuUioFNoNPp0Nvbu+XvZZJcmCnkahNIhQpduXKlYEOQEkGbGZFs9MRxwcSWQK7jgqFQCKOjo3C5XOju7pZMmWQYBgaDAQaDAXv37gWwYZXqcrmwvr6O6elpcBwnLhSkSMiXI2E6kJsNyBRqtRo1NTWoqakBEPvs/H6/2JKZnJwU2QO6OEiHPQiFQmI6KD3mmUsoE/3vUsZIhD2gjZHotMl0gnWKTUBYLIULucdtxgzkihtvvBEOhwNf+MIXsLi4iP7+fvziF79AW1sbAMBms8WdL5fLhbvvvhtLS0swmUw4evQoXnvtNZw6dSrnY8kWpWJABuS7GMjluXmex/T0NKxWa5K6Pp/WwflgBsLhMN5++234/f4t0wVzZQPsdjsmJiZQU1MT57SXDqSsUgOBQMqFjhQHmdDk2SKRDTh79mxBGCMxDIPy8nKUl5fHsQekqFpbW8PU1BR4nk/SHpCiima+amtrk0yfctUe0M9BQ6PRSBY2UsE6NHuQ+HkXk2agmJiB7SgGAOCee+7BPffcI/lvv/nNb+L++/HHH8fjjz8uy+vKhVIxsAkytSPOB1QqlXiDyvRGsVWoUCHHI9PgeV7cebW0tMRFQMudLhgIBGA2mxEMBtHf3y/2vXMBPepGG+Uk0uSCIGQtsksHNBsg13vLJ6T8A8gi63a7MTU1BZ/PB51Oh4qKCoRCIQQCAfT29qZt5pJOKFOm7AFd2CQaI3k8HjgcDkxPT4vGSKQ4KJbdNt1+KwZEo9Gkz5mAeGiUUCoGtkQ6Mcb5NgYCMqPl0g0VyscOXu7ndblcoiVybW1tXNtGTjaA53nYbDZMTU2Jscz5HCmToslJL9rlcsWN6NHag2x60YXKBmSKVIvs3NwcZmZmoFQqwTAMRkZGMDc3F6c/SFfQmYo9oK+1bEKZtjJGmpmZgSAIeOedd+JaC5vF8u4UyHsvtONKhc3yV+RkBoodpWJABuS7TQAkRyRLQaqfTovdpJ47X4mIuTID9LhgZ2cnOI4TbZnpGzIZG8uFDSAZDDzP4/jx40kMynZASmRHRvRcLpdoAkSPP5IiYbOihfTPiRNjobMBmYBcI8vLy2JMOBBjd8h5s1qtIntAn7dMBJ35sFVONEbieR6/+c1v0NXVJbaUCtEYCdig3YuJGUhVuHi9XjQ2Nm7zERUmSsWADMhnMbBZhgANr9cr0tuZhAoVYtyw1Lgg6RcnsgG5FALESMpms6GtrQ3t7e0FtduRCumhDX4WFhbioolpS2UAWFhYwPj4OOrq6goqNEkOrK+vY2RkBAaDAYODg3FFL1lkyU0+laCTCPzIecuUPZDTVplcz1VVVeJ3txCNkYDY9yZVkVOI2GwM0ufzldoE11AqBrZAOm0ClUoV17OWG5st2hzHYXJyUgwVOn78eNo3hkITEG42LkieMxqN5jwuCABOpxNmsxkqlQqnTp0qCqpws3Ah2lKZtoTet28f2traCqrIyQXkerfb7di/fz9aWlq2vA5SCTqJ9mB6elocB6WLg0wo+lzZA/I4ff9IZYxEjzZutzESeW/FdD1Fo9FN2wSlYiCGUjEgA8iFFo1G8zKnnYp5IM6IWq02q1ChQhEQ0u2NPXv2SI4LqtVqrKys4K233hJv2JWVldDr9Rnd9Ai1vLi4iM7OTrS2thbNOJcU6HAherbeYDBAq9Vifn4eVqsV5eXlSaZIxfa+PR4PhoeHoVKpcPr06YxS5WjQFH0ie+B2u0X2IBqNxgUbZULRZ8oeEJ8S8r3ZzBhJyiWTiBMTjZHoAkEuZqhYhI4EmzEDJc3ABkrFgAwg1X2+ioHERVuuUKFCYAb8fj9GRkYQCASS2ht0S6Curg4XLlwQd8Hz8/Mwm81Qq9Vxi5zRaEx5o1pdXYXFYkFZWRkGBwdFOn03IBgMwmKxwOfz4dChQ6IwEUi2VB4ZGUk6b4UoVCMg47EzMzN5y4KQYg+ImRQR+Pl8Pmg0miTtQa7swdraGiwWi/iZJbYXNtMeAKmNkWjvg2AwCIPBEFccpJs2mYhiYwa2EhCWmIEYSsXAFkjny5JuXz9bEKEfUbzLFSqUT2ZgKw0F7X/Q1NS06bggOb9KpRI6nU70F+A4TrzhEfc/spujY4kZhsHo6CgcDge6urrQ2NhYdLviVKA9EVJpA4ilMk010+dtdnYWkUgkyRSpECyV/X4/hoeHwfM8Tp48uW03bikzKXLeXC5X3HmjzYUyZV0mJycxPz+PAwcOoLm5OUkcm2koE/l3wgrQYlTymZNRVmDDGIl89ulsZoqNGUglIBQEAV6vd9ekjeaKUjEgE/LtNeDz+fDmm28iGo3KFiq0UwJCl8uF4eFhAEjyP8gkT0CpVKKqqiouiY5WkhNzHyC2IO7bt29XffGDwaDotDcwMBDHBmwGqfNGWyqTHjpR4NM99O1aBOiWR3NzMzo7O3d8Nyp13lKxLokx2InH7vP5xO8A3fIg1/p2GyNNTU2lZYxEjmenP4tMsBkz4PP5Sm2CaygVA1tgp42HIpEI/H4/HA4HOjs74xL5csV2+wxEo1GMj49jfn4enZ2daG9vzypdMBXoXnBVVRUsFgtYlhV3R6QXzDBM3M16q/G8QgNhA8bHx9HQ0IBDhw7l1A/eylLZ4XBIuv9lkh2QCYLBoOgtcfTo0bgo6kICLfBLZA9Ie4GwB0SzYTQaEQwGMTMzg9bWVnR2dm75fU43lGk7jJGMRmNRMgNSI9aEGSi1CWIonjtggUPuYoC2VhUEAS0tLdi/f79szw/kJ0Mg1fOurKzAbDZDr9fj3LlzceKvxJtZrlbCZEfZ0NCQRJvT43lEgR8KhSRTBwuxlUDYgEAgEOe7LzcysVRONEXKdqEQBEEch6yvr8+78VM+kIo9IMLEsbExUd3u9/sxOzsrFqTZag8AediDzYyRPB6PqJtQqVRQKBSw2WwFa4xEIxUzEAwGEY1GdxVbmAuK65tWwJCzGCCWuB6PBz09PXA6nXn5sm2HgHC70gWBGOVnNpvBsiyOHDkiLmSJx0b6qa2trQCkBXZEKEa0BzudOigIAubn5zExMYGGhgYcPnx4WxfKdCyVSRZ7YvJgOqwFuU7cbndGLY9CB2EPfD4fVlZWsGfPHnR1dcVdc3Nzc2BZVvSLIOctk0mZfNkq08ZIQGyXPTk5Gac3KURjJBqpNANerxcASszANZSKgS2wnW2CxFChw4cPQ61Ww+v15nUEkLj4yfm8HMdhbm4OY2NjqKmpwYULF+LEjploA7YCrTZvaWnJuL8sJbAji9z6+jqsVmscRU52wvmgyKWwXWxApkjXUrmsrCxukUu0VF5eXobFYkF1dXXRWiWnAsdxGB8fx9LSErq7u7F3714wDAOdThenlaGLAzIpQ8yFaO1BugVgvtgDlUoFrVaLiooK9Pb2Jhkjzc/PJxkjkZ+dYnlSjRZ6vV5oNJqCEMoWAkrFgEzI1dqXOKpJhQoplUrRildO0LkHcn5RWZaFz+fD1NQUDh06lHJcUA42wO12w2w2AwBOnDghC+WnVCpTUuQulwsTExPw+/1ibgC5WWeTG7AZaDZg7969284GZIpMLZUrKipECprEau8mEF8EtVqd5JKYiMSClA7nIgVCKrdJOdkDQRDi7mNS7AEtIMzGGImwB/k0RqKR6v7m8XhQUVFRMAzGTqNw7yxFhmyZATpUaP/+/Whra0uqyFUqVd6YAUC+YoDs0KempqBQKHD+/HnJcUE5goWIE938/Dw6Ojokz5tckKLI6UVuYWEBo6OjoiEMLUzMtr1DRHTBYLCg2IBMkcpS2W63w2aziY9NT09jfX09q0Wu0CAIAmZnZzE1NZW1L4JCoRALTQKyAyfFgcViiTMhylQMm20oUyQSESeG0jVGIk6ZHo8Hi4uLGB8fz6sxEo1UbQKfz4fy8nLZX69YUSoGtkAmbYJMdu+0615VVdWmoUL56u2Til+O56bHBXt6ejA9PR1XCMiVJwBsRDPrdDoMDg5m7USXC6QWOa/Xm9QHpv3viTBxMySyAcUootsMRCS4uLiI7u5uNDU1iQvFZhR5LoXVdiIUCmF4eBihUEg2poqAmAsRnw1yzdF21DR7QM5fpuwBkNpW2eVyYW1tDc3NzeLmJx1jJNopkzxvOsZIuQhSCUrMQHrYPXeZHQZRB6eDTEOF8pUuKIdZEhkXtNvt6OjoQHt7OzweT9LOIttxQRqRSARjY2NYWVkRTVoK5YtMpwkCyTPoMzMzSbP7lZWVcXPcRDgaDAZTCiCLGaRg1Gq1cQ6QUoscbYpEC+wKeeJjaWkJFosFdXV121LE0dccLYYlhRVhrBKTLjPZgZNrk2EYzMzMwGq1orOzUzRIyiaUiTxvPo2RCMixpdIMlMSDGygVAzIhnTYBHSrU2tqadqhQvtoEQG6sAxkXNBgMOHv2rLhDJ8JEOccFV1ZWMDo6CqPRiLNnzxa86EdqBp2e3V9bWxNn94lLosvlQkNDw65jA3iex9TUFGw2Gzo7O9HW1rbptUBT5G1tbXEiNZfLVXCWytFoFKOjo1hbW0Nvb69Y1OwENmMP3G43FhcXEQwGRVFnOnqXcDiM4eFhBINBSbZDjkhnYGtjJKvVCr/fn5YxEn1sgiBIfp9KuQTx2D13nDxBrmmC1dVVmM3mrEKF8ml1nI3xUCgUEu19CdVLjwsqFApEo1FcuXIFlZWVqKqqytoHnbyWy+VCT08P6uvrC2o3mAmkZvfX1tYwNjYGlmWhVquxsLAAt9sdJ0ws5v651+vF8PAwGIbB6dOns+rRphKp0dbAtBX1dloqE7ZDr9djcHCw4IrURMYKQFxbRoo9ID9qtRpra2sYHh7Gnj17UgpYs4l0Jr+fizESMRGTMkYinwN5zRIzsDVKxUAaSCfGOBWVT0KFyMKZDbWdT6vjTIyHSD+bjAsmZiOQL7xKpcKxY8dE9zqr1QpBEOLo8a2ETrTnfm1tLc6ePbtto3zbAdocqbGxEfv374dKpQLLsnGGSKR/nhjGVOj9c0EQRFq5ra1NVudMILWlMmnLWK1W+Hy+vFkq0+Os+/fvL6r0y1T9e8K8EPZArVYjGo2ioaEh4xjsrbQHqcSJW7EHUsZIxEqbNkbSarUwGo2iDkvq/l2yIo5HqRiQCYkLNlEUk1ChxDn7TJDvEKR0ntvn84nqdqlxQXoHoFQqk76wtOvfwsJCnOtforjO7/fDYrGImordYkBDEAgEMDIygnA4nKQN0Gg0STdqsgMmpkiJoUKVlZU5BVbJDfL+WJaVXUSXCrSlMh1LTHbAdFsmV0vlQCCA4eFhRKNRnDp1qugXFLp/39LSgkAggCtXroDjONTV1SEQCOD3v/+9+HuZGkqR16D/F5AebcyGPZCy0vZ6vaKtMgC89tprorDS5XKhvLwcbre7xAxQKBUDMoHu67vdboyMjMgWKkQWbLnNgejnTgWe52G1WmG1WtHS0hKnc5BKF5TSBtDz5y0tLQA2TFYIxUuqeSLErKurE02XdgsEQYDNZsPU1BQaGxtx7NixLXdbiSNmqXbAer0+SZi43TtVehKisbERBw4c2FEGQ6VSJRWlpAdNB1klWiqnOndkEmJsbKwg3l8+sLi4iNHRUezduzfu/fE8D7/fL153xFDKYDDEMS+ZXHf5NEYirJHRaITZbMaxY8dEceL3vvc9fOc734HBYEBDQwNqa2sxODiIkydPZlXYPf300/jyl7+MxcVF9PX14YknnsCFCxdS/v4Pf/hDfO5zn8PU1BQ6OzvxD//wD7jhhhsyfl25wQhb8d8lIBKJbEmlBwIBvPbaa2htbRVn39vb22W5WUQiEfzqV7/Ce97zHtmFZZcuXUJtba2oRqbhdDoxMjIChmHQ19cnmS4o17ggeS0SKkImM+ibdLEFCtHw+/0wm80Ih8Po6+uTNXyH9FFJceV2uwEgrjjI1ww3QSgUEhMUe3t7i8YXgVgqk/NGnzv6uhMEARaLBS6XC319fbuOreI4DqOjo1hdXUVvb++WE07AhtcG/QMgSXuQS3svUXtAHqOxGXuwtrYGq9WKU6dOxT3u9/vxkY98BGq1Gnq9Hm+++Sbsdjt+8pOf4AMf+EDax/fiiy/illtuwdNPP41z587h2Wefxb/8y7/AbDZL3lPfeOMNXLhwAV/84hdxww034Mc//jH+7u/+DhcvXsTp06fTft18oFQMpIGtigGyIxoZGUF1dTX6+vpknX3neR4vvfQS3v3ud8tOB1++fBkmkwnt7e3iY/S4YGdnZ5xpitzjghzHwWq1wmazxfWWE1sLLpdLdDGTai0UKmg2oKmpCfv378/7bjLx3LndbgSDwaTRvEy87zd7LRKoVVtbi+7u7qJmc+hzR4qEYDAIhmGg1WrR2tqKPXv2yO42uZPwer24evUqNBoNBgYGsv5OJdpRu93uOPZAjjArQJo9oJcxujBYXl7GwsICjh8/nvQ81113HW6++WbcfffdAAC73S4GL6WL06dP49ixY3jmmWfExw4ePIgPfvCDePTRR5N+/8Ybb4TH48Evf/lL8bE/+ZM/QVVVFV544YW0XzcfKM5t1jZjsy89HSoEAIcOHZJ9gSIL7nbEDS8vL8NsNqOsrCxuXBBIZgNyLQScTqcokEvsvabTWiBz+3RxsBP0eCr4/X6xd76dUbypzh25SRNjn8TRPKPRmNFNmrhnrq+vo6+vL63dZKGDPndNTU2YnJzE3NwcGhsboVQqxfl3or4v1hhsYEPEOjExgX379qGjoyOn785mdtSJYVaJ2oNM2INMQpkCgYA43ZTIHvj9/jjNAJlYSBcsy+LSpUv4zGc+E/f4e9/7Xrz++uuSf/PGG2/ggQceiHvsfe97H5544omMXjsfKK6rt4AgFSr061//Om9Cv3xNFBCtA5l6WF9flxwXlNs8aGJiAktLS+js7ExbiZ3o304EYi6XS7zRMAyTNLWw3X1dwgZMTk6iubl5W9iArZA4fy41msdxXJIwMdVNmozKVlZW7rpJDyAmmB0aGgLDMEkul5s5/8nNvOQLLMuKm5hjx47lrVBNdOokug2pKOxE7UG6hamU9iAajWJqagp2ux09PT2S2oO1tbWc7IjX1tbAcVySr0R9fT2WlpYk/2ZpaSmj399OlIqBLJAqVCjfI4D5siR2u924ePEiamtrU44LypEuCEA0DyorK8OZM2c2DW/ZCokCMTIiRRa4+fl50RKYZg/yqbwnbEAkEsnrTTZXSI3mBQKBlOI6+tyNj49jZWUlLoVvt4DeLbe2tqKzszNpUdrM+Y9mXgp1JNTpdGJoaAhGoxGDg4PbWsjR3gGEPaCjsFdXVzE5OZk09WEymdL+3oZCIQwNDSESieDUqVMoLy9PYg2eeeYZzM3NYXl5WZb3RGMroXemv79dKBUDaYB8UCzLYmxsDEtLS5KhQvkuBuR+bp/Ph+XlZUQiERw5ckSs3oHkccFci4BwOIyxsTHRbyEfiwg9IkVu0kR573K54pT35CZTVVUlS/+XDqcpFDYgE9BhTGQ0LxKJiDs4kjjI8zzUajUaGxuh0+lkT7zcSYTDYYyMjMDv92dcyEkxL3RWBRkJpbMqiCnSdi0EgiDAarViZmYGBw4cQEtLS0EsQlJR2KmmPmhhopRnhMPhwNDQEGpqauKmdcjveb1efPzjH8elS5fw6quvbqr63wo1NTVQKpVJu/qVlZWULpQNDQ0Z/f52Ynd8i/MM2mxns1ChfNoGy/nc9LggoYVpGi+dccF0IQiCmFJG8uq3cyZeyhLY7XbD6XTK1lqg2YDjx4/HTV0UM9RqNWpra1FdXY3JyUm43W60tbVBq9WK47O0X0ShZgakg9XVVYyMjGDPnj0YHBzMWQSpVCqTRkITsyp8Ph80Gk1ccZCpbiNdkAClcDhc8N4ImzkPJlp509oD0rLp7u5GY2Nj0jV4+fJl3HLLLejs7MQ777yTs8ZFo9Hg+PHjePnll+NGA19++WVcf/31kn9z5swZvPzyy3G6gZdeeglnz57N6VjkQKkYSAPz8/OYnJxEf3//phVcMbQJ6HHB06dPiy6BgPwCwWAwCIvFAp/Pl/a4Ur4hZ2uBZgNaWlrQ2dlZVGxAOvB4PBgeHoZKpZJMiKRFnSQzQKPRJGUG5CteOldwHIexsTEsLy+jp6dHLBrlhlRWBcdxIj1OrHWJpTJNj+cqSCYZIrW1tTh69GhRXqNSzoOBQAAul0u8p3EcB41GA4fDAY7jEAwG0dbWBo1Gg+effx6f+cxn8KlPfQoPP/ywbOfgwQcfxC233IITJ07gzJkz+OY3vwmbzYaPfexjAIBbb70VTU1N4mTBfffdhz/4gz/AY489huuvvx4//elP8corr+DixYuyHE8uKBUDaaC5uRm1tbVb0qGF3CYgor3EcUGv1ytqAuQSCNJWuw0NDRgYGCjYcbPE1gK9g5NqLZAfMne+29gAAtput729PW68lEaiqDNxgbNarXH9X7LIFYLg0OPxYGhoCBqNBoODgznpV7KBUqlMyqqgdRu0pTJdHKRbXPE8j/HxcSwsLODgwYN5K3R2AqStxbIsJicnUVNTg66uLrG94HA48NBDD+HSpUtobm7G0tIS/uqv/gp33nmnrMXQjTfeCIfDgS984QtYXFxEf38/fvGLX6CtrQ0AYLPZ4j6rs2fP4vvf/z4efvhhfO5zn0NnZydefPHFHfcYAEo+A2mB53lEIpEtf+/y5cswGo3o6OiQ/RiuXLmCioqKrJ6bjAuWl5ejt7c3bne3sLCAqakpHD16FFqtNmfzIJ/PB7PZDJZl0dvbuytieGljGqfTCbfbDUEQxF1edXV1wYjD5ACxnuZ5Hn19fTlZtiaqx10uFwKBQFxqXmVl5baGMdG5Ce3t7Whvby/YtgY9MUOKrHQslf1+vzgNMTAwIMZF7xbQn2FXV5dk5svIyAg+/vGPQ6lU4sCBAxgeHsbQ0BAaGxvx0ksv4eDBgzt09IWJEjMgIwqtTUCPC/b09MT10Yg2gIjnLl68CL1ej6qqqqxu0PROsrW1FR0dHbtmcSQCJ51OB4fDAb1ej7a2/zNzcQAAIABJREFUNnAcJ7YWSF4AzR4Uwu43E9AjkXK1PaTU42T2nORUjI6OQqlUJs3t5+P6CQaDYi7EduUm5IJUlspSo3nk3EUiEUxPT6OlpQX79+8v2BZNtmBZVhR6njx5MqlYFQQBL774Iu6//37cfffdePTRR0Vm0uv14u2338a+fft24MgLGyVmIA0IggCWZbf8vdHRUfA8j97eXtmPwWKxAEBa1Syh6cfHx1FbW4uenh7JcUHaSpjegTidTng8HlEERQqEVPSky+WC2WyGQqFAb2/vrgv/4Hkes7OzsFqtkoUOnRdAfvx+PwwGQ9zurZBd68giGQqFZLdL3gpkbp8+f0R5nyhMzAVLS0uwWCyor69HV1fXrpmCIFMfTqcTi4uLYFlWzLSgC6xCbdVlApfLhaGhIVRUVKCvry/pPYVCIfz1X/81fvSjH+Ff//Vfcf311xfsd67QUCoG0kC6xcDk5KSYtCc3JiYmEA6H0d/fv+nv0emCfX19WY8L0ml5hBrnOE68uZCRvNnZWTGLIXHUcjeAnE+O49DX15f2TpIey6OLq8S8gJ1mT0j4zvj4eMEskom6DbfbLbpNJoYxpXO9RaNRjI6OYm1trWCErHLD4/Hg6tWr0Ov16Ovri7v+iKUy3ZoxmUwFXZwmgmatUkVGW61W3HrrrVAoFHjxxRfR2dm5Q0dbnCgVA2kiHA5v+TszMzNwOp04evSo7K9vtVrh8Xhw5MgRyX+nxwVbW1uxf//+TdMFM9UG0PQkmUBgWRZKpRJ1dXWora2VRflcKNiKDcjm+aR2vzvZWgiHw6ILXaGH70j1zgVBSAoUStwpkp2kwWBAX1/frrk+CehFsqOjA/v27ZP8XofDYfG8uVwueDyeorFUjkQiMJvNcLvdOHToUJJYVxAE/PznP8fHPvYx3HTTTXj88cd33ee8HSgVA2kinWJgfn4ei4uLOHnypOyvb7PZsLq6Khm44XQ6MTw8DIVCgf7+/rjdK90SkMM8iGVZjI+PY3V1FW1tbTAYDOLi5vV6k1T3xbT7IPD5fBgeHhYFdPnoK2/VWsi3sG55eRkWiwXV1dU4ePBg0VHIiaE49O6XLG4ejwd2ux0HDhxI2/K6mEB65z6fDwMDAxlNtCRaKrvd7oK0VCaMh8FgQH9/f1KxzLIs/v7v/x7PPfccnnnmGXz4wx/edZ/zdqFUDKQJlmWx1alaWlrC9PQ0zpw5I/vr2+122O32uCjOSCQijg4lOiKmMg/KFoIgYHl5GWNjYzAajTh48GBS9U2r7skNhjZfySYMZzvB8zxmZmYwPT0dl6C4XSDULvmhdRtynb9IJIKxsTGsra2hp6dHHAncDSC739XVVSwvL4vuiETzQkx9dro1IwfW19cxNDSEyspK9Pb2ylLM0ZbKbrcbHo9nxyyVidHb+Ph4SsbDbrfjtttug8fjwQ9+8IO8aLX+J6HwOKEiRj4sg+nnlkoXLC8vx7lz5+JGhzIxD/L7AalDVqkAMoFIphLcbjd6enpQX18v+XyJtqJk9+F0OuPCcBLd/gphV+r1esVxup1SmRPHP6LzoHUbiWFC2czsOxwOjIyMoLy8HIODg7uOStVoNIhEIlheXkZTUxPa29tFYxqXy4XZ2VmxNUNfg9vpiJkrSDvQZrOhq6srLlAsVxSKpXI0GhWnoI4ePZo0niwIAn7961/jjjvuwJ/+6Z/iqaeeyilwqIQYSsxAmohEInGpV1JwOp24fPky3v3ud8v++mtra7BYLDh58iTMZjOcTmfKccF0zYP8fuA//kMJrzf53yoqgP/1v6JwueyYmJhAbW0turq6cuppE1MVUhwQare8vDxupHE7F6mdZAOWl4FwWPrz0WoFJJpd0q5rMc/2EFyuMPR6vXiDrqioQFWVDtem+ADEburj4+NYXFyUfQEpFLAsC4vFApfLhf7+fnEUj0Zia8btdidlVRRaDDaNYDCIoaEhRKNRHDp0aNsXwERLZZfLJbulstfrxdWrV6HT6dDf359UqEWjUXzpS1/Ck08+ia9+9au46667CvKzKkaUioE0kU4x4PV68dZbb+E973mP7K+/vr6Od955BwBQW1uLgwcPxi3MdBEAIC2BoNsN/OAHSuh0AL3+hkKAx8Oit/cKVCo/Dh48mDdxWTgcFicWiO5Ap9PFFQf50h0QNkAQhJzNdTLF8jLwwAMaeDzS78toFPD442xSQUBgtzO46SYNfD6IDpLkf/V6Dv/0T5Po6jJApVJhenoaOp0OfX19u858BthgPIxGI3p7ezMqWOnEPLLIAUhir3ZaWEeYwPr6enR3dxdMq4N2nCTnj+O4pLHQdNgXu92OsbExsShP/M6vrKzgzjvvhM1mw/e//31J/VQJ2aPUJpARxHRI7khKn88Hi8WCaDSK48ePy54uqNNttAR4nsfq6iqsVidOn67AkSOH8noj1Gq1qK+vF6lJWjVONApkZpoUCLn2zWmDpJ3QBgAxRsDjYaDTCUh0wQ0GAY+HucYaSNfqwSDg9zPQagXodEoASgBqhEJAMMhDozFhfn4awWAQDMNAp9PBbreLC1whtGZyBcdxmJychN1uz5rxkGpt0VMzCwsLccI6ssBtl7COsDpLS0vo7e0tiHQ7GtlYKieOhXIch9HRUayuruLw4cOSrM7vfvc7fOQjH8Hp06fx9ttv7zr770JAqRhIE+l88cmiKVesK8/zmJqawvT0NBobG+H1epMKAbIbzDVdEAACgQBsNhuCQQatra04cECL7d4QSQUJ0SN5Un3zTBY3mg2Qci/bbuj1gBTbGwql9/c6HZKKiVCIwerqKlpaYuFCCoVCPH/j4+OiHTB9/nZaNZ4pfD4fhoaGoFAocPr06aQApWyhUChQUVGBiooKtLS0AIgX1tlsNni9XqjV6iRhndwFJXmPSqVyR7ITskGqKGypxEGTyQSDwQCHwyHmQyS2CHmex9e//nU88sgjeOSRR3DfffcVrAC52FEqBmQEoe6i0WjOxcD6+jpGRkagVCpx+vRp6HQ6zM/Piwu/nOOCgsBhYWEZq6urqKurQ3NzPdxuBYD8xDFnAjILbTKZ0NbWltQ3J4sbvXOrqqqSvKkQNmDfvn1ob2/flTeVcDiEYJBHdXU1Tp1qFt9jWVmZGAfLsmxcSqPZbBYXN/JTqEmDxF1zYmJi21gdKWEdbciVWKCmygtIF4IgwG63Y3x8XLSFLsTPIl1IJQ76/X7Mzs5iYWEBSqUSoVAIly5dgslkwtWrV7F//360t7fjE5/4BK5cuYKXXnoJ586d2+F3srtRKgZkhEKhkCVdcGxsDIuLi3HjguQ5I5EIlEqlbDHDgUAAc3N2GAwMmpu7oNPp096V7gTonQdZ3IjugI7R1Wq1cUY+U1NTYBimINiAfIDnOfj9frAsA72+7Np1I91i0Gg0qKurE5346MWNROnSUx/kf3e6tRAOh0VP+mPHjm2rZTINpVKJqqoq8fWThZ2TomcErT1IR/sSiURgsVjgdDpTUubFDp7nMTc3h5WVFRw+fBi1tbViXoXb7cb3vvc9vPnmmxAEAeXl5bj99tvFmPFSeyB/KBUDaSLdBTfbsCIyx2+xWCTHBcnOYGFhATU1NTnTupFIBJOTU3A4gLKyvaiqqkYotEFPV1Rg21sE2SKV7sDpdGJ2dhbBYBAKhQJVVVVi1vlumTcPhQCWDSMUCkGt1kCt1kMQGADpX4NSixvdN19aWhKnPujFbTtbCysrKzCbzdizZw8GBwd3vDChIVWg0nbAS0tLovYl0Y6aZhCJW2JZWRnOnDlTdEFX6SAQCODq1atgGCau9aHRaFBbW4s9e/bggx/8IN5++2185CMfQU9PD9566y3cc889mJ6eht1u31VRzIWEIrndFw+yTRdMZ1ywvb0dCwsLGBsbi1PcV1VVZeRUt7KygtHRUZSVleHee3uhVuuR2BKgfQaKDSqVCmq1Gqurq2KbBYA4sUDmpekb807tfIPB9B5LhF4PGAw81tdZ8DwPrbYCMREhUFaWLErMBFJJg8TQx+l0bmtrgeM4jI2NYXl5GT09PUWzEEh5RtCOf/Pz82BZViywIpEIVlZW0NnZmdJSuNhBJiIaGxtx4MCBpGvF6/Xi3nvvxW9+8xv89Kc/xR/90R+BYRh84hOfABC7b+3GXIlCQWm0ME1wHJfWjv/1119HZ2dnWqpf4itOQmJ6enrSGheMRqPiro0OwaGLA6kQl3A4jLGxMTgcDnR3d2Pv3r277qZDTFlmZ2dTagPoeXNSINCiOnIe5TZToZHLaKEgCFhaWsLFizMoK6tBR0dH3A5TrweamvL7taZbC+SHiMLkMpRyu90YHh6GRqNBf39/UQjoMkEoFMLq6iqmp6dFh1O6vUV8I4pZLwDEvpMTExNYWFhIORFhNptx8803o76+Hi+88IIoPixh+1AqBtIEz/OIRCJb/t7vf/97NDU1iXRhKhBVezgcTgqJydQ8iDjV0WY+giDE7doCgQAmJiawZ88edHd3F5XrWrrweDwYGRkBwzDo6+tDRUVF2n9LRHW034FGo4krDuQ2o8nUdIgcJ+kpF1ICX2JrgTaUoq/DdAosQRAwMzMDq9W6afhOscPhcGB4eFjMhwAQV2C53W6xwKKLrEJqkWyFYDCIq1evQhAEHDp0KMnnQhAEvPDCC3jggQdwzz334JFHHimY97dv3z7Mzs4mPX7PPffgqaee2oEjyi9KxUCaSLcYeOedd7Bnzx60tbVJ/jvHcbBaraLjXWdnZ9yuLnFcMNN0QfIcPp8PTqcTDocDDocDgiDAYDCgrq6uKG8qm4FmA9rb27Fv376cd1PETIVe3BiGgclkivM7yJfuYHk5NiJIw+FwwGYbQ3u7Icl0qhBBCzsTC6xUMcTBYBDDw8NgWTYpdGu3gOd5TE5OYn5+Ht3d3XFtQRp0gUWuRcJg0cVBvsKscsXq6iqGh4fR0NCArq6upO9KMBjEQw89hJ/+9Kd4/vnn8YEPfKCg3sfq6mpcy3d4eBh//Md/jP/+7//Gu971rp07sDyhVAykCUEQwLLslr939epVlJWVSWZp0+OC/f39cap2OcyDEo/XZrNhamoK9fX1aG5uFhW5Tqdzx22A5YLb7cbIyAgUCkXGbEAm4HlePH/kHOYrgnh5Gbj3Xg3c7g3dSCAQQCTCor5eh2efZdDQUDg3zXSRWGDRMcSVlZXgOA7z8/NoaGgoKJc9OREIBDA0NASe53Ho0KGM/REIg0VHESuVyiRh4k6eO+KPMjc3h4MHD0rqPCYnJ3HLLbdAq9XixRdfRHt7+w4caWa4//778fOf/xwTExMFVbTIhZKAUGZITROkGhcEUqcL5nKx+Xw+mM1mRCIRHDlyRHQHM5lMSeN4ZE6ajh8mBUKh7jiAjRuOzWbLmg1wOACp+k6jARInuhQKBYxGI4xGI1pbW5N87sk4GW3mQ/wOMjmHS0vA1JQCy8sxd0GlMnLN/51BVVUFwmEVwmEWqZwJCxlSbnU+nw8OhwNzc3MIXRtlcbvdmJiYiIvR3Q1YWlqCxWLB3r17ceDAgawW7MSx0ERTLjpMiNYebFehHwqFMDQ0hEgkImkGJQgCfvazn+HjH/84br75ZvzzP/9zUbQsWZbFd7/7XTz44IMFe0/MFSVmIE2kywyMjY2B4zj09vbGjQtWVFSgt7d303TBbFoCNGhjndbWVnR0dKR9wyEe7aRn7na7RbU4KQ4qKioK4otAswH9/f1ZBbY4HMCjj6rF3TcNk0nA3/xNJKkg2Aq0mQ/ZtSXS4pudw6Ul4OMf12B1lcHkJAOFggPAQ6lUQqdToL+fRzDI4NlnWbS17Y6vrdPpxPDwMMrKytDX1wdBEOLYg3RaC4UOYre7srKCvr6+vOo86DAh8rOVHbBccDgcGBoaQm1tLXp6epLuPSzL4nOf+xz+/d//Hc8++yxuvPHGgrifpIMf/OAH+PCHPwybzbZrxY0lZiBNZOIzEA6HEQwGRaEXocqyTRdMBy6XC2azGQqFIitjnUSPdlotvra2hsnJyW3tmUuB6C1sNhs6OjriGJZMwbKA281ArxdAa5oCgdjjadR9SZAy8yELG7FhTRR2mkwm8RyGQrG8AqUyxiwplYBWqwLPx44nw4nVbcHiIiM5CqnXA3v3pi5YaJ3HgQMH0NLSIn4HEt3+pM5hoQUJpYLX68XQ0BDUajXOnDmT9x06wzDQ6/XQ6/UiPU/nfZDvMoA4YWIukx+CIIifZXd3t6R4em5uDrfddhv8fj/eeust9PT0ZP8mdwDf/va38f73v3/XFgJAqRjICAzDYCsiRalUwuPx4OLFi6ivr8eFCxeSxgVpNiDXQiAajYphLbkukInvgxjRtLe3QxAEkY50Op1Js/pVVVU5j5JtBsIGEN8AueJbDYaNbABiuBQKAevrG6ZLajWQjfFZKlqcsC9k1pzoDjyePQgGqyAIQajVldDplFCrgUikcAuB22/XpIzAfu45VrIg8Pv9GB4eBs/zW36Wqc5hYpAQTYsXgv5FEATMz89jfHx8x+2vE/M+6HPodrsxOjqatalUOBzG8PAwQqEQTp48maTZEQQBL7/8Mj760Y/iAx/4AL7xjW/IliOxXZidncUrr7yCH/3oRzt9KHlFqRiQEV6vF7OzswiHwzh27FhO44LpYG1tDRaLBXq9HoODg3n9kjEMk9QzJxasTqdTvKGQmzJhD3LtB2bLBrhcqfUAUgt7KARcuqSAxxPboX/zm2rRdMlkEvAXfxHNqiCgwTCMGIJDziGhdFdXVzE2NoZw+Ci0WgaCELMY5nkFgMKkUoNBwOsFtFpAp9tY9EMhBl5vsnkS7bnf1NSE/fv3Z8ws0eeQDhKig6xIDHZia2G7KOlIJAKz2Qy3242jR4+KhUyhQOocEg2R2+0WTaVUKlVSi4v+vNbX1zE0NISqqiocPnw4iZ2JRqP4x3/8R3zjG9/A1772Ndxxxx1F0xag8dxzz6Gurg7XXXfdTh9KXlEqBmQAx3GYmprCzMwMampqoFKpkgoBOdkAlmUxPj6O1dVVHDhwIKvo1lwhZcFK35RJdKler48zQ8rEwpa0PjJlA1wu4OmnVXC5kl+nslLAPfckm0dxXKwgUKliM/6VlQIqKjbaBmSq1OlMXWRkapVPooVZlsXq6ioaGzthMhmhVEbBMADLxsZZeV4BjlPC42GhVquumVAVzk1VpxMS3CqFJP8ElmXFBVJuz32dToeGhgY0NDQAiKfFV1ZWRPV3Ii2ej9YC0UCUl5djcHCw4Mc/CRItvTmOS0oLjUajMBqNMJlMYFkWy8vL6O7uRnNzc9J3enl5GXfccQfsdjsuXryII0eO7MTbyhk8z+O5557DbbfdVrCtKLmwu9+dzJBqE6yvr2N4eBgqVSwuNhKJYGRkBEB+xgWXl5cxOjqKysrKbelBZoLEmzLxZ3e5XLDb7bBYLFCr1UlOiYnnhBRXc3Nz6OzsRGtra0YUK8sCLpe0HsDl2tADhMPA2hrg98cKgUAAUChiP2Vlye0DpxN48kk13O7k1zSZgHvvjWRUEASDQYyMjCAUCuHYsWNwu6vBMAoAaqhUCkSjSgiCGhwngOcF+P0cKiq8eOedq1hf18e1Z7LRbtjtDAKB5McNBnkdDIm5Drlm871ApqLFSXtmYWEB4XBY0hApWwiCgOnpaUxPTydpIIoRSqVSPC/Ahmvn2toaZmZmRMfE2dlZuN1usCyLaDSKo0eP4s0338Ttt9+Oc+fO4Sc/+UlRe0W88sorsNlsuOOOO3b6UPKOUjGQJehxwQMHDogLlsvlQjQaFYsAucYFQ6EQLBYLPB4Penp6UF9fX/A3m0R/9kQxGBEl0qN4PM+LRUOu2gBaD0AQDMaYg/V1YGyMgc+nuHZsgNsdYwb0+uTdv8sVKx4WFmI7YTLtRmoUWnS4vh773URotUB1dezGurCwINpQHzly5JrwVIDRKMDjYdDSIuCaCzUAoLycwSOPqNHcXAGWPYK1NQ/m5jwYGhpHJBJBeXk59uypQFtbRVrtGbudwZ/9mQZ+f/I1VFYm4Ac/YLMuCMJhBqEQg6kpHhMTs1heXkZ7+0FUV9dhJzbKie0ZQN7WQigUwvDwMMLh8K5NxWQYBizLYnZ2FiaTCb29vQAgfp//8z//E48++igUCgV4nse73vUu3HXXXUU19SGF9773vVvqxHYLSsVAhiC+8BaLBUajMSldkEQYu91ulJWVycIGzM/PY3JyErW1tUWdZpYoBiNGPk6nE06nE1arFTzPi62FUCgEnU4nKz0XCgFf/7oaHk+MCVCpBCiVsWJArWbQ1CRAo0HcohUMAk8/Hfuby5cV0GpjokIgVjgcO7ah7ltfB/7pn9RwuZJfu7ISuP9+PxYXR+DxeDAwMCC2k5aWYovoZz8biaPYNRoBtbWxAqShAVhfZ/C1r1XB7d6gIKJRDizLQqsN4H//7zEoFFdhMBjiFrZEz4hAAPD7GWg0AugNcSgUe1yKMUgHwSCDoSEFIhHgrrsUUKnaodF0Q6FgYDAAP/pRGM3NO39zzaS1IDX5QbC6uoqRkRHU1NSIRd1uAzEwm5ycxP79+9Ha2ipeS2QC6Y477sCbb74Ju92O97znPVhaWsLdd9+Nubk5fOpTn8KXvvSlHX4XJWyF3Xfl5hHEUMPtdosJaonjgmQm+u23304KD8p0Tt/v98NsNiMUCuHQoUO7LtucGPnwPI/5+XmUl5ejo6NDFDNZLBZRKU6fx1yKIY4DfD5Ap4u1ArTa2OJPtAFKpQCAgd8f2/UHAgDPx1oJMaFcbGHWaIBIJDZWR+/gw+EYixBLFdxY9AIBBktLIbz++iXs31+Gs2fPipMXS0vAJz4hHVpkNAr4xjdYXFuzro1EJj6/AoGAHsGgHocPn8SePRvtmYWFBZFpoYsDno/tXnU6JCUcZjpWGbNNFq69TwEsKwAQrrVaNGAYIBwWEAhkX2TkG4mthUTHSTL5QQSyRqMRTqcTS0tLKV32dgNI29Pr9eL48eNi24DGpUuXcPPNN6Ovrw+/+tWv4vRSdrtdNJMqobBRKgYygNVqhUajwfnz51OOCyoUChw7dkwcxXM6nVhfX4fVahVnzMnIntFolKTReJ7H7OwsrFYrmpubcfTo0V254+A4TvRo7+zsRFtbm1gskejcUCgk9nqJKJHsesl5TOXyl7jw0P+t1wtQq2MMgFYLRKOAUimA4xhEozFtARENVlTEFrLEvwFij/t8sfG/pSUGPB97nZh7YKxVwXE81tbW4XJx2L9/Pw4dqo07rnA45i+g1SZrHBwOBjZb7HmXl4HFRWBlhYHRKCAaZaDXx9gNg0FAMBg7B1LtmcRrcW5Oj1BoEBqNAJVKCZVKlTGDpdfHRgi93th74HkBHk8YgqCDRsOgslITx7CkEe1RMJBynCSthbW1NZjN5mvR0Vo4HA5wHIfKykqUlZUVfPsuXXg8HtFe/fTp00lFOM/z+Na3voWHH34Yn/3sZ/HpT386iTnZKrCthMLB7lth8oje3l4xThiIHxcUBCHOQZBWL+/bty9OxETm9KPRqGjiQ4Rgfr8fIyMjEAQBJ06cKGrxzWZwOp0wm81Qq9WbjkXqdDrs3btX3HkRUaLT6RRHoBLTBdXqclRWCnC5kg1xjMaNRZOGSgXU1gJHj3KIRBjcfXcExCiOCAcJyKLm9wNzcww8HiUYhsH6eux5R0YU0Ghi0winT/vh8y2D4/TXFmg+8aVFGAwQVfmhUOx1pqcZfPazavA8MDamAMsyYFkBDBNjLiorY4vyH/9x6nhtKTHY1ashKJVK8HwEgUAAPM9fa3GpEY1qrrltbu4ZsXevgOeeYxEMxkSCk5OTCAQa8NhjB1BRIeyIPiBfIGY+TqcTq6uraG5uRnt7u2jMtbS0hLGxMSgUiri2Qrbizp0E7ZGQKjXS4/Hgk5/8JC5evIif//zneNe73lVQRZDdbsenP/1p/PKXv0QwGERXVxe+/e1v4/jx4zt9aAWLUjGQAYg4BsjcSlhqxjwQCIjFgd1uR/ia6owUEIlxn7sBNBuQ2H9MB6lEiU6nM67Xe/78HpSVVYmZ8OQ1nE7g8cdji1w0GutxRyICWDa2+IZCDNTqWDbBtZcQDX+UyliLgMzRkykEnY5BeXmMGuc4gGEEqFQCXC4WS0ur2LOnGmp1BVwuBouLG8JAogdIRCgEXLmigM8Xa138v/+nhCDQO2sGDAPE3hIPlmUQjaZ/DhmGgcFggFqthkKhgkajB8/z17QHsXHGt99+G04nn5RVsbSkiCuwotEoZmZm4PEs493v7oDHsxePP85Ard55XYCciEajGB0dxdraGgYGBsTrj3btJDkBRHtAjLnIOB4pEgrZiz8ajcJsNsPpdOLYsWOokhiPGR4exs0334zGxka88847BdcicTqdOHfuHN797nfjl7/8Jerq6jA1NSXZ4ihhA6ViIEPINS5Iz+kbDAa4XC5UVFSgvr4egUAAExMTCAQCsvbLdxpOpxMjIyPQarWymSRJiRI3nBIdmJ+fAsdxVDLeHvB8LSKRmBgvVn8x4LhY75/nFdizZ2OckMDhiFH2FRU8olFgclKFaBRiW2F9nYHdrgDPA9GogJqaIFQqBlptI373Ow0Cgdhr/N//y4iCPZMJ+Md/jG/Qu90xTYPfHytCBCH2o1CQxT/23/QlRzwSMjF/jLEQAvx+MgWhBKAEwwA1NQLe9a5TKC/f0B2Mjo7C5TLgn//5BHw+LRgmVqCwLAeG6UBVVQ/a2qLYjUSWx+PB0NCQeN2mGkFUKBQiG5DYWkj03qD1G4XSWvB6vbh69Sp0Op2kUFkQBHz3u9/FQw89hE9+8pP4whe+UJDty8ceewwtLS147rnnxMf27du3cwdUJCi8T7KA8c4776ChoQEmkwkKhSLnSYFIJIKJiQksLS1h//79SbPJ4XA4qV9OUvHofnmhg7ABdruhovlOAAAgAElEQVRd9A3I182PviG3tbXFZcI7nU5MTY1jaYmDSqWCwWBCZaUSGo0S0SgDjmNw/DgHrZaJ691PTgK//rXyGnsQcwekEdMbxHb6gsBfcw1UQ6FQw+3m4PXGhIkVFbGFNiZYZOB2AywbOw8sC8zNAaOjSnDcBhtBvxYpCAizQNgChokxGuS500FTU2x8MLXPgApA/K736lU/fD4tZmbUEATy+cVO1Pw8g//zf5T4t3+LFTeJo5VSo5aFDkEQMDc3h4mJCbS3t6O9vT2j61YqJ4AEgqVqLexE5gcZdR0bG0NbWxs6OjqS3mcgEMBDDz2E//iP/8ALL7yA6667riAKGCn87Gc/w/ve9z586EMfwquvvoqmpibcc889uOuuu3b60AoapWIgA3z2s5/FK6+8gr6+Ppw9exbnz5/HuXPnspr5X1lZEdMMz5w5IxnTqtVqk0x8SHFgs9kwMjIizkaT4iATh7/tAM0GSEWa5hsMw6C8vBzl5eVobm5GUxPw298ymJ+PIhJhwPNhsCwHhUIBg0GBsrIIyAJHIyYaFODz4dqOeOMcb+zao1AoAI1GgUOHFFAqeXz0o1E89RSDqioBRiMRHgKAcE2FD3i9AubmGPh8TFqLJsPEig+eB+rqYvqBP/uzKLq6eGTifJuOj8CGMZES6+smRKOx4CSFQoBSGTv+GKMiIBCIYmTEAqWyG8GgGuGwAgrFxnkyGIBi6XyxLIuRkRH4fL6UKvpskBgIliqCmORVkJ98MYIcx8FisWBtbS2lM+TExARuueUWGAwGXLp0qeB32VarFc888wwefPBB/O3f/i1+//vf495774VWq8Wtt96604dXsChFGGcAQRCwuLiI1157Da+99hp++9vfYmRkBAcOHBCLg/Pnz0vacxKEw2GMjo7C6XSiq6srbjwxU5DZaKI7ILHDpDCoqqraMQqS4zhMTExgYWFBkvXYSayvx8yDnn1WjcpKATpdFMFgCJFIEIFACGtrAj784Tns2xebWhgdrcGdd1ZBpxPgdseYgUBggyGIjSMKKCvjASgRiTD4gz+IoqyMwf33R/DYY2pUVwtxBkg+X6y18PjjEfA8cNddGgQCAoaGYlR99JoekA4oIjoBepTRYBCgUAADAwLq6wV89assrjnK5gy7ncGNN2rg88U+t1CIw+KiAtGoAgwTK2zI8XBc7Fi+/307BMGF1VU//H4/tFotjEbjtRZYBbq6CqtYlQJxFSXmOvkK35ICcfqjI4j9fv+WvhHZwOfz4erVq1Cr1RgYGEhiGQVBwI9//GP85V/+JW677TZ85StfKYo2pUajwYkTJ/D666+Lj9177714++238cYbb+zgkRU2SsxABmAYBo2Njbjppptw0003QRAEOBwO/Pa3v8Wrr76KZ555Bn/xF3+BlpYWnDt3DufOncP58+fR3t4OAHj66afR1taGtrY2nD17NucvVuJsNIkdpsV0hIIkuoOKioq8u4Ktr6/DbDaLPdadFkI6HNKz8wpFbDSuvFyFqqpyAOXw+WJjh11deqhU69cYnFVEIiehVPLgefKZbdyIYz18BQSBBAzFmANiYJQONJpYz59hYpMNZMGniwGiH6ARCjFQqQClkofHw1wzLJKnvg8EAJ8vZkzE80EolTwUivK4Y4lfjxjU1NSgry92PdLFqss1h/l5NxYXlUmUeKG41NGxyl1dXZsW9fkCEXcaDAYxLpe29Sb6DaVSGZcYmhgitBUWFxdhsVjQ0tKCzs7OpM8gHA7j4Ycfxve+9z1861vfwoc+9KGCL+II9u7dKzokEhw8eBA//OEPd+iIigOlYiAHMEzs5nfDDTfghhtugCAIYnzxq6++iu985zu47777RE+B9fV1PPbYY+jv78/LDZCOHQY2KMhUXgdk/EmuYyFxyoXEBjgcwJe+pIbbHX8coRAwOcmgqopLsixWKBSoqqpCXV3sPAYCwrU5/Oi1cVKe6pnHlPMME0s35LjYrv4Tn4jgxImNwJ5AIH6Rjv331lAo4kWEQKxQIK0JkynmZ1BenrlZUDrgeQ6RiB8GAwODoQzLywz1b7H/TcUtShn5kOuR2ABzHAej0Rh3PW7nTpyAGIpFIhGcOnUqKYp3J5E4QcPzvDjS6Ha7M2otcByHsbExrKysxE1F0LDZbLj11lsRDofx1ltvobu7O+/vUU6cO3cOY2NjcY+Nj4+jra1th46oOFAqBmQE8Ra47rrrcN111yEajeIrX/kKPv/5z6OtrQ3Nzc345Cc/ib/5m7+Jayv09/fnRTBEi+kSvQ5If5J4HdAFQjbHUmhsAEHMsS85tGhtDQiHY+N7iUY/iSBjozyvgiAw1G49tjBGo7FxQp8vCpWKQVkZ0NQUQU2NCqurAkym2JQA0QgQmEwx0WHi4zwPkWGgWwKJ/z+mT4hfjFdWYhMOidDpBCROgF25ArjdyYWgycRjYID//+2deVhUZfvHPzMsA8giIG7gBojK5goqLlmmab2mlmZlrmSZ5s/Uytc1S1PL1zItzbSiNJfKpSzLJVNAxSWVVUFAcEFAZd9mmJnz+4POiYHBUNk9n+viUs6cOfPMYeac73M/9/29SU6+RlGRCw4OKqytzdFoSnIVRMQxlpyjslGC8pT+PJY8/5/y2qysLKkNtrW1tfRZfNAGQpUhPT2d6OhomjVrRocOHeq8L0DphEMov7QQHx9vdGkBIDIyEqVSSc+ePcvlKQmCwIEDB5gyZQojR45k7dq1deZ7fC/MmjWLgIAAli9fznPPPcfp06f54osv+OKLL2p7aHUaWQxUIx9++CHffPMNBw4coH///lKp0enTpwkJCeHgwYO89957mJiYEBAQIC0rdOnSpVpmR3fzOhDbBavVammG8Y+JT8Vj0Wq1XL58mZs3b9aZaIAxyjYtKinFK5m5Z2QY7mtnZxjet7MrWQ/PyRHQakEQFH/fFEtm5R06CDRpouOll25hYpKDVptFauotcnNLKj9mznTE0rL8TU30Gbh2reR3M7OSn+LikpuuUvlPeaFSWTJeMzMk0yTReEgUJ2o1zJtnbtTpz9YWNm5US4IgPByeesrSaMKiubnABx+cQaXSYWnZHnPzkvJDvR5attRz+bLy73Mq/L1EIY7z3v7upctrRcdJ0YraWAMh8fNYVXkwOp2OuLg4yVJYTNStbxhbWtBoNFLVgmhJLQgClpaWODs7o1arUalUUlRQq9WybNkyNmzYwLp165gwYUKd/B5XBj8/P/bs2cO8efN47733aNeuHWvWrGHs2LG1PbQ6jZxAWI3k5uZiampqtFJARKPRcO7cOY4dO0ZISAgnTpyguLiYnj17SuKge/fuqFSqGvlyijMMMSmxoKBAmqmJF2PRNCUjI4Po6GgsLS3x9PSsk7OImzfhnXfMcXQsn8B386aCN9/USE6DIubmJc5+IhqNhn37krh5swB7e1csLf8ppre1hY4dS26gpY+j0Wik85iVlUVubi4qlcpgxive1K5dUzB9ujmWlgLFxf+YC6nVkJuroKioRKBcuaJEqURKYgRo3LjExMjbW49aXdJTwc5OMOg3UFhYEpX4+msN7dqVPDE4WMmzz6owNS25of8z7hIfhXXrrtC9e0vGjLFEqRRISVFKwkQ0HSrd7lmpLKm2OHJETZs2VXdJKd1ASPwpPTO+m6333YiIKOTChQSUSiXu7u7SZ9rGBtzdG84lUa/XExcXR0pKilQaKZ7HsLAw9u7dS+fOnYmJiSE7O5vdu3fj6+tb28OWqQXkyEA1Upl1R3Nzc3r16kWvXr2YO3cuOp2O8PBwqWJhw4YN5Obm4ufnJ4kDf3//KskmNkbZumhxpiZ2FRR7AygUCgoKCnB1db3n+uu6grl5idNgWTFQmlu3bhETE4O7e2OGDfP8ex32328W5ubmNG3alKZ/H7x0Mp1YXy7aBOv1TbCyakVBgRmiuyCUNBGytha4ffsf3wPxBizemIuLS/5Vq0tcEAsLS/oVlK3grKhXjKlpSVWAIIBWW/x3uN8MF5dWWFsLWFsLZGSURAbEpQALi5IxtGmjBxS8/74GF5cSsVWVQqBkfMbzDsQbWnJyspR3UDokXlE0SxAETpy4xeDBbQHjjb/CwwsbhCAoLCwkIiICQRDKLd0JgkCrVq3Izs7myJEjXL16ldzcXJ5//nn69OnD008/zbBhw2px9DI1jSwG6hgmJiZ069aNbt268cYbb6DX67l48SLHjh0jODiYb7/9llu3btGtWzdJHPTu3fueOyJWFpVKRbNmzWj2d71aWloaFy9eRKlUYm1tTWJiIjdu3DBwSawuofIg3K1pkTG0Wq2UaNWhQ4cHKgEF4zc1MQksM/MWY8Yko1YrpOY4oo3ynTsmvP126aZYJTP/4uKSXAVXVz1KpYL33ivGzEzgrbfuvUJFr9dTXKxFqVRgZmYm5Rw4Owvs3KkhNlbB3Lnm2Nj8E3Eo8TkQyMqC9u0FXF1r5uZpzFSqoKBAEgdxcXFSNKu0OLC0tKS4uJiLFy9y6ZIOaFvha+Tm1shbqVZu3bpFVFQUzZs3x8PDo1wehF6vZ/fu3WzevJkPPviAadOmcefOHU6cOMHx48eJjY2VxcBDhiwG6jhKpRIvLy+8vLyYNm0aer2ehIQEKXIwZ84crl69iq+vryQOAgICcHBwqNIbslarldZX27dvL5VdGZvxmpqaGogDa2vrWhMH5uYlN8/s7PJNi8rmBoiIyx9WVlb06tXrrss890vpUHfbtm3p0kWQWuaWLNEkkZamIT+/KYWF3n+b/ZhLFQNi8p5arcDRUcDSUjBY2qgsOp0O0GJqaoaJibJcDoGzs4Bazd8dFQWDiEN+/n2//SqjdN6B2CGvdN6BaM5VInJ0WFhY4O7uU8ujrj70er3U+8PT09NoHsSdO3d45ZVXuHTpEkeOHKFnz54AODk5MXz4cIYPH17Tw5apA8hioJ6hVCpp37497du3JzAwEEEQuHr1qpRzsHjxYi5fviy5JIoC4X5cEkXu3LlDTEwMVlZW5dwSjc14xTXe27dvEx8fj0KhMHBJrAmvAxFHR/jvf4uNlt2JywQipW2TazoZsnRyZ6tWraQM8cuXc7Gy0nL7to68PNO/k/QUUvJgVlaJc+G0aeZ89FHJmywresr+XrKtAL3e9O9kRXO02pIeC9qKmx/WG0pHswRB4MqVKyQmJkolt1FRsUAVOTPVIcTySK1WW6Hb5+nTp5kwYQK+vr6cPXvWqOOgzMOJLAbqOQqFgjZt2jB+/HjGjx+PIAikpqYSHBzMsWPH+N///sfEiRNxd3eXjJD69etXKUOV0tEADw8PnJ2d//U5Yo2+vb097dq1K9M4KJOkpCT0er1B6+bq9mKvzPUuOzub6OhoTE1Na8U2uSxihnjnzlZs3QqXLimZOlWBiYkOpVKLXq9Dr9dhbq5ArzcjO9uUwsIibGzMpKTD0tjalpQXiuLx6tU0zM37otWalttXpSopLyxL2f0qykOoK6jVaqKjoykoKMDPz08qafw3fZeVlUVxsVWt+B3cL3fu3CEyMhInJyc6duxodFng888/55133mHRokW8/fbbdcbsSWTJkiW8++67BtuaNWtGampqLY3o4UIWAw0MhUJBixYtGDNmDGPGjEEQBDIyMiRx8PnnnzN16lQDl8Q+ffrg6upqcHFISEggJSXFaDTgXqiocZBYrXDt2jWKi4sNxIGdnV2NdUPT6/VcuXKFpKQk2rVrR9u2bevcRbJ585L+BebmCmxtTbC0LLnQC4KAVqslL09Pbq6W69fPM3kyqFSNpbwDKysrlEolFhYC9vZFnDsXTWFhIaNHe+Pvr6nQZ6Bz539+t7QsybI3JjJsbKAaVlEemDt37hAVFYW9vT09e/Y0uLH/m6BNTk5Gq00zaAom+h3UtVwYQRBISEjg6tWrdOzYUSotLE1OTg7Tpk0jLCyMX3/9lUceeaTOvQ8RLy8vDh8+LP1e1z0fGhJyaeFDRmmXRLG/wtmzZ3FyciIgIAA/Pz+OHj1KREQEhw4dqtYOg+J4CgsLJXGQlZVFUVFRudbN1TFLy8vLIyoqCkEQ8PLywtbWtspfo6q4fFnBs8+qsLUVyt18CwshJ0fBDz8U0qxZtnQes7KyJMdJU1NTbt++jZOTE506dbpnsXXzZvmcCygRAi1a1J1LiJhTc+3aNTp06EDLli3LfX7j4xV07lyxggkPL6R1a7VBOWNOTg7m5uYG4qA2c2GgJPIRGRmJWq2mc+fOWJe10qTEZOill16iVatWbNu2rU57KSxZsoS9e/dy4cKF2h7KQ4ksBh5yxGzskydP8tVXX7F7924cHR1RqVT4+PhIywrV5ZJojKKiIgNxkJ+fb+BKZ29vL9WF3w9iqDw+Pl7yZq/rM5DKiIFdu9S0b//P11kQBLKzs4mNjSU3NxcTE5Ny9r//ZipVnygsLCQyMhKdToePj4/Rm6NIfLzCaNVART4DOp2unN+B6Dgqnkc7O7sa+xxlZGQQGRmJg4ODUXEnCAJbtmzhzTffZNasWbzzzjs1Fm27X5YsWcKqVauws7OTupwuX74cV1fXan9tQRDqbLSkppDFgAyCIPDqq6+yc+dOVq1axbhx4zhz5oxUsXDy5EkDl8Q+ffrQtWvXGruJaDQaSRhkZmaSm5srWa2KSwuVDeEWFhYSHR1NUVERXl5eUlJZXed+xEB2djaRkZFYWFjg7e2NSqWSojDiuaxK+9/kZEWFFQaNGlW9B0Fp0tLSiImJqbCUrqrR6/VS9Yd4Lmui9bAgCCQlJZGYmEiHDh2M5vHk5+cze/ZsfvvtN7Zs2cKQIUPqxY3ut99+o6CgAA8PD9LS0li2bBmXLl0iOjq6WhIdc3JysLKyMhBJRUVFmJiYYGZm9tAJBFkMyACwceNGhg4dSuvWrcs9JrokiuJAdEn09/enb9++9OnThx49etSYS2LpLm6ZmZnk5OSgUqkMxEFZrwNBEEhJSSE2Nla6YdT1mVJpRDGgUgmUDYqo1SUlhqIY0Ov1JCUlceXKFdzc3GjTps1dW2qXdUq0tLQ0EAeV8Y1ITlYweLCqXJ8FEQsLgYMH79+dMDlZQV5e+e2WljqKii6RlpaGl5eXZPJU01TUeljMOyjtd3C/3xGNRkNUVBQFBQX4+voaXdaKjY1l3Lhx2NrasmPHDqPf5/pCfn4+bm5uvP3228yePbvKjisIAn/99RdPPvkkO3fu5NFHHwVgzZo1/P7771haWrJgwQK6d+8uiwEZmbtR1iUxNDS0Rl0SjY1H9DrIzMwkOzvboINjo0aNSE5OJjc3Fy8vL5o0aVLtY6pqbtxQMGqUOfn5xs9no0YCP/6owcGhgKioKDQaDT4+PvecB1FcXFyq7XBJVzwzM7NybbDL/l1jYhQMHWqBmZmhvTGUlCsWFyv47bciPD3v/XKTnKzgscdUUgdIEUEQUCqL+eyz8wwa1L5a/CAeBNGSunTegZmZmYHQqqxZWFZWFhEREdjZ2eHp6VkuKicIArt27WLGjBlMnjyZDz74oMqjErXBoEGDcHd3Z8OGDVV+bG9vbxo3bsy3337Ljh072LBhAy+++CKhoaHExsYSFBTE0KFD6/wSYlUhiwGZB0av13Pp0iWOHj1KSEgIISEhpKen061bNwICAujXrx+9evXC1ta2RsSB6O6XmZlJWloaubm5KBQKHBwccHBwqHGvg6rixg1Fhc6JlpYCSqVh5KMqLmI6na6UU2KmwVq5eFOztbUlNtaUoUMtsLQ0HrkoLLx/MRAdreCJJywM+ijodDrUaj1gwsGDGry9H/itVjtl8w6ys7OlBM+K8g4EQSA5OZmEhATat29v1PtCrVYzb948du7cyebNm3nmmWcaxIxWrVbj5ubGK6+8wuLFix/oWKVD/kVFRVhYWHDr1i1cXV15+eWXEQSBF154QTJgGjZsGCkpKWzYsAF/f/8Hfi/1AVkMyFQ5er2exMREyUI5NDSUpKQkfH19pWWFPn36VLlLYmmKi4u5dOkSd+7coUOHDjRq1MggKVGn0xnMdmsy+auqEW12MzIy8PLyMtqjvqoQBMHAN6KkJr+YjIwWzJ7dFSsrAQsLpcHftbJi4Pp142Ln+nUF48ersLAQ/u7qqEGv1wPmaDQmHDhQhJdX/buMiS3FS59LjUaDjY2NFDVITU0lPz8fX19fySehNElJSYwfPx6dTsf3339P+/bta+GdVA1vvvkmw4YNo3Xr1qSnp7Ns2TKOHTtGZGQkbdq0qZbXPHz4MIMHD8bW1pbQ0FC8/1aVeXl5dO7cGT8/P1auXEnbtm2r5fXrErIYkKl2xOx9cVkhJCSEuLg4PD09JWHwoC6Jpblz5w7R0dFYW1vj6elZLiGurNeBeBEuPdsVy/HqOqJ1svheH6TK4n4Qq1HOnCngpZdaYmZWjKmpHoVCiYmJEqXSBJ1OSWGh8q5i4Pp1Bc8+a3wZxMRE4NYtJRYWOkCDUqnEzMyM4mIFRUWKeisGyiK2OM/KyiItLY3bt29LbYfFJS+A5s2bo1Ao2L9/P6+++iqjRo3ik08+qXPLJPfK888/T3BwsFQC26tXL5YuXYqnp+cDHzsvL4/AwED69+/P9OnTGTt2LP7+/sycOZPly5ezcOFC9u7dy3/+8x8UCgUKhYITJ07w9NNPM3XqVObMmVNvko3vF1kMyNQ4pV0SRXEQFRWFu7s7AQEB9O3bl759+96zHbDYn/7mzZuVdkwUx1M2y170OigdPahLa7BiPf3Vq1fx8PColKNkdWKYMyCg0+nR60t+tFrQ6ZR8/nkcPXpYGk2ki4tT8MwzKszNDZcZ1GrIy1OQnS1gbq7B0tJEEmkaDQ1KDEDJZ/H69evExcXh5uZGy5YtDZYWpk6dSmpqKm3btiUmJob58+czf/78BlMeWl3cvHmTDz/8kP3796PRaLC2tubnn3+mXbt2ADz66KNkZWWxc+dOPDw8pGWF999/n7Vr13LmzJl6nYxZGWQxIFPrlHZJFMXBhQsXaNWqlSQOjLkkliYrK4uoqChUKhVeXl4G7VrvB9HrQBQHotdBWUe62iA/P5/IyEigJAnqbvX0NcXdqwkEzMz0bN4ch5VVerlEOnt7e1JSbHj2WQuDzogA+fl60tJ0FBSYYG2twMLin79/QxMDWq2WmJgYsrKy8PHxMToTTUxMZObMmaSlpeHg4EBERARarZbevXuzfPly/Pz8amHkdRedTict/23atIlXX32VFi1aEBERgaOjI4WFhVhaWpKXl0fbtm156qmnWL16tUGScVpamtS1tSEjiwGZOofoknj8+HGOHTtGaGgoZ8+epUmTJgbNlzp27IharWbp0qX06dMHLy+vu5bRPQhiZri4tFC6BO9evQ7uF3HWePnyZVxcXHB3d69TSZCV9RkwZuBz44Y1S5f2xNoarK1NMDExQavVkplZRH6+BUVF5qhUhpUKJY2VGoYYyM3NJSIiAgsLC3x8fMpFoQRB4NixY0yaNImBAweyceNGbGxs0Ov1REdHExISwtChQ6WZrkx5I6FDhw5Jtuyurq4EBQUBJYmKKpWKY8eOMWjQIJYtW8aMGTMMll30en2d+q5VB7IYkKnziOvSYWFhUlLi6dOnUalUWFpaolKp+OCDD2q0DKh0CZ7odWBubi4Jg8aNG9OoUaMqEwcajYbo6Ghyc3Px9vbGwcGhSo5bF9Dr9Vy4UMiLL9phYaHBxKQY8bKk15uTn69CozFBpyt/LlUqgSNH7t+/oLYRBIEbN24QFxdH27ZtadeuXbnPjE6nY9WqVaxevZpVq1YxderUBn9jehD0er207l9cXMzEiRNp0aIF//vf/wBYt24dn3/+ORMnTuStt94yiB4sWrSIDz/8kMTERKkl9sOCLAYqYMWKFezevZtLly5haWlJQEAAH3zwAR06dLjr83bt2sWiRYtISEjAzc2N999/n5EjR9bQqB8OtFotK1euZNmyZfTp0wcTExPCwsJQKpX07t1bWlaoSZfE0l4H4my3tNfBvdSUl+X27dtER0djb29Pp06dGuT6sJgzYGamR6crBARMTc1QqwXUanjttfO0bGmKra0tNjY22NraYmZmhrV19TobVic6nY6LFy9y584dvL29jbrs3b59m5dffpmEhAR27NhRp5cBVqxYwfz585k5cyZr1qyplTGUjgYcOnSI0NBQfv31V86fP8+vv/7KkCFDSElJ4ZNPPmHfvn2sXbuWxx9/nOzsbMLDw+nfvz9Xr15t8PkBxqj76dK1xLFjx5g+fTp+fn5otVoWLFjA4MGDiYmJqbC97cmTJxkzZgxLly5l5MiR7Nmzh+eee47Q0FCpflXmwfnwww/ZsmULwcHBUg1waZfEkJAQVq9ejUajoWfPntKyQnW6JJqYmEg+BmDodXDnzh0SEhIApEoFsXXz3WZ4Op2Oy5cvk5KSQseOHWnRokWDqB83hpUVmJsXk52txdTUDDMzczSaknbDjo4CI0Z4YWV152+hlcKtW3l/m1rZk5LSuEaWaaqSvLw8IiIiMDc3p1evXkarQMLCwpgwYQLdunXj7NmzdTqb/cyZM3zxxRf4+vrW6jjEv//SpUtZvnw58+fPJyAggJycHCZPnszp06dxcXHh+eefJyUlhUmTJjFv3jzmz5/P2LFj6d+/P61bt34olgXKIkcGKsmtW7do2rQpx44do3///kb3GTNmDDk5Ofz222/StiFDhmBvb8/27dtraqgNHrHpzt2SBHU6HRERERw7dkwyQhJdEsWkxJ49e9aYS2LZ+vzMzEzJ60AUB6W9DnJzc4mMjMTU1BRvb+8HToisy2i1Wi5dusTFi3m0atWh3BKIlRW4uBhepkRLajESUxe7ClbEzZs3uXjxIq1btzaaFKvX6/nss8947733WLJkCXPmzKnTN6a8vDy6devG+vXrWbZsGV26dKm1yACUnN+nn36a1157jcmTJyPOezAAACAASURBVAMQHBzMvHnzUCgUhIaGAiUC5quvvuLs2bOMGjWKuXPn1tqY6wKyGKgk8fHxtG/fnsjISMmYoiytW7dm1qxZzJo1S9r28ccfs2bNGpKTk2tqqDJGEF0SxZwD0SWxa9euUuSgd+/eNeaSKHodlBYHGo1GihZkZWXRpk0b3Nzc6vSN4EERE+dUKhXe3t73XaFhbJlGqVQaiIN/i8RUNzqdjtjYWNLT0/H29jZqi52VlcW0adM4e/Ys27Ztq3DiUZeYMGECDg4OfPzxxwwYMKBGxYCxGfz169dp37493377LaNHjwZKxOOuXbuYMmUK06dPZ+XKldL+mZmZUtSldP7Aw4a8TFAJBEFg9uzZ9O3bt0IhAJCamlquBKVZs2akpqZW9xBl/gWlUomnpyeenp689tpr5VwS33rrrXIuiQEBATg6OlaLOFAoFFhbW2NtbY2Li4vUbjgmJoaioiLMzc1JSkrizp07BnkHdcnr4EEQBIFr165x+fJl2rVrZzRx7l4wtkyTm5sriYOkpCR0Op3UcliMxNSUsVR+fj4RERGYmJjQq1cvo6InPDycl156CVdXV86dO1drTZfuhR07dnDu3DnOnDlT46+t1Wqlv19xcTGmpqYoFApMTEzo2bMn4eHh/Oc//8HS0hIzMzMee+wxHB0d+fDDD+nevTujR49Gr9djb28vJaw+rEIAZDFQKV5//XUiIiKk8NLdKHtBe9jaYNYXlEol7u7uuLu7ExgYKN2cxGWFJUuWSC6Jpb0ORPe3qiY9PZ2YmBiaNm2Kv78/pqamkhtdZmYmCQkJ5OXl0ahRI4P6/NryOngQNBoNMTEx5Obm0q1bt2pZC1cqldjZ2UkWvmUjMTdv3kStVteIsZTYXtnZ2dloOaher+ebb75h7ty5zJkzh8WLF9eLm9K1a9eYOXMmBw8erJXPoampKRqNhokTJ1JcXEyTJk1Yt24dLVq0oFu3bhw6dIju3btLCdyCIODv789jjz3GO++8Q//+/aXJm3yNlpcJ/pUZM2awd+9egoOD/7WGV14maDiUdUkMDQ0lKioKNzc3yeugX79+9+ySWBatViuFjj09Pe9qblLa60BcJy/dbtje3v6BWuTWBBkZGURFRWFra4uXl1etVkaILYfF81m65bB4Th/E4lev10uOmBW1V87Pz+eNN97g0KFDbNmyhcGDB9fpv19p9u7dy8iRIw2Ei06nQ6FQoFQqUavV1SpqMjMzeeKJJ6TP0s6dO/H29uaXX34B4Omnn6awsJD+/fvz1FNPsXbtWoqKipg8eTJz5szh008/5Yknnqi28dU3ZDFQAYIgMGPGDPbs2cPRo0cr1QBkzJgx5Obmsn//fmnb0KFDady4sZxAWM8RXRJDQkIkI6Tz58/j4uIi9Vfo06fPPa3xi66JlpaWeHl53fPsSqvVSuvjYuvm0kl0YvvmunBzEQSBxMREkpKS6oR9sjFKtxwWjaVUKpVBkmdlz2dhYSEREREIgoCvr6/RBNBLly4xbtw4KcG4VatW1fG2qo3c3Nxyk5xJkybRsWNH5s6de9cl1Qdl8+bNKBQKoqKi+Pjjj4GSpk2dO3dm7NixrF+/nsTERLZu3cpnn32Gvb091tbWHD16lJycHDp16sRPP/3EgAEDqm2M9Q1ZDFTAtGnT2LZtGz/99JOBt4CdnZ00Wxg/fjzOzs6sWLECgBMnTtC/f3/ef/99hg8fzk8//cTChQvl0sIGSGmXRDEh8ezZszg6Ohr0V+jYsaPRsPCVK1dISkrCzc2tylwTSzv7ibNdExMTA3FgbW1d40l0RUVFREZGUlxcjI+PDzY2NjX6+veLTqczcEksfT7Fc2qsFXZ6ejrR0dG0aNECDw+Pco8LgsAPP/zA//3f//HKK6+wYsWKBuMdUVMJhKNGjWL37t2MHj2a7du3S+d47969PPPMM2zevFmqJEhPT6e4uFgyEVqyZAn79+/n+++/fyi6EVYWWQxUQEUX56+//pqJEycCJR/8tm3bSraWAD/++CMLFy4kMTFRMh165plnamDEMrVJRS6JVlZWBuLA1NSUadOm8frrrzNkyBBsbW2rbUylk+hEcSAIgoE4qO4MezEXwsnJiY4dO9aLtfCKEL0jSostvV4viQM7Oztu375NSkoKnp6eNG/evNwxioqKmDt3Lrt27eLLL79kxIgRdS5C8iBUtRioqN4/NzeXoUOHUlxczIEDB2jcuLH02H//+182b97M3r176du3LwAFBQX8+OOP/Prrrxw8eJAdO3bISwRlkMVAA+B+3BKDgoKYNGlSue2FhYX1MimtriEIAmq1mjNnzkh+6CEhIeh0Orp168YTTzzBo48+SpcuXWqsQkAQBPLy8gzEgVarLde6uSpu2KJh0s2bN+nUqZPRG2N9p3Qr7Dt37kgth62trXF0dJRcJ8VI4pUrVxg3bhwKhYKdO3fi7u5ey++gblNaCOzevZuEhAQaN26Mv78/nTt3Jjw8nICAAGbPns3SpUsNnuvp6Unv3r3ZtGmTdIw1a9Zw5swZ1qxZg5OTU42/n7qOLAYaAEOGDOH55583cEuMjIy8q1tiUFAQM2fOJDY21mB7Q7xo1zaZmZm8+uqrHDt2jLfffhudTkdISAjHjx9Ho9Hg7+8vVSv4+flVm0tiWcRoRunujGq1GltbWwNxcK8hbLGMTqlU4uPj06ANk6DEMjgqKoomTZrQtm1bKXqQlZXFihUrSExMxMPDg+PHjzNixAg2b94sC+57YOzYsRw6dIhBgwZx5coV1Go17777Lv/5z3/4+uuvefnll9m1axcjRoyQqrfEZFCQK7oqiywGGiCVcUsMCgrijTfeICsrq4ZH9/CxZcsWdu7cyVdffWWQUS66JJauWMjOzsbPz08yQqpJl0QoiQyVFgcFBQUG5Xf29vYVRjIEQeDmzZtcunSpTnZVrGoEQSAhIYGrV6/SsWNHWrZsWW6f5ORkli5dyrlz59BoNCQnJ9OqVSv69etHYGCgnMBWAeINPCgoiA0bNrB161bat2/P77//zpNPPklgYCCff/45JiYmTJ8+nb1793Lo0CE8PT0NjlPai0Dm7shioAFSGbfEoKAgXn75ZZydndHpdHTp0oWlS5fStWvXGh5tw0f8iv3bDb20S6JooZyamkq3bt0ICAigX79+NeqSCCXtXUu7JIpeB6XFgYWFBVqtlosXL5KRkYGXl5dRd72GhFqtJjIyEo1Gg6+vL9bW1uX2SUlJYcKECWRlZfHDDz/g6elJbm4uJ0+eJCQkhN69e/Pkk0/WwujrDxMnTsTW1pa1a9eyadMm3nzzTV599VWWLVsmiVKtVoubmxuDBg1i06ZNchTgPpHFQANDEASGDx9OZmYmISEhFe4XFhZGfHw8Pj4+5OTk8Mknn7B//37Cw8MrVUYpU/2IVQdHjx6VxIHokihGDqrTJdEYpXsCiOV3ZmZm6HQ6LCws8PT0xM7OrkFfkDMyMoiMjMTBwYFOnTqVm3kKgsCff/7J5MmTeeKJJ9iwYYNRsfCwUzp8byyUr9FoeOWVV+jSpQsxMTHs2bOHtWvX8sILLwCwf/9+VCoVAwcOJD09vV44NtZlZDHQwJg+fTq//voroaGhuLi4VPp5er2ebt260b9/f9auXVuNI5S5X0SXRHFZISQkhNjYWDp16iT5HPTt27faXBKNjefKlSskJibSuHFjqdzS1NTUwEK5rjYMulfE93vlyhU6dOiAs7Nzufel0+n44IMPWLNmDatXr2bKlCl1bqlkw4YNbNiwgaSkJAC8vLxYvHgxQ4cOrfGxHDlyRLKjNlY5sHz5chYuXIivry/bt2+nU6dOQEkzogULFhAQEMDEiRMlQSYvC9w/shhoQNyLW6IxpkyZwvXr1w26LsrUXQRBIC0tTapWEF0SXV1dDcRB69atq/xmrNFoiIqKIj8/Hx8fH6m0S6fTSa2bxSQ6hUJh4JJorDa/riO+34KCAjp37mzUK+HWrVsEBgaSlJTEzp076d69ey2M9N/Zt28fJiYmUjXDN998w6pVqzh//jxeXl41No6CggJpVi+2+BYjBKX/HTBgAIWFhXz++ee0atWK7Oxspk6dSm5uLj/88AOtW7eusTE3ZGQx0AC4H7dEY8fw9/fHx8eHr776qhpGKVPdCIJAZmamQeRAdEks3V/hQTsh3rlzh6ioKOzt7enUqdNdqw3KNgzKzMyUvA5EcWBra1un/QeysrKIiIjAzs4OT09Po+/3xIkTTJw4EX9/f7766iuDuvf6gIODA6tWrSIwMLBGXzciIoKnn36agQMH8uWXXxo8JgqClJQUhgwZQnZ2No0aNUKtVtOxY0f27duHUqmUqwWqCFkMNADuxy3x3XffpVevXrRv356cnBzWrl3Lli1bOH78OP7+/rXyPmSqFkEQyM3N5fjx41JSYmmXRLG/gjGXRGOInR6vXr2Kh4eH0TB5ZcYkeh2I4kCr1UrljDXdTfDfxpqcnExCQgLt27c32odCr9ezbt06li1bxtKlS3njjTfqVdRDp9Pxww8/MGHCBM6fP18uG78qqeimvWfPHkaPHs3GjRsJDAw0WC4Q/5+RkSElqFpZWTFw4EBAXhaoSmQx0AC4H7fEWbNmsXv3blJTU7Gzs6Nr164sWbKE3r1719CoZWoa0Vfg1KlTUlLiqVOnJJdEURx4e3uXu8Dm5+cTHR2NTqfDx8enyhLiKvI6sLGxMcg7qGm73uLiYqKjo8nNzcXX11fqfliazMxMpk6dyoULF9i+fbvkdlcfiIyMpHfv3hQVFWFtbc22bduqrbIhKSmJ5s2bY2FhYTQvQKPR8P777/PBBx9w9uxZvL29Dfa7dOkS6enp5cqkdTpdnY4o1TdkMSAj8xBTVFTEmTNnpAZMJ0+eRKlU0qtXL2lZQWwGs2XLFnx9fav9Aly6m6DodWBtbW0gDlQqVbW9fnZ2NhEREVhbW+Pt7W1UiJw/f56XXnoJDw8Ptm7dWu8c7TQaDVevXiUrK4tdu3axefNmjh07VuWRgfDwcKmqYvny5YDxCEFGRgYTJkwgLi6O6OhoSYz++uuvPPfcc/Ts2ZMjR45UaE8s8+DIYkCmRrmfTOZdu3axaNEiEhISpH4PYo9ymaqluLiYc+fOERwczJ9//smRI0dQKBT07duX3r1717hLIhj3OrCysirXuvlBEas1Ll++XGEDKb1ez1dffcW8efOYO3cuCxYsaBCz08cffxw3Nzc2btxYpcfNy8tj7ty5REZG8vrrr/Pcc89VuG9sbCxDhw6lZ8+ebN++ncWLF7Ns2TLmz5/PsmXLqnRcMuWRxYBMjXKvmcwnT56kX79+LF26lJEjR7Jnzx4WL14sd4KsZqKjoxkzZgw2NjYsXLiQ+Ph4yetAdEkUjZD8/f1rtFVyaa+DrKwscnJyUKlUBuLgXl0btVotMTExZGVl4evrazQBMC8vj5kzZ3LkyBG+++47Bg4c2GAS1wYOHEirVq0Mmq49KOIsPi4ujgULFpCdnc2qVavo3LlzhTP833//nWeffZZGjRqh0WgMli/k/IDqRRYDMrXO3TKZx4wZQ05OjkG545AhQ6Qe8DLVw6JFi9Dr9SxZssQgTK7X64mNjTUwQirtkihGEGrSeEir1ZKdnS2Jg+zsbExNTcu1bq5oPLm5uYSHh2NlZYW3t7dRu+WYmBjGjRuHk5MT27dvl9rh1kfmz5/P0KFDadWqFbm5uezYsYOVK1fy+++/M2jQoGp5zQMHDvDhhx/SokULPvvsM+zs7CrMH1i9ejVHjhxh586dODg4oNfrUSgUDUZ41VVkMSBTa1Qmk7l169bMmjWLWbNmSds+/vhj1qxZQ3Jyck0O96GisuVagiCQmJgotW0ODQ3lypUr+Pj4SDkHffr0qVGXRL1eT3Z2tkH0QKFQGIgDGxsbFAoFN27cIC4ujrZt29KuXbtyYxQEgR07dvDGG2/w2muv8f7779d4MmNVExgYyB9//MHNmzexs7PD19eXuXPnVpkQqGjW/+mnn/Ldd9/x+OOPS10GjX3OCgoKpOZWcjSg5pDFgEyNcy+ZzObm5gQFBfHiiy9K27Zt28akSZNQq9U1NWSZSlLaJTEkJITg4GDJJVGMHNSkSyL843VQWhzodDpMTU3R6XS4ubnh4uJSbu2/sLCQt99+mz179vD111/z9NNPy7PTu1BaBFy+fJmwsDCaNGmCt7c3rVq1oqioiIULF3L8+HGmTZvGuHHjKn08mepHFgMyNc69ZDKbm5vzzTffSH7kAN999x2BgYEUFRXV5LBl7oPSLomiQBBdEkuLg+pwSawIcVkAwNramuzsbIqLi7Gzs2Pv3r10794dV1dXpk+fjqmpKTt37sTV1bVGxtYQWL9+PfPnz8fX15fY2Fj69evH7NmzCQgIID4+nsWLF5OamsrKlSvx9/eXb/p1BFkMyNQ6d8tklpcJGhZlXRJDQ0M5d+4czs7OBhbKD+qSWBEpKSlcunSJ1q1b4+rqKjnYFRYWkpaWxty5czl79izp6ek4OTnx4osv8uijj9K3b18cHByqfDwNjdWrV/P555+zYsUKRo0axbFjx5g4cSKtW7dm586dNG/enMOHD/PRRx9hamrKpk2baNasWW0PWwaQ5ZhMrSMIQoUh/969e3Po0CGDbQcPHiQgIKAmhiZTxSgUChwcHBgxYgQfffQRp06dIiMjg40bN9K6dWu2b9+Ov78/7du3Z/z48WzcuJHo6Gj0ev0Dva5OpyMmJoa4uDh8fX1xd3eXxIZCocDKygpnZ2fatWtHQUEBa9eu5aOPPqKwsJD//ve/NGnShAsXLlTFKWgw5OXlSf8X55SFhYXMmDGDUaNGER0dzdSpU6Xoy5tvvgmUiP9BgwaRk5PDrVu3amXsMuWRIwMyNcq/ZTKXtU0+ceIE/fv35/3332f48OH89NNPLFy4UC4tbKCIs/SwsDApKVF0Sezdu7e0rODj41PpxLL8/HwiIiIwMTHB19cXCwuLcvvcuHGD8ePHS81vxO54Iunp6Tg4OMjJbH/z8ccfc+fOHZYtW8bnn39OREQE69evp6CgQCrTfOGFF3j22WdZvnw5c+fO5csvv2TJkiXMnj0bvV5PTk5Ovevh0KARZGRqkMmTJwtt2rQRzM3NBScnJ2HgwIHCwYMHpccfeeQRYcKECQbP+eGHH4QOHToIZmZmQseOHYVdu3bV8KhlapPCwkIhODhYeP/994XBgwcLNjY2gp2dnfDEE08IS5cuFY4cOSJkZmYK+fn55X4SEhKEX375RTh//ryQm5tb7vG8vDzhp59+EhwdHYUJEyYIubm5tf12y7F8+XKhR48egrW1teDk5CQMHz5cuHTpUq2O6fXXXxd69uwp9O/fX1CpVML27dsNHp85c6YwceJEoaCgQBAEQVi1apXg5OQkNG3aVDh//ry0n06nq9Fxy1SMHBmQqRBBEKTkHjmLWqauoNVqOXfunNR8KTQ0FI1Gg7+/v5Rz4OXlxezZs2nevDmzZ8+madOmRo+zYsUK1q1bx5o1awgMDKyTn/MhQ4bw/PPP4+fnh1arZcGCBURGRhITE0OjRo1qdCzi9SA5OZnu3btTWFjIF198wdixYyl9Kxk5ciRarZZffvkFgOnTp+Ps7MyQIUPo1q1bjY5ZpnLIYkDGAOHvul+5CUgJ92qfHBQUxKRJk8ptLywsNBqelnlwdDodkZGRUlLi0aNHKSwsxMnJiWHDhjF48GB69uxp4JKYlpbG5MmTuXHjBt9//z1dunSp5XdReW7dukXTpk05duxYueY91UXZ68Eff/zBvn37OHXqFJ6ensydOxcPDw9JEKxevZovv/wSNzc37ty5Q05ODgcPHpTMmoRK+ljI1BzyApiMAQqFgtOnT/Pdd9/x119/4ezszDPPPMPgwYOxt7ev7eHVOC4uLqxcudLAPnn48OEV2icD2NraEhsba7BNFgLVh4mJCV26dKFLly60adOGP/74gxEjRtCrVy9OnjzJtGnTSE1NpWvXrgQEBODo6Mj69evp06cPe/bsqXfr1tnZ2QA1Vt1QWgicO3cOFxcXHnnkEQYOHMi2bdv48MMPCQoKYt68edjY2AAlLdPt7e35448/aNeuHWvXrkWhUEgiQBYCdZDaWp+QqZtEREQITZo0EZ588klh8+bNwmuvvSZ06dJFeOyxxwzW+h5m7O3thc2bNxt97Ouvvxbs7OxqeEQygiAIWVlZQtu2bYWdO3cabNfr9UJCQoLw5ZdfChMmTBBUKpUwY8aMerlerdfrhWHDhgl9+/at0de9ffu2MGDAAMHT01Po0KGDEBAQIFy7dk0QBEFYuHCh4OfnZ/CduHDhgiAIgqDVaqVtxcXFNTpmmXtDjgzIGPDjjz/i4ODAtm3bsLOzIzAwkPj4ePbt20dhYaHBvoIgoNPpUCqVD4VpiGifnJ+fT+/evSvcLy8vjzZt2qDT6ejSpQtLly6la9euNTjShxM7OztiY2PL9RZQKBS4urri6urK5MmT2bRpE6ampvVydvr6668TERFBaGholR9bqCB0f/XqVZ588km8vb3ZvHkzjRs3pkOHDkycOJG9e/eyaNEi4uPj2bx5M6mpqZw4cYIzZ85w+fJlKVKg1+vlSow6TsO/gsvcE3Z2duh0OlJSUqRt7u7uzJo1ix49ehjsq1AoMDU1bfBCIDIyEmtra1QqFVOnTmXPnj0V9n3v2LEjQUFB/Pzzz2zfvh0LCwv69OnD5cuXa3jUDyfGmgyVxczMrF4KgRkzZvDzzz/z559/4uLiUqXHFpsBGfNzSExMpGXLluzYsQM3NzfWrVuHRqNhzJgxWFtbY25uznvvvUePHj3Yu3cvFhYWJCcnY2dnJ10bGvo1oiEgJxDKGJCWlsZzzz1HWFgYL774IhMnTqRv376YmJhImcSpqans27ePXbt24eDgwPPPP8/QoUONNnAR/q5IqM/JiPdin1wWvV5Pt27d6N+/P2vXrq2B0co0NARBYMaMGezZs4ejR4/Svn37Kj22KIzCwsJYt24d+fn5uLu7s3DhQho3bsyyZcs4fPgwhw8fZuDAgaSnpxMUFETPnj3Jzc1FrVbTpEkTNBoN2dnZODk5AXKTofqGLNdkDGjWrBnHjh3j66+/Jicnh3feeYcffvgBKFH3eXl5PPXUU2zbto0BAwZgY2PD3Llz2bFjh3SM1NRUMjMzgZLoQX0WAlAy23R3d6dHjx6sWLGCzp0788knn1TquUqlEj8/PzkyIHPfTJ8+na1bt7Jt2zZsbGxITU0lNTW13LLdvVJaCCxdulT6Pufk5LBlyxaeffZZAPz9/cnMzMTR0ZFmzZoREhIiGX59+eWXLFu2DCj5nohCQGwEJVOPqL10BZm6THFxsRAfHy9MnjxZsLGxEU6dOiVoNBphxYoVgqOjo8G+P/30k2BnZydkZGQIglBiktKuXTth+/btwltvvSV8+umnQnp6utHX0Wq1glarFfR6vbRN/H/p5KO6xGOPPVbOGKki9Hq90KNHD2HSpEnVOyiZBgtg9Ofrr7+ukuO/8MILgpWVlXDu3DlBEEq++5999plgZWUl7N27V7hx44YwYMAAoXv37kJkZKT0vJMnTwrdu3cX3nnnnXqZjCljiBwZkJH48ccfiYuLA8DU1BQ3NzdWrFiBk5MTR48eJT8/nz///JPMzEyaNGlC9+7dWbZsGQUFBdjb23PlyhXUajVpaWmkpqYSFBSETqfjs88+Y8yYMRQUFEivpdPpgJKyMBMTE4M1XPGxkSNH8tprr9Vqq+L58+cTEhJCUlISkZGRLFiwgKNHjzJ27FigpIRq3rx50v7vvvsuBw4cIDExkQsXLhAYGMiFCxeYOnVqbb0FmXqOIAhGfyZOnPjAxz5+/Dhnz55l2LBhUpKrqakp/fr1w8TEBLVaTcuWLZkxYwYWFhaMGjWKGTNmMGPGDAYNGsSjjz7KkiVL5JyABoD8F5SR2L59OytWrCA4OBi1Wk1eXh7fffcdeXl5eHl5IQgCly5d4tNPP+Wvv/7ixRdfJCwsjDfeeANTU1Py8vLIzc0lLCwMPz8/tmzZwurVq9myZQvx8fFs2rQJKLnZ//HHHwwdOpShQ4eyatUqrl69Ko1DXFY4deoULVq0qNVwY1paGuPGjaNDhw4MHDiQU6dOSX0UoCTT+ubNm9L+WVlZvPLKK3Tq1InBgwdz48YNgoOD8ff3r623ICNTIX369GHmzJlcu3aNhQsXStvj4+MxMTGhefPmADzzzDN88sknjBgxgtTUVDIyMti5cyerVq0C/hHwMvUXOYFQBiiZfYSEhLBhwwYOHjyIubk5np6eJCYmMnjwYD766CMaNWpE06ZNWb16NePGjZOeW1xczLVr12jXrh2hoaFMmTKFt956i8DAQMmw5JlnnsHCwoJt27aRkZFBWFgY165dIz09nZ9//hkHBwe2bNmCk5MTCoWC9PR0mjdvzsGDB3n88cfLjffGjRvY2Nhga2tb7jHZPVFGpvIUFRWxYMECwsLCmDdvHsnJycyZM4fVq1czffp0o88Rv2NilEKODDQAamd1QqauExYWJnz11VdCSEiIwfbZs2cLPj4+kqmITqcTsrOzpcc3btwoNGnSRIiNjRUEQRCKiooEQRCE7t27C7NmzTL6Wnq9XvDx8RHmz58vbdu6davQpEkTIT4+3uj+77333j2Z+5TOSXjYWL58uQAIM2fOvOt+P/74o9CpUyfB3Nxc6NSpk7B79+4aGqFMbRMfHy+MGTNGaNGiheDo6Gjwva/ou/Mwf6caInK6p4yEXq9HEARMTEzo2bOn0RbBS5YsITU1lUGDBtGhQwe8vb2xsrJixowZODs7ExMTQ25uLi1atABApVJRWFhIVFQUs2fPBiA6OpqtW7dy/vx5nJycePnll2ncuDF5eXnSjGPfvn106dKFJk2alBujUqnE3t6ef4En6gAACyJJREFUJk2aoNVqpZyD48ePM3LkSFatWsWECRMMnlcf68qrgjNnzvDFF1/g6+t71/1OnjzJmDFjWLp0KSNHjmTPnj0899xzcqvohwQ3NzemTp1KSkoKjRs3lvIH7hZle1i/Uw0VObYjI6FUKqUvvvC3P0BpBEHAxsaG7777jqNHjzJy5EiUSiXe3t60bduWGzdukJycjIWFhVRudPPmTRYuXIiVlRWjR48mIyODESNGEBoayhNPPIFKpWL69OmEhobi7OyMVqsFIDg4mL59+2JtbV1uDAApKSk0bdqU69evo1AoSExMZPfu3dy+fZuzZ88a7Ltv3z6p9DEqKgo/Pz+uX79eTWex7pCXl8fYsWPZtGnTv/aVWLNmDYMGDWLevHl07NiRefPmMXDgQNasWVNDo5WpbQYMGMBLL73E7du3Wb58OYC0FCDT8JEjAzJGMdZMpHSjEU9Pz3KmO1euXOHmzZvMmDGDq1ev4uPjg0qloqCggBUrVmBmZsbhw4fJysri+++/l2YfcXFx9O7dm1atWqFSqcjMzCQ1NRV/f/9ysxLxd2tra7RarXSh+vHHHxEEgXbt2uHm5iaNNyoqijlz5uDp6cnzzz9PkyZNmDBhwkPROGj69Ok89dRTPP7445I4q4iTJ08ya9Ysg21PPPGELAbug+DgYFatWsVff/3FzZs32bNnDyNGjKjtYVWKyZMnk5yczC+//IKzszPTpk2TIwAPCbIYkLknxAuDGDlQKBRS8tCVK1fIyclh/PjxODs7ExQURFpaGmPGjJGEg52dHba2tpw7d46uXbty4cIFVq5ciUqlkm7ihw4dws7OTvrdGE5OTiQkJNCuXTugpHXwokWLyMrKori4mMLCQiwtLQkKCsLS0pIlS5YA0Lx5c15//XWDYwlleiysX78ec3NzXn75ZelxoZ4lSe3YsYNz585x5syZSu2fmppKs2bNDLY1a9aM1NTU6hhegyY/P5/OnTszadIkybinvmBqasqUKVO4du0aHh4etT0cmRpEFgMy90VZZ0GNRsOpU6fQ6/WSXeq0adPKPW/QoEEMHz6cGTNm8PHHH9O3b19p5tS0aVMA9u/fT+fOnaXfSyNGJgRBoFGjRuj1er7//nuys7N59tlnuXLlCgkJCVhaWpKTk0NQUBDTp0/H29sbAC8vL9atW8djjz1m8F5Kly+uXbuWXr16SWKgvrVcvXbtGjNnzuTgwYP3FAEp+x4FQe45fz+IJbP1lbZt2/LFF188FNEzmX+QxYBMlaBQKBg8eDCurq5AiS+5eBMtPaNWKpV89NFHLFq0iBMnTuDl5UVqairu7u5SsuDPP//M1KlTy+ULAFKfg5SUFFxdXfnll1/47bffmDx5Mubm5mRnZ5OVlQXAqlWrMDU1JTAwEFNTU2JjY7l48aLBDS4uLo5vvvkGZ2dnhg8fjrW1NTdu3GDkyJEAJCcnM3XqVD766CM6deokJVQdPnyYxo0b07179zp3w/zrr79IT0+ne/fu0jadTkdwcDCffvoparW63PJL8+bNy0UB0tPTy0ULZB4OZCHw8CGLAZkqwczMzCAkejejIEEQsLe356mnngJg79690k22uLiYtm3b0qtXL6PHEG9iKpUKa2trvvnmG5o1a8bo0aOBkg5rXl5ehIeH8+OPPzJ58mRat24NwO+//07r1q2l8OfPP//Mq6++irOzMwC//fYb48ePR61W07VrVzQaDUlJSRw4cIBOnToB/3RfW7lyJWZmZmzduhVHR8cHOndVzcCBA4mMjDTYNmnSJDp27MjcuXONZof37t2bQ4cOGeQNHDx4kICAgGofr4yMTO0jiwGZGqd03oGImLVsZmbGuXPn/vUYLi4unD17FrVazc6dO/Hy8gLAysqKZs2a8e6779KiRQuDEsNff/2Vrl274uzsTHh4OIsXL+bJJ5/kk08+wdrammXLljFmzBj69OmDs7MzO3bsYNy4cdjZ2bF8+XKGDBlCt27duHPnDkVFRfTp0wdHR0cDa+W6gI2NjbQsItKoUSMcHR2l7WJex4oVKwCYOXMm/fv354MPPmD48OH89NNPHD58mNDQ0Bofv4yMTM1TfzKiZBoc4jKCKA7EfurGeqqXxdbWlvT0dFq1asXgwYMxMTFBq9Xi4eHBvn372L9/Py+++KJBEtTp06fp27cvAH/++SempqbMmTNHWo545plnsLOzo3fv3piYmDBixAh8fX3x8PDgwIEDPPvssxw8eJDLly9TXFwsLYmI/RXqE2VtlAMCAtixYwdff/01vr6+BAUFsXPnTtljQEbmIUGODMjUKSqbsT98+HBOnz4tLSWIvdOVSiW///47fn5+jBs3ThIaSUlJ5OTk4O/vjyAIJCcnY29vLyU7CoJA48aNUavV+Pn5AZCRkcG1a9cICgpi2LBhqNVqVCoV69ato6CggPDwcIYMGUJqaipvv/02o0ePxszMrBrOyoNz9OjRu/4OMGrUKEaNGlUzA5KRkalTyJEBmXpLjx496NKlC/BPjkJAQAB9+/Zl+vTpqFQqioqKgJIlAmdnZ1q3bi1VIxQUFGBmZiZlzYeHh6PVaqXEu/j4eDIzM+nRoweAdKM/e/Ysly9fRqlUsnDhQp566ikWL15MRERETZ+CBsuKFStQKBS88cYbFe4TFBRkEF0Sf8S/eW2Rl5fHhQsXuHDhAlBScnvhwgWDZlwyMnUNOTIgU28xVvr2yCOPEBwcLP1ubm4OQFhYGB4eHlJjI1dXV7777jsiIyPx8fHh4sWLbNy4EQ8PD1xcXIASIx4XFxdatGghJTjm5OQQFxfH6NGj+d///gdA9+7dWb9+PX/99ZdBBr/M/VFZC2UoWS6KjY012FbbmfBnz57l0UcflX4XbbgnTJhAUFBQLY1KRubuyGJApt5irKRPLGkU1/DFZYctW7aQm5uLjY0NUJJAd+DAAZ5++mmGDRvG7du3+fnnn3nrrbckAXH8+HEeeeQR6bgmJiaEh4ejVqsNLvY5OTl06tSJzMzMan2/DwOlLZT/zTURSj4DYpvdusKAAQNkC1+Zeoe8TCDToDA1Na0wmU8UAgCNGzfm22+/ZeHChRQXF0uuhB06dJD2SUhIoGXLlkBJKSOUzFqtrKzo2LGjtN+5c+cQBKHO3ZTqI6UtlCtDXl4ebdq0wcXFhf/85z+cP3++mkcoI9MwkSMDMg8tjo6OBAYGEhgYCMCtW7cMQswvvPAC3377Lbdv32bKlCn06tWL8PBwXFxcDKySL1y4gJmZmVTeKHN/3KuFcseOHQkKCsLHx4ecnBw++eQT+vTpQ3h4uJQYKiMjUznkyIDMQ41Op5NCuo6OjjRq1Eh6bN68eaxevRq1Ws3hw4fRarWcOnUKOzs7A2e+uLg4mjVrhru7e42Pv6EgWihv3bq10mv+vXr14qWXXqJz587069eP77//Hg8PD9atW1fNo5WRaXgoBHlxS0am0pw6dQqFQoG/vz9Q0qJ5yJAh9OnTh/Xr19fy6Oove/fuZeTIkQZLPDqdTrKzNmahbIwpU6Zw/fp1fvvtt+ocroxMg0NeJpCRuQtl3QXLmvBYWVkxffp0OV/gAbkfC+WyCILAhQsX8PHxqa5hysg0WGQxICNzF8rehMqWM9rZ2fHKK6/U9LAaHPdjofzuu+/Sq1cv2rdvT05ODmvXruXChQt89tlnNT5+GZn6jiwGZGTuAWNtfgVBqLRzosz9c/XqVYPznJWVxSuvvEJqaip2dnZ07dqV4OBgaQlHRkam8sg5AzIyMjIyMg858nRGRkZGRkbmIUcWAzIyMjIyMg85/w9kO24PpJlYeAAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "iris = DataSet(name=\"iris\")\n", "\n", "show_iris()\n", "show_iris(0, 1, 3)\n", "show_iris(1, 2, 3)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "You can play around with the values to get a good look at the dataset." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## DISTANCE FUNCTIONS\n", "\n", "In a lot of algorithms (like the *k-Nearest Neighbors* algorithm), there is a need to compare items, finding how *similar* or *close* they are. For that we have many different functions at our disposal. Below are the functions implemented in the module:\n", "\n", "### Manhattan Distance (`manhattan_distance`)\n", "\n", "One of the simplest distance functions. It calculates the difference between the coordinates/features of two items. To understand how it works, imagine a 2D grid with coordinates *x* and *y*. In that grid we have two items, at the squares positioned at `(1,2)` and `(3,4)`. The difference between their two coordinates is `3-1=2` and `4-2=2`. If we sum these up we get `4`. That means to get from `(1,2)` to `(3,4)` we need four moves; two to the right and two more up. The function works similarly for n-dimensional grids." ] }, { "cell_type": "code", "execution_count": 44, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Manhattan Distance between (1,2) and (3,4) is 4\n" ] } ], "source": [ "def manhattan_distance(X, Y):\n", " return sum([abs(x - y) for x, y in zip(X, Y)])\n", "\n", "\n", "distance = manhattan_distance([1,2], [3,4])\n", "print(\"Manhattan Distance between (1,2) and (3,4) is\", distance)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Euclidean Distance (`euclidean_distance`)\n", "\n", "Probably the most popular distance function. It returns the square root of the sum of the squared differences between individual elements of two items." ] }, { "cell_type": "code", "execution_count": 45, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Euclidean Distance between (1,2) and (3,4) is 2.8284271247461903\n" ] } ], "source": [ "def euclidean_distance(X, Y):\n", " return math.sqrt(sum([(x - y)**2 for x, y in zip(X,Y)]))\n", "\n", "\n", "distance = euclidean_distance([1,2], [3,4])\n", "print(\"Euclidean Distance between (1,2) and (3,4) is\", distance)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Hamming Distance (`hamming_distance`)\n", "\n", "This function counts the number of differences between single elements in two items. For example, if we have two binary strings \"111\" and \"011\" the function will return 1, since the two strings only differ at the first element. The function works the same way for non-binary strings too." ] }, { "cell_type": "code", "execution_count": 46, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Hamming Distance between 'abc' and 'abb' is 1\n" ] } ], "source": [ "def hamming_distance(X, Y):\n", " return sum(x != y for x, y in zip(X, Y))\n", "\n", "\n", "distance = hamming_distance(['a','b','c'], ['a','b','b'])\n", "print(\"Hamming Distance between 'abc' and 'abb' is\", distance)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Mean Boolean Error (`mean_boolean_error`)\n", "\n", "To calculate this distance, we find the ratio of different elements over all elements of two items. For example, if the two items are `(1,2,3)` and `(1,4,5)`, the ration of different/all elements is 2/3, since they differ in two out of three elements." ] }, { "cell_type": "code", "execution_count": 47, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Mean Boolean Error Distance between (1,2,3) and (1,4,5) is 0.6666666666666666\n" ] } ], "source": [ "def mean_boolean_error(X, Y):\n", " return mean(int(x != y) for x, y in zip(X, Y))\n", "\n", "\n", "distance = mean_boolean_error([1,2,3], [1,4,5])\n", "print(\"Mean Boolean Error Distance between (1,2,3) and (1,4,5) is\", distance)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Mean Error (`mean_error`)\n", "\n", "This function finds the mean difference of single elements between two items. For example, if the two items are `(1,0,5)` and `(3,10,5)`, their error distance is `(3-1) + (10-0) + (5-5) = 2 + 10 + 0 = 12`. The mean error distance therefore is `12/3=4`." ] }, { "cell_type": "code", "execution_count": 48, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Mean Error Distance between (1,0,5) and (3,10,5) is 4\n" ] } ], "source": [ "def mean_error(X, Y):\n", " return mean([abs(x - y) for x, y in zip(X, Y)])\n", "\n", "\n", "distance = mean_error([1,0,5], [3,10,5])\n", "print(\"Mean Error Distance between (1,0,5) and (3,10,5) is\", distance)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Mean Square Error (`ms_error`)\n", "\n", "This is very similar to the `Mean Error`, but instead of calculating the difference between elements, we are calculating the *square* of the differences." ] }, { "cell_type": "code", "execution_count": 49, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Mean Square Distance between (1,0,5) and (3,10,5) is 34.666666666666664\n" ] } ], "source": [ "def ms_error(X, Y):\n", " return mean([(x - y)**2 for x, y in zip(X, Y)])\n", "\n", "\n", "distance = ms_error([1,0,5], [3,10,5])\n", "print(\"Mean Square Distance between (1,0,5) and (3,10,5) is\", distance)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Root of Mean Square Error (`rms_error`)\n", "\n", "This is the square root of `Mean Square Error`." ] }, { "cell_type": "code", "execution_count": 50, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Root of Mean Error Distance between (1,0,5) and (3,10,5) is 5.887840577551898\n" ] } ], "source": [ "def rms_error(X, Y):\n", " return math.sqrt(ms_error(X, Y))\n", "\n", "\n", "distance = rms_error([1,0,5], [3,10,5])\n", "print(\"Root of Mean Error Distance between (1,0,5) and (3,10,5) is\", distance)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## PLURALITY LEARNER CLASSIFIER\n", "\n", "### Overview\n", "\n", "The Plurality Learner is a simple algorithm, used mainly as a baseline comparison for other algorithms. It finds the most popular class in the dataset and classifies any subsequent item to that class. Essentially, it classifies every new item to the same class. For that reason, it is not used very often, instead opting for more complicated algorithms when we want accurate classification.\n", "\n", "![pL plot](images/pluralityLearner_plot.png)\n", "\n", "Let's see how the classifier works with the plot above. There are three classes named **Class A** (orange-colored dots) and **Class B** (blue-colored dots) and **Class C** (green-colored dots). Every point in this plot has two **features** (i.e. X1, X2). Now, let's say we have a new point, a red star and we want to know which class this red star belongs to. Solving this problem by predicting the class of this new red star is our current classification problem.\n", "\n", "The Plurality Learner will find the class most represented in the plot. ***Class A*** has four items, ***Class B*** has three and ***Class C*** has seven. The most popular class is ***Class C***. Therefore, the item will get classified in ***Class C***, despite the fact that it is closer to the other two classes." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Implementation\n", "\n", "Below follows the implementation of the PluralityLearner algorithm:" ] }, { "cell_type": "code", "execution_count": 51, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\n", "\n", " \n", " \n", " \n", "\n", "\n", "

\n", "\n", "
def PluralityLearner(dataset):\n",
       "    """A very dumb algorithm: always pick the result that was most popular\n",
       "    in the training data.  Makes a baseline for comparison."""\n",
       "    most_popular = mode([e[dataset.target] for e in dataset.examples])\n",
       "\n",
       "    def predict(example):\n",
       "        """Always return same result: the most popular from the training set."""\n",
       "        return most_popular\n",
       "    return predict\n",
       "
\n", "\n", "\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "psource(PluralityLearner)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "It takes as input a dataset and returns a function. We can later call this function with the item we want to classify as the argument and it returns the class it should be classified in.\n", "\n", "The function first finds the most popular class in the dataset and then each time we call its \"predict\" function, it returns it. Note that the input (\"example\") does not matter. The function always returns the same class." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Example\n", "\n", "For this example, we will not use the Iris dataset, since each class is represented the same. This will throw an error. Instead we will use the zoo dataset." ] }, { "cell_type": "code", "execution_count": 52, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "mammal\n" ] } ], "source": [ "zoo = DataSet(name=\"zoo\")\n", "\n", "pL = PluralityLearner(zoo)\n", "print(pL([1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 4, 1, 0, 1]))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The output for the above code is \"mammal\", since that is the most popular and common class in the dataset." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## K-NEAREST NEIGHBOURS CLASSIFIER\n", "\n", "### Overview\n", "The k-Nearest Neighbors algorithm is a non-parametric method used for classification and regression. We are going to use this to classify Iris flowers. More about kNN on [Scholarpedia](http://www.scholarpedia.org/article/K-nearest_neighbor).\n", "\n", "![kNN plot](images/knn_plot.png)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's see how kNN works with a simple plot shown in the above picture.\n", "\n", "We have co-ordinates (we call them **features** in Machine Learning) of this red star and we need to predict its class using the kNN algorithm. In this algorithm, the value of **k** is arbitrary. **k** is one of the **hyper parameters** for kNN algorithm. We choose this number based on our dataset and choosing a particular number is known as **hyper parameter tuning/optimising**. We learn more about this in coming topics.\n", "\n", "Let's put **k = 3**. It means you need to find 3-Nearest Neighbors of this red star and classify this new point into the majority class. Observe that smaller circle which contains three points other than **test point** (red star). As there are two violet points, which form the majority, we predict the class of red star as **violet- Class B**.\n", "\n", "Similarly if we put **k = 5**, you can observe that there are three yellow points, which form the majority. So, we classify our test point as **yellow- Class A**.\n", "\n", "In practical tasks, we iterate through a bunch of values for k (like [1, 3, 5, 10, 20, 50, 100]), see how it performs and select the best one. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Implementation\n", "\n", "Below follows the implementation of the kNN algorithm:" ] }, { "cell_type": "code", "execution_count": 53, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\n", "\n", " \n", " \n", " \n", "\n", "\n", "

\n", "\n", "
def NearestNeighborLearner(dataset, k=1):\n",
       "    """k-NearestNeighbor: the k nearest neighbors vote."""\n",
       "    def predict(example):\n",
       "        """Find the k closest items, and have them vote for the best."""\n",
       "        best = heapq.nsmallest(k, ((dataset.distance(e, example), e)\n",
       "                                   for e in dataset.examples))\n",
       "        return mode(e[dataset.target] for (d, e) in best)\n",
       "    return predict\n",
       "
\n", "\n", "\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "psource(NearestNeighborLearner)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "It takes as input a dataset and k (default value is 1) and it returns a function, which we can later use to classify a new item.\n", "\n", "To accomplish that, the function uses a heap-queue, where the items of the dataset are sorted according to their distance from *example* (the item to classify). We then take the k smallest elements from the heap-queue and we find the majority class. We classify the item to this class." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Example\n", "\n", "We measured a new flower with the following values: 5.1, 3.0, 1.1, 0.1. We want to classify that item/flower in a class. To do that, we write the following:" ] }, { "cell_type": "code", "execution_count": 54, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "setosa\n" ] } ], "source": [ "iris = DataSet(name=\"iris\")\n", "\n", "kNN = NearestNeighborLearner(iris,k=3)\n", "print(kNN([5.1,3.0,1.1,0.1]))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The output of the above code is \"setosa\", which means the flower with the above measurements is of the \"setosa\" species." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## DECISION TREE LEARNER\n", "\n", "### Overview\n", "\n", "#### Decision Trees\n", "A decision tree is a flowchart that uses a tree of decisions and their possible consequences for classification. At each non-leaf node of the tree an attribute of the input is tested, based on which corresponding branch leading to a child-node is selected. At the leaf node the input is classified based on the class label of this leaf node. The paths from root to leaves represent classification rules based on which leaf nodes are assigned class labels.\n", "![perceptron](images/decisiontree_fruit.jpg)\n", "#### Decision Tree Learning\n", "Decision tree learning is the construction of a decision tree from class-labeled training data. The data is expected to be a tuple in which each record of the tuple is an attribute used for classification. The decision tree is built top-down, by choosing a variable at each step that best splits the set of items. There are different metrics for measuring the \"best split\". These generally measure the homogeneity of the target variable within the subsets.\n", "\n", "#### Gini Impurity\n", "Gini impurity of a set is the probability of a randomly chosen element to be incorrectly labeled if it was randomly labeled according to the distribution of labels in the set.\n", "\n", "$$I_G(p) = \\sum{p_i(1 - p_i)} = 1 - \\sum{p_i^2}$$\n", "\n", "We select a split which minimizes the Gini impurity in child nodes.\n", "\n", "#### Information Gain\n", "Information gain is based on the concept of entropy from information theory. Entropy is defined as:\n", "\n", "$$H(p) = -\\sum{p_i \\log_2{p_i}}$$\n", "\n", "Information Gain is difference between entropy of the parent and weighted sum of entropy of children. The feature used for splitting is the one which provides the most information gain.\n", "\n", "#### Pseudocode\n", "\n", "You can view the pseudocode by running the cell below:" ] }, { "cell_type": "code", "execution_count": 55, "metadata": {}, "outputs": [ { "data": { "text/markdown": [ "### AIMA3e\n", "__function__ DECISION-TREE-LEARNING(_examples_, _attributes_, _parent\\_examples_) __returns__ a tree \n", " __if__ _examples_ is empty __then return__ PLURALITY\\-VALUE(_parent\\_examples_) \n", " __else if__ all _examples_ have the same classification __then return__ the classification \n", " __else if__ _attributes_ is empty __then return__ PLURALITY\\-VALUE(_examples_) \n", " __else__ \n", "   _A_ ← argmax_a_ ∈ _attributes_ IMPORTANCE(_a_, _examples_) \n", "   _tree_ ← a new decision tree with root test _A_ \n", "   __for each__ value _vk_ of _A_ __do__ \n", "     _exs_ ← \\{ _e_ : _e_ ∈ _examples_ __and__ _e_._A_ = _vk_ \\} \n", "     _subtree_ ← DECISION-TREE-LEARNING(_exs_, _attributes_ − _A_, _examples_) \n", "     add a branch to _tree_ with label \\(_A_ = _vk_\\) and subtree _subtree_ \n", "   __return__ _tree_ \n", "\n", "---\n", "__Figure ??__ The decision\\-tree learning algorithm. The function IMPORTANCE is described in Section __??__. The function PLURALITY\\-VALUE selects the most common output value among a set of examples, breaking ties randomly." ], "text/plain": [ "" ] }, "execution_count": 55, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pseudocode(\"Decision Tree Learning\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Implementation\n", "The nodes of the tree constructed by our learning algorithm are stored using either `DecisionFork` or `DecisionLeaf` based on whether they are a parent node or a leaf node respectively." ] }, { "cell_type": "code", "execution_count": 56, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\n", "\n", " \n", " \n", " \n", "\n", "\n", "

\n", "\n", "
class DecisionFork:\n",
       "    """A fork of a decision tree holds an attribute to test, and a dict\n",
       "    of branches, one for each of the attribute's values."""\n",
       "\n",
       "    def __init__(self, attr, attrname=None, default_child=None, branches=None):\n",
       "        """Initialize by saying what attribute this node tests."""\n",
       "        self.attr = attr\n",
       "        self.attrname = attrname or attr\n",
       "        self.default_child = default_child\n",
       "        self.branches = branches or {}\n",
       "\n",
       "    def __call__(self, example):\n",
       "        """Given an example, classify it using the attribute and the branches."""\n",
       "        attrvalue = example[self.attr]\n",
       "        if attrvalue in self.branches:\n",
       "            return self.branches[attrvalue](example)\n",
       "        else:\n",
       "            # return default class when attribute is unknown\n",
       "            return self.default_child(example)\n",
       "\n",
       "    def add(self, val, subtree):\n",
       "        """Add a branch.  If self.attr = val, go to the given subtree."""\n",
       "        self.branches[val] = subtree\n",
       "\n",
       "    def display(self, indent=0):\n",
       "        name = self.attrname\n",
       "        print('Test', name)\n",
       "        for (val, subtree) in self.branches.items():\n",
       "            print(' ' * 4 * indent, name, '=', val, '==>', end=' ')\n",
       "            subtree.display(indent + 1)\n",
       "        print()   # newline\n",
       "\n",
       "    def __repr__(self):\n",
       "        return ('DecisionFork({0!r}, {1!r}, {2!r})'\n",
       "                .format(self.attr, self.attrname, self.branches))\n",
       "
\n", "\n", "\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "psource(DecisionFork)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "`DecisionFork` holds the attribute, which is tested at that node, and a dict of branches. The branches store the child nodes, one for each of the attribute's values. Calling an object of this class as a function with input tuple as an argument returns the next node in the classification path based on the result of the attribute test." ] }, { "cell_type": "code", "execution_count": 57, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\n", "\n", " \n", " \n", " \n", "\n", "\n", "

\n", "\n", "
class DecisionLeaf:\n",
       "    """A leaf of a decision tree holds just a result."""\n",
       "\n",
       "    def __init__(self, result):\n",
       "        self.result = result\n",
       "\n",
       "    def __call__(self, example):\n",
       "        return self.result\n",
       "\n",
       "    def display(self, indent=0):\n",
       "        print('RESULT =', self.result)\n",
       "\n",
       "    def __repr__(self):\n",
       "        return repr(self.result)\n",
       "
\n", "\n", "\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "psource(DecisionLeaf)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The leaf node stores the class label in `result`. All input tuples' classification paths end on a `DecisionLeaf` whose `result` attribute decide their class." ] }, { "cell_type": "code", "execution_count": 58, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\n", "\n", " \n", " \n", " \n", "\n", "\n", "

\n", "\n", "
def DecisionTreeLearner(dataset):\n",
       "    """[Figure 18.5]"""\n",
       "\n",
       "    target, values = dataset.target, dataset.values\n",
       "\n",
       "    def decision_tree_learning(examples, attrs, parent_examples=()):\n",
       "        if len(examples) == 0:\n",
       "            return plurality_value(parent_examples)\n",
       "        elif all_same_class(examples):\n",
       "            return DecisionLeaf(examples[0][target])\n",
       "        elif len(attrs) == 0:\n",
       "            return plurality_value(examples)\n",
       "        else:\n",
       "            A = choose_attribute(attrs, examples)\n",
       "            tree = DecisionFork(A, dataset.attrnames[A], plurality_value(examples))\n",
       "            for (v_k, exs) in split_by(A, examples):\n",
       "                subtree = decision_tree_learning(\n",
       "                    exs, removeall(A, attrs), examples)\n",
       "                tree.add(v_k, subtree)\n",
       "            return tree\n",
       "\n",
       "    def plurality_value(examples):\n",
       "        """Return the most popular target value for this set of examples.\n",
       "        (If target is binary, this is the majority; otherwise plurality.)"""\n",
       "        popular = argmax_random_tie(values[target],\n",
       "                                    key=lambda v: count(target, v, examples))\n",
       "        return DecisionLeaf(popular)\n",
       "\n",
       "    def count(attr, val, examples):\n",
       "        """Count the number of examples that have example[attr] = val."""\n",
       "        return sum(e[attr] == val for e in examples)\n",
       "\n",
       "    def all_same_class(examples):\n",
       "        """Are all these examples in the same target class?"""\n",
       "        class0 = examples[0][target]\n",
       "        return all(e[target] == class0 for e in examples)\n",
       "\n",
       "    def choose_attribute(attrs, examples):\n",
       "        """Choose the attribute with the highest information gain."""\n",
       "        return argmax_random_tie(attrs,\n",
       "                                 key=lambda a: information_gain(a, examples))\n",
       "\n",
       "    def information_gain(attr, examples):\n",
       "        """Return the expected reduction in entropy from splitting by attr."""\n",
       "        def I(examples):\n",
       "            return information_content([count(target, v, examples)\n",
       "                                        for v in values[target]])\n",
       "        N = len(examples)\n",
       "        remainder = sum((len(examples_i)/N) * I(examples_i)\n",
       "                        for (v, examples_i) in split_by(attr, examples))\n",
       "        return I(examples) - remainder\n",
       "\n",
       "    def split_by(attr, examples):\n",
       "        """Return a list of (val, examples) pairs for each val of attr."""\n",
       "        return [(v, [e for e in examples if e[attr] == v])\n",
       "                for v in values[attr]]\n",
       "\n",
       "    return decision_tree_learning(dataset.examples, dataset.inputs)\n",
       "
\n", "\n", "\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "psource(DecisionTreeLearner)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The implementation of `DecisionTreeLearner` provided in [learning.py](https://github.com/aimacode/aima-python/blob/master/learning.py) uses information gain as the metric for selecting which attribute to test for splitting. The function builds the tree top-down in a recursive manner. Based on the input it makes one of the four choices:\n", "
    \n", "
  1. If the input at the current step has no training data we return the mode of classes of input data received in the parent step (previous level of recursion).
  2. \n", "
  3. If all values in training data belong to the same class it returns a `DecisionLeaf` whose class label is the class which all the data belongs to.
  4. \n", "
  5. If the data has no attributes that can be tested we return the class with highest plurality value in the training data.
  6. \n", "
  7. We choose the attribute which gives the highest amount of entropy gain and return a `DecisionFork` which splits based on this attribute. Each branch recursively calls `decision_tree_learning` to construct the sub-tree.
  8. \n", "
" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Example\n", "\n", "We will now use the Decision Tree Learner to classify a sample with values: 5.1, 3.0, 1.1, 0.1." ] }, { "cell_type": "code", "execution_count": 59, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "setosa\n" ] } ], "source": [ "iris = DataSet(name=\"iris\")\n", "\n", "DTL = DecisionTreeLearner(iris)\n", "print(DTL([5.1, 3.0, 1.1, 0.1]))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "As expected, the Decision Tree learner classifies the sample as \"setosa\" as seen in the previous section." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## RANDOM FOREST LEARNER\n", "\n", "### Overview\n", "\n", "![random_forest.png](images/random_forest.png) \n", "Image via [src](https://cdn-images-1.medium.com/max/800/0*tG-IWcxL1jg7RkT0.png)\n", "\n", "#### Random Forest\n", "\n", "As the name of the algorithm and image above suggest, this algorithm creates the forest with a number of trees. The more number of trees makes the forest robust. In the same way in random forest algorithm, the higher the number of trees in the forest, the higher is the accuray result. The main difference between Random Forest and Decision trees is that, finding the root node and splitting the feature nodes will be random. \n", "\n", "Let's see how Rnadom Forest Algorithm work : \n", "Random Forest Algorithm works in two steps, first is the creation of random forest and then the prediction. Let's first see the creation : \n", "\n", "The first step in creation is to randomly select 'm' features out of total 'n' features. From these 'm' features calculate the node d using the best split point and then split the node into further nodes using best split. Repeat these steps until 'i' number of nodes are reached. Repeat the entire whole process to build the forest. \n", "\n", "Now, let's see how the prediction works\n", "Take the test features and predict the outcome for each randomly created decision tree. Calculate the votes for each prediction and the prediction which gets the highest votes would be the final prediction.\n", "\n", "\n", "### Implementation\n", "\n", "Below mentioned is the implementation of Random Forest Algorithm." ] }, { "cell_type": "code", "execution_count": 60, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\n", "\n", " \n", " \n", " \n", "\n", "\n", "

\n", "\n", "
def RandomForest(dataset, n=5):\n",
       "    """An ensemble of Decision Trees trained using bagging and feature bagging."""\n",
       "\n",
       "    def data_bagging(dataset, m=0):\n",
       "        """Sample m examples with replacement"""\n",
       "        n = len(dataset.examples)\n",
       "        return weighted_sample_with_replacement(m or n, dataset.examples, [1]*n)\n",
       "\n",
       "    def feature_bagging(dataset, p=0.7):\n",
       "        """Feature bagging with probability p to retain an attribute"""\n",
       "        inputs = [i for i in dataset.inputs if probability(p)]\n",
       "        return inputs or dataset.inputs\n",
       "\n",
       "    def predict(example):\n",
       "        print([predictor(example) for predictor in predictors])\n",
       "        return mode(predictor(example) for predictor in predictors)\n",
       "\n",
       "    predictors = [DecisionTreeLearner(DataSet(examples=data_bagging(dataset),\n",
       "                                              attrs=dataset.attrs,\n",
       "                                              attrnames=dataset.attrnames,\n",
       "                                              target=dataset.target,\n",
       "                                              inputs=feature_bagging(dataset))) for _ in range(n)]\n",
       "\n",
       "    return predict\n",
       "
\n", "\n", "\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "psource(RandomForest)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This algorithm creates an ensemble of decision trees using bagging and feature bagging. It takes 'm' examples randomly from the total number of examples and then perform feature bagging with probability p to retain an attribute. All the predictors are predicted from the DecisionTreeLearner and then a final prediction is made.\n", "\n", "\n", "### Example\n", "\n", "We will now use the Random Forest to classify a sample with values: 5.1, 3.0, 1.1, 0.1." ] }, { "cell_type": "code", "execution_count": 61, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "['setosa', 'setosa', 'versicolor', 'setosa', 'setosa']\n", "setosa\n" ] } ], "source": [ "iris = DataSet(name=\"iris\")\n", "\n", "DTL = RandomForest(iris)\n", "print(DTL([5.1, 3.0, 1.1, 0.1]))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "As expected, the Random Forest classifies the sample as \"setosa\"." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## NAIVE BAYES LEARNER\n", "\n", "### Overview\n", "\n", "#### Theory of Probabilities\n", "\n", "The Naive Bayes algorithm is a probabilistic classifier, making use of [Bayes' Theorem](https://en.wikipedia.org/wiki/Bayes%27_theorem). The theorem states that the conditional probability of **A** given **B** equals the conditional probability of **B** given **A** multiplied by the probability of **A**, divided by the probability of **B**.\n", "\n", "$$P(A|B) = \\dfrac{P(B|A)*P(A)}{P(B)}$$\n", "\n", "From the theory of Probabilities we have the Multiplication Rule, if the events *X* are independent the following is true:\n", "\n", "$$P(X_{1} \\cap X_{2} \\cap ... \\cap X_{n}) = P(X_{1})*P(X_{2})*...*P(X_{n})$$\n", "\n", "For conditional probabilities this becomes:\n", "\n", "$$P(X_{1}, X_{2}, ..., X_{n}|Y) = P(X_{1}|Y)*P(X_{2}|Y)*...*P(X_{n}|Y)$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Classifying an Item\n", "\n", "How can we use the above to classify an item though?\n", "\n", "We have a dataset with a set of classes (**C**) and we want to classify an item with a set of features (**F**). Essentially what we want to do is predict the class of an item given the features.\n", "\n", "For a specific class, **Class**, we will find the conditional probability given the item features:\n", "\n", "$$P(Class|F) = \\dfrac{P(F|Class)*P(Class)}{P(F)}$$\n", "\n", "We will do this for every class and we will pick the maximum. This will be the class the item is classified in.\n", "\n", "The features though are a vector with many elements. We need to break the probabilities up using the multiplication rule. Thus the above equation becomes:\n", "\n", "$$P(Class|F) = \\dfrac{P(Class)*P(F_{1}|Class)*P(F_{2}|Class)*...*P(F_{n}|Class)}{P(F_{1})*P(F_{2})*...*P(F_{n})}$$\n", "\n", "The calculation of the conditional probability then depends on the calculation of the following:\n", "\n", "*a)* The probability of **Class** in the dataset.\n", "\n", "*b)* The conditional probability of each feature occurring in an item classified in **Class**.\n", "\n", "*c)* The probabilities of each individual feature.\n", "\n", "For *a)*, we will count how many times **Class** occurs in the dataset (aka how many items are classified in a particular class).\n", "\n", "For *b)*, if the feature values are discrete ('Blue', '3', 'Tall', etc.), we will count how many times a feature value occurs in items of each class. If the feature values are not discrete, we will go a different route. We will use a distribution function to calculate the probability of values for a given class and feature. If we know the distribution function of the dataset, then great, we will use it to compute the probabilities. If we don't know the function, we can assume the dataset follows the normal (Gaussian) distribution without much loss of accuracy. In fact, it can be proven that any distribution tends to the Gaussian the larger the population gets (see [Central Limit Theorem](https://en.wikipedia.org/wiki/Central_limit_theorem)).\n", "\n", "*NOTE:* If the values are continuous but use the discrete approach, there might be issues if we are not lucky. For one, if we have two values, '5.0 and 5.1', with the discrete approach they will be two completely different values, despite being so close. Second, if we are trying to classify an item with a feature value of '5.15', if the value does not appear for the feature, its probability will be 0. This might lead to misclassification. Generally, the continuous approach is more accurate and more useful, despite the overhead of calculating the distribution function.\n", "\n", "The last one, *c)*, is tricky. If feature values are discrete, we can count how many times they occur in the dataset. But what if the feature values are continuous? Imagine a dataset with a height feature. Is it worth it to count how many times each value occurs? Most of the time it is not, since there can be miscellaneous differences in the values (for example, 1.7 meters and 1.700001 meters are practically equal, but they count as different values).\n", "\n", "So as we cannot calculate the feature value probabilities, what are we going to do?\n", "\n", "Let's take a step back and rethink exactly what we are doing. We are essentially comparing conditional probabilities of all the classes. For two classes, **A** and **B**, we want to know which one is greater:\n", "\n", "$$\\dfrac{P(F|A)*P(A)}{P(F)} vs. \\dfrac{P(F|B)*P(B)}{P(F)}$$\n", "\n", "Wait, **P(F)** is the same for both the classes! In fact, it is the same for every combination of classes. That is because **P(F)** does not depend on a class, thus being independent of the classes.\n", "\n", "So, for *c)*, we actually don't need to calculate it at all." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Wrapping It Up\n", "\n", "Classifying an item to a class then becomes a matter of calculating the conditional probabilities of feature values and the probabilities of classes. This is something very desirable and computationally delicious.\n", "\n", "Remember though that all the above are true because we made the assumption that the features are independent. In most real-world cases that is not true though. Is that an issue here? Fret not, for the the algorithm is very efficient even with that assumption. That is why the algorithm is called **Naive** Bayes Classifier. We (naively) assume that the features are independent to make computations easier." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Implementation\n", "\n", "The implementation of the Naive Bayes Classifier is split in two; *Learning* and *Simple*. The *learning* classifier takes as input a dataset and learns the needed distributions from that. It is itself split into two, for discrete and continuous features. The *simple* classifier takes as input not a dataset, but already calculated distributions (a dictionary of `CountingProbDist` objects)." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Discrete\n", "\n", "The implementation for discrete values counts how many times each feature value occurs for each class, and how many times each class occurs. The results are stored in a `CountinProbDist` object." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "With the below code you can see the probabilities of the class \"Setosa\" appearing in the dataset and the probability of the first feature (at index 0) of the same class having a value of 5. Notice that the second probability is relatively small, even though if we observe the dataset we will find that a lot of values are around 5. The issue arises because the features in the Iris dataset are continuous, and we are assuming they are discrete. If the features were discrete (for example, \"Tall\", \"3\", etc.) this probably wouldn't have been the case and we would see a much nicer probability distribution." ] }, { "cell_type": "code", "execution_count": 62, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0.3333333333333333\n", "0.10588235294117647\n" ] } ], "source": [ "dataset = iris\n", "\n", "target_vals = dataset.values[dataset.target]\n", "target_dist = CountingProbDist(target_vals)\n", "attr_dists = {(gv, attr): CountingProbDist(dataset.values[attr])\n", " for gv in target_vals\n", " for attr in dataset.inputs}\n", "for example in dataset.examples:\n", " targetval = example[dataset.target]\n", " target_dist.add(targetval)\n", " for attr in dataset.inputs:\n", " attr_dists[targetval, attr].add(example[attr])\n", "\n", "\n", "print(target_dist['setosa'])\n", "print(attr_dists['setosa', 0][5.0])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "First we found the different values for the classes (called targets here) and calculated their distribution. Next we initialized a dictionary of `CountingProbDist` objects, one for each class and feature. Finally, we iterated through the examples in the dataset and calculated the needed probabilites.\n", "\n", "Having calculated the different probabilities, we will move on to the predicting function. It will receive as input an item and output the most likely class. Using the above formula, it will multiply the probability of the class appearing, with the probability of each feature value appearing in the class. It will return the max result." ] }, { "cell_type": "code", "execution_count": 63, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "setosa\n" ] } ], "source": [ "def predict(example):\n", " def class_probability(targetval):\n", " return (target_dist[targetval] *\n", " product(attr_dists[targetval, attr][example[attr]]\n", " for attr in dataset.inputs))\n", " return argmax(target_vals, key=class_probability)\n", "\n", "\n", "print(predict([5, 3, 1, 0.1]))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "You can view the complete code by executing the next line:" ] }, { "cell_type": "code", "execution_count": 64, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\n", "\n", " \n", " \n", " \n", "\n", "\n", "

\n", "\n", "
def NaiveBayesDiscrete(dataset):\n",
       "    """Just count how many times each value of each input attribute\n",
       "    occurs, conditional on the target value. Count the different\n",
       "    target values too."""\n",
       "\n",
       "    target_vals = dataset.values[dataset.target]\n",
       "    target_dist = CountingProbDist(target_vals)\n",
       "    attr_dists = {(gv, attr): CountingProbDist(dataset.values[attr])\n",
       "                  for gv in target_vals\n",
       "                  for attr in dataset.inputs}\n",
       "    for example in dataset.examples:\n",
       "        targetval = example[dataset.target]\n",
       "        target_dist.add(targetval)\n",
       "        for attr in dataset.inputs:\n",
       "            attr_dists[targetval, attr].add(example[attr])\n",
       "\n",
       "    def predict(example):\n",
       "        """Predict the target value for example. Consider each possible value,\n",
       "        and pick the most likely by looking at each attribute independently."""\n",
       "        def class_probability(targetval):\n",
       "            return (target_dist[targetval] *\n",
       "                    product(attr_dists[targetval, attr][example[attr]]\n",
       "                            for attr in dataset.inputs))\n",
       "        return argmax(target_vals, key=class_probability)\n",
       "\n",
       "    return predict\n",
       "
\n", "\n", "\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "psource(NaiveBayesDiscrete)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Continuous\n", "\n", "In the implementation we use the Gaussian/Normal distribution function. To make it work, we need to find the means and standard deviations of features for each class. We make use of the `find_means_and_deviations` Dataset function. On top of that, we will also calculate the class probabilities as we did with the Discrete approach." ] }, { "cell_type": "code", "execution_count": 65, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[5.006, 3.418, 1.464, 0.244]\n", "[0.5161711470638634, 0.3137983233784114, 0.46991097723995795, 0.19775268000454405]\n" ] } ], "source": [ "means, deviations = dataset.find_means_and_deviations()\n", "\n", "target_vals = dataset.values[dataset.target]\n", "target_dist = CountingProbDist(target_vals)\n", "\n", "\n", "print(means[\"setosa\"])\n", "print(deviations[\"versicolor\"])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "You can see the means of the features for the \"Setosa\" class and the deviations for \"Versicolor\".\n", "\n", "The prediction function will work similarly to the Discrete algorithm. It will multiply the probability of the class occurring with the conditional probabilities of the feature values for the class.\n", "\n", "Since we are using the Gaussian distribution, we will input the value for each feature into the Gaussian function, together with the mean and deviation of the feature. This will return the probability of the particular feature value for the given class. We will repeat for each class and pick the max value." ] }, { "cell_type": "code", "execution_count": 66, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "setosa\n" ] } ], "source": [ "def predict(example):\n", " def class_probability(targetval):\n", " prob = target_dist[targetval]\n", " for attr in dataset.inputs:\n", " prob *= gaussian(means[targetval][attr], deviations[targetval][attr], example[attr])\n", " return prob\n", "\n", " return argmax(target_vals, key=class_probability)\n", "\n", "\n", "print(predict([5, 3, 1, 0.1]))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The complete code of the continuous algorithm:" ] }, { "cell_type": "code", "execution_count": 67, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\n", "\n", " \n", " \n", " \n", "\n", "\n", "

\n", "\n", "
def NaiveBayesContinuous(dataset):\n",
       "    """Count how many times each target value occurs.\n",
       "    Also, find the means and deviations of input attribute values for each target value."""\n",
       "    means, deviations = dataset.find_means_and_deviations()\n",
       "\n",
       "    target_vals = dataset.values[dataset.target]\n",
       "    target_dist = CountingProbDist(target_vals)\n",
       "\n",
       "    def predict(example):\n",
       "        """Predict the target value for example. Consider each possible value,\n",
       "        and pick the most likely by looking at each attribute independently."""\n",
       "        def class_probability(targetval):\n",
       "            prob = target_dist[targetval]\n",
       "            for attr in dataset.inputs:\n",
       "                prob *= gaussian(means[targetval][attr], deviations[targetval][attr], example[attr])\n",
       "            return prob\n",
       "\n",
       "        return argmax(target_vals, key=class_probability)\n",
       "\n",
       "    return predict\n",
       "
\n", "\n", "\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "psource(NaiveBayesContinuous)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Simple\n", "\n", "The simple classifier (chosen with the argument `simple`) does not learn from a dataset, instead it takes as input a dictionary of already calculated `CountingProbDist` objects and returns a predictor function. The dictionary is in the following form: `(Class Name, Class Probability): CountingProbDist Object`.\n", "\n", "Each class has its own probability distribution. The classifier given a list of features calculates the probability of the input for each class and returns the max. The only pre-processing work is to create dictionaries for the distribution of classes (named `targets`) and attributes/features.\n", "\n", "The complete code for the simple classifier:" ] }, { "cell_type": "code", "execution_count": 68, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\n", "\n", " \n", " \n", " \n", "\n", "\n", "

\n", "\n", "
def NaiveBayesSimple(distribution):\n",
       "    """A simple naive bayes classifier that takes as input a dictionary of\n",
       "    CountingProbDist objects and classifies items according to these distributions.\n",
       "    The input dictionary is in the following form:\n",
       "        (ClassName, ClassProb): CountingProbDist"""\n",
       "    target_dist = {c_name: prob for c_name, prob in distribution.keys()}\n",
       "    attr_dists = {c_name: count_prob for (c_name, _), count_prob in distribution.items()}\n",
       "\n",
       "    def predict(example):\n",
       "        """Predict the target value for example. Calculate probabilities for each\n",
       "        class and pick the max."""\n",
       "        def class_probability(targetval):\n",
       "            attr_dist = attr_dists[targetval]\n",
       "            return target_dist[targetval] * product(attr_dist[a] for a in example)\n",
       "\n",
       "        return argmax(target_dist.keys(), key=class_probability)\n",
       "\n",
       "    return predict\n",
       "
\n", "\n", "\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "psource(NaiveBayesSimple)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This classifier is useful when you already have calculated the distributions and you need to predict future items." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Examples\n", "\n", "We will now use the Naive Bayes Classifier (Discrete and Continuous) to classify items:" ] }, { "cell_type": "code", "execution_count": 69, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Discrete Classifier\n", "setosa\n", "versicolor\n", "versicolor\n", "\n", "Continuous Classifier\n", "setosa\n", "versicolor\n", "virginica\n" ] } ], "source": [ "nBD = NaiveBayesLearner(iris, continuous=False)\n", "print(\"Discrete Classifier\")\n", "print(nBD([5, 3, 1, 0.1]))\n", "print(nBD([6, 5, 3, 1.5]))\n", "print(nBD([7, 3, 6.5, 2]))\n", "\n", "\n", "nBC = NaiveBayesLearner(iris, continuous=True)\n", "print(\"\\nContinuous Classifier\")\n", "print(nBC([5, 3, 1, 0.1]))\n", "print(nBC([6, 5, 3, 1.5]))\n", "print(nBC([7, 3, 6.5, 2]))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Notice how the Discrete Classifier misclassified the second item, while the Continuous one had no problem.\n", "\n", "Let's now take a look at the simple classifier. First we will come up with a sample problem to solve. Say we are given three bags. Each bag contains three letters ('a', 'b' and 'c') of different quantities. We are given a string of letters and we are tasked with finding from which bag the string of letters came.\n", "\n", "Since we know the probability distribution of the letters for each bag, we can use the naive bayes classifier to make our prediction." ] }, { "cell_type": "code", "execution_count": 70, "metadata": {}, "outputs": [], "source": [ "bag1 = 'a'*50 + 'b'*30 + 'c'*15\n", "dist1 = CountingProbDist(bag1)\n", "bag2 = 'a'*30 + 'b'*45 + 'c'*20\n", "dist2 = CountingProbDist(bag2)\n", "bag3 = 'a'*20 + 'b'*20 + 'c'*35\n", "dist3 = CountingProbDist(bag3)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now that we have the `CountingProbDist` objects for each bag/class, we will create the dictionary. We assume that it is equally probable that we will pick from any bag." ] }, { "cell_type": "code", "execution_count": 71, "metadata": {}, "outputs": [], "source": [ "dist = {('First', 0.5): dist1, ('Second', 0.3): dist2, ('Third', 0.2): dist3}\n", "nBS = NaiveBayesLearner(dist, simple=True)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now we can start making predictions:" ] }, { "cell_type": "code", "execution_count": 72, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "First\n", "Second\n", "Third\n" ] } ], "source": [ "print(nBS('aab')) # We can handle strings\n", "print(nBS(['b', 'b'])) # And lists!\n", "print(nBS('ccbcc'))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The results make intuitive sence. The first bag has a high amount of 'a's, the second has a high amount of 'b's and the third has a high amount of 'c's. The classifier seems to confirm this intuition.\n", "\n", "Note that the simple classifier doesn't distinguish between discrete and continuous values. It just takes whatever it is given. Also, the `simple` option on the `NaiveBayesLearner` overrides the `continuous` argument. `NaiveBayesLearner(d, simple=True, continuous=False)` just creates a simple classifier." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## PERCEPTRON CLASSIFIER\n", "\n", "### Overview\n", "\n", "The Perceptron is a linear classifier. It works the same way as a neural network with no hidden layers (just input and output). First it trains its weights given a dataset and then it can classify a new item by running it through the network.\n", "\n", "Its input layer consists of the the item features, while the output layer consists of nodes (also called neurons). Each node in the output layer has *n* synapses (for every item feature), each with its own weight. Then, the nodes find the dot product of the item features and the synapse weights. These values then pass through an activation function (usually a sigmoid). Finally, we pick the largest of the values and we return its index.\n", "\n", "Note that in classification problems each node represents a class. The final classification is the class/node with the max output value.\n", "\n", "Below you can see a single node/neuron in the outer layer. With *f* we denote the item features, with *w* the synapse weights, then inside the node we have the dot product and the activation function, *g*." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "![perceptron](images/perceptron.png)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Implementation\n", "\n", "First, we train (calculate) the weights given a dataset, using the `BackPropagationLearner` function of `learning.py`. We then return a function, `predict`, which we will use in the future to classify a new item. The function computes the (algebraic) dot product of the item with the calculated weights for each node in the outer layer. Then it picks the greatest value and classifies the item in the corresponding class." ] }, { "cell_type": "code", "execution_count": 73, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\n", "\n", " \n", " \n", " \n", "\n", "\n", "

\n", "\n", "
def PerceptronLearner(dataset, learning_rate=0.01, epochs=100):\n",
       "    """Logistic Regression, NO hidden layer"""\n",
       "    i_units = len(dataset.inputs)\n",
       "    o_units = len(dataset.values[dataset.target])\n",
       "    hidden_layer_sizes = []\n",
       "    raw_net = network(i_units, hidden_layer_sizes, o_units)\n",
       "    learned_net = BackPropagationLearner(dataset, raw_net, learning_rate, epochs)\n",
       "\n",
       "    def predict(example):\n",
       "        o_nodes = learned_net[1]\n",
       "\n",
       "        # Forward pass\n",
       "        for node in o_nodes:\n",
       "            in_val = dotproduct(example, node.weights)\n",
       "            node.value = node.activation(in_val)\n",
       "\n",
       "        # Hypothesis\n",
       "        return find_max_node(o_nodes)\n",
       "\n",
       "    return predict\n",
       "
\n", "\n", "\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "psource(PerceptronLearner)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Note that the Perceptron is a one-layer neural network, without any hidden layers. So, in `BackPropagationLearner`, we will pass no hidden layers. From that function we get our network, which is just one layer, with the weights calculated.\n", "\n", "That function `predict` passes the input/example through the network, calculating the dot product of the input and the weights for each node and returns the class with the max dot product." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Example\n", "\n", "We will train the Perceptron on the iris dataset. Because though the `BackPropagationLearner` works with integer indexes and not strings, we need to convert class names to integers. Then, we will try and classify the item/flower with measurements of 5, 3, 1, 0.1." ] }, { "cell_type": "code", "execution_count": 74, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0\n" ] } ], "source": [ "iris = DataSet(name=\"iris\")\n", "iris.classes_to_numbers()\n", "\n", "perceptron = PerceptronLearner(iris)\n", "print(perceptron([5, 3, 1, 0.1]))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The correct output is 0, which means the item belongs in the first class, \"setosa\". Note that the Perceptron algorithm is not perfect and may produce false classifications." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## LINEAR LEARNER\n", "\n", "### Overview\n", "\n", "Linear Learner is a model that assumes a linear relationship between the input variables x and the single output variable y. More specifically, that y can be calculated from a linear combination of the input variables x. Linear learner is a quite simple model as the representation of this model is a linear equation. \n", "\n", "The linear equation assigns one scaler factor to each input value or column, called a coefficients or weights. One additional coefficient is also added, giving additional degree of freedom and is often called the intercept or the bias coefficient. \n", "For example : y = ax1 + bx2 + c . \n", "\n", "### Implementation\n", "\n", "Below mentioned is the implementation of Linear Learner." ] }, { "cell_type": "code", "execution_count": 75, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\n", "\n", " \n", " \n", " \n", "\n", "\n", "

\n", "\n", "
def LinearLearner(dataset, learning_rate=0.01, epochs=100):\n",
       "    """Define with learner = LinearLearner(data); infer with learner(x)."""\n",
       "    idx_i = dataset.inputs\n",
       "    idx_t = dataset.target  # As of now, dataset.target gives only one index.\n",
       "    examples = dataset.examples\n",
       "    num_examples = len(examples)\n",
       "\n",
       "    # X transpose\n",
       "    X_col = [dataset.values[i] for i in idx_i]  # vertical columns of X\n",
       "\n",
       "    # Add dummy\n",
       "    ones = [1 for _ in range(len(examples))]\n",
       "    X_col = [ones] + X_col\n",
       "\n",
       "    # Initialize random weigts\n",
       "    num_weights = len(idx_i) + 1\n",
       "    w = random_weights(min_value=-0.5, max_value=0.5, num_weights=num_weights)\n",
       "\n",
       "    for epoch in range(epochs):\n",
       "        err = []\n",
       "        # Pass over all examples\n",
       "        for example in examples:\n",
       "            x = [1] + example\n",
       "            y = dotproduct(w, x)\n",
       "            t = example[idx_t]\n",
       "            err.append(t - y)\n",
       "\n",
       "        # update weights\n",
       "        for i in range(len(w)):\n",
       "            w[i] = w[i] + learning_rate * (dotproduct(err, X_col[i]) / num_examples)\n",
       "\n",
       "    def predict(example):\n",
       "        x = [1] + example\n",
       "        return dotproduct(w, x)\n",
       "    return predict\n",
       "
\n", "\n", "\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "psource(LinearLearner)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This algorithm first assigns some random weights to the input variables and then based on the error calculated updates the weight for each variable. Finally the prediction is made with the updated weights. \n", "\n", "### Implementation\n", "\n", "We will now use the Linear Learner to classify a sample with values: 5.1, 3.0, 1.1, 0.1." ] }, { "cell_type": "code", "execution_count": 76, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0.4374841443932076\n" ] } ], "source": [ "iris = DataSet(name=\"iris\")\n", "iris.classes_to_numbers()\n", "\n", "linear_learner = LinearLearner(iris)\n", "print(linear_learner([5, 3, 1, 0.1]))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## ENSEMBLE LEARNER\n", "\n", "### Overview\n", "\n", "Ensemble Learning improves the performance of our model by combining several learners. It improvise the stability and predictive power of the model. Ensemble methods are meta-algorithms that combine several machine learning techniques into one predictive model in order to decrease variance, bias, or improve predictions. \n", "\n", "\n", "\n", "![ensemble_learner.jpg](images/ensemble_learner.jpg)\n", "\n", "\n", "Some commonly used Ensemble Learning techniques are : \n", "\n", "1. Bagging : Bagging tries to implement similar learners on small sample populations and then takes a mean of all the predictions. It helps us to reduce variance error.\n", "\n", "2. Boosting : Boosting is an iterative technique which adjust the weight of an observation based on the last classification. If an observation was classified incorrectly, it tries to increase the weight of this observation and vice versa. It helps us to reduce bias error.\n", "\n", "3. Stacking : This is a very interesting way of combining models. Here we use a learner to combine output from different learners. It can either decrease bias or variance error depending on the learners we use.\n", "\n", "### Implementation\n", "\n", "Below mentioned is the implementation of Ensemble Learner." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "psource(EnsembleLearner)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This algorithm takes input as a list of learning algorithms, have them vote and then finally returns the predicted result." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## LEARNER EVALUATION\n", "\n", "In this section we will evaluate and compare algorithm performance. The dataset we will use will again be the iris one." ] }, { "cell_type": "code", "execution_count": 42, "metadata": { "collapsed": true }, "outputs": [], "source": [ "iris = DataSet(name=\"iris\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Naive Bayes\n", "\n", "First up we have the Naive Bayes algorithm. First we will test how well the Discrete Naive Bayes works, and then how the Continuous fares." ] }, { "cell_type": "code", "execution_count": 43, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Error ratio for Discrete: 0.040000000000000036\n", "Error ratio for Continuous: 0.040000000000000036\n" ] } ], "source": [ "nBD = NaiveBayesLearner(iris, continuous=False)\n", "print(\"Error ratio for Discrete:\", err_ratio(nBD, iris))\n", "\n", "nBC = NaiveBayesLearner(iris, continuous=True)\n", "print(\"Error ratio for Continuous:\", err_ratio(nBC, iris))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The error for the Naive Bayes algorithm is very, very low; close to 0. There is also very little difference between the discrete and continuous version of the algorithm." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## k-Nearest Neighbors\n", "\n", "Now we will take a look at kNN, for different values of *k*. Note that *k* should have odd values, to break any ties between two classes." ] }, { "cell_type": "code", "execution_count": 44, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Error ratio for k=1: 0.0\n", "Error ratio for k=3: 0.06000000000000005\n", "Error ratio for k=5: 0.1266666666666667\n", "Error ratio for k=7: 0.19999999999999996\n" ] } ], "source": [ "kNN_1 = NearestNeighborLearner(iris, k=1)\n", "kNN_3 = NearestNeighborLearner(iris, k=3)\n", "kNN_5 = NearestNeighborLearner(iris, k=5)\n", "kNN_7 = NearestNeighborLearner(iris, k=7)\n", "\n", "print(\"Error ratio for k=1:\", err_ratio(kNN_1, iris))\n", "print(\"Error ratio for k=3:\", err_ratio(kNN_3, iris))\n", "print(\"Error ratio for k=5:\", err_ratio(kNN_5, iris))\n", "print(\"Error ratio for k=7:\", err_ratio(kNN_7, iris))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Notice how the error became larger and larger as *k* increased. This is generally the case with datasets where classes are spaced out, as is the case with the iris dataset. If items from different classes were closer together, classification would be more difficult. Usually a value of 1, 3 or 5 for *k* suffices.\n", "\n", "Also note that since the training set is also the testing set, for *k* equal to 1 we get a perfect score, since the item we want to classify each time is already in the dataset and its closest neighbor is itself." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Perceptron\n", "\n", "For the Perceptron, we first need to convert class names to integers. Let's see how it performs in the dataset." ] }, { "cell_type": "code", "execution_count": 45, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Error ratio for Perceptron: 0.31333333333333335\n" ] } ], "source": [ "iris2 = DataSet(name=\"iris\")\n", "iris2.classes_to_numbers()\n", "\n", "perceptron = PerceptronLearner(iris2)\n", "print(\"Error ratio for Perceptron:\", err_ratio(perceptron, iris2))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The Perceptron didn't fare very well mainly because the dataset is not linearly separated. On simpler datasets the algorithm performs much better, but unfortunately such datasets are rare in real life scenarios." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## AdaBoost\n", "\n", "### Overview\n", "\n", "**AdaBoost** is an algorithm which uses **ensemble learning**. In ensemble learning the hypotheses in the collection, or ensemble, vote for what the output should be and the output with the majority votes is selected as the final answer.\n", "\n", "AdaBoost algorithm, as mentioned in the book, works with a **weighted training set** and **weak learners** (classifiers that have about 50%+epsilon accuracy i.e slightly better than random guessing). It manipulates the weights attached to the the examples that are showed to it. Importance is given to the examples with higher weights.\n", "\n", "All the examples start with equal weights and a hypothesis is generated using these examples. Examples which are incorrectly classified, their weights are increased so that they can be classified correctly by the next hypothesis. The examples that are correctly classified, their weights are reduced. This process is repeated *K* times (here *K* is an input to the algorithm) and hence, *K* hypotheses are generated.\n", "\n", "These *K* hypotheses are also assigned weights according to their performance on the weighted training set. The final ensemble hypothesis is the weighted-majority combination of these *K* hypotheses.\n", "\n", "The speciality of AdaBoost is that by using weak learners and a sufficiently large *K*, a highly accurate classifier can be learned irrespective of the complexity of the function being learned or the dullness of the hypothesis space." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Implementation\n", "\n", "As seen in the previous section, the `PerceptronLearner` does not perform that well on the iris dataset. We'll use perceptron as the learner for the AdaBoost algorithm and try to increase the accuracy. \n", "\n", "Let's first see what AdaBoost is exactly:" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\n", "\n", " \n", " \n", " \n", "\n", "\n", "

\n", "\n", "
def AdaBoost(L, K):\n",
       "    """[Figure 18.34]"""\n",
       "    def train(dataset):\n",
       "        examples, target = dataset.examples, dataset.target\n",
       "        N = len(examples)\n",
       "        epsilon = 1. / (2 * N)\n",
       "        w = [1. / N] * N\n",
       "        h, z = [], []\n",
       "        for k in range(K):\n",
       "            h_k = L(dataset, w)\n",
       "            h.append(h_k)\n",
       "            error = sum(weight for example, weight in zip(examples, w)\n",
       "                        if example[target] != h_k(example))\n",
       "            # Avoid divide-by-0 from either 0% or 100% error rates:\n",
       "            error = clip(error, epsilon, 1 - epsilon)\n",
       "            for j, example in enumerate(examples):\n",
       "                if example[target] == h_k(example):\n",
       "                    w[j] *= error / (1. - error)\n",
       "            w = normalize(w)\n",
       "            z.append(math.log((1. - error) / error))\n",
       "        return WeightedMajority(h, z)\n",
       "    return train\n",
       "
\n", "\n", "\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "psource(AdaBoost)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "AdaBoost takes as inputs: **L** and *K* where **L** is the learner and *K* is the number of hypotheses to be generated. The learner **L** takes in as inputs: a dataset and the weights associated with the examples in the dataset. But the `PerceptronLearner` doesnot handle weights and only takes a dataset as its input. \n", "To remedy that we will give as input to the PerceptronLearner a modified dataset in which the examples will be repeated according to the weights associated to them. Intuitively, what this will do is force the learner to repeatedly learn the same example again and again until it can classify it correctly. \n", "\n", "To convert `PerceptronLearner` so that it can take weights as input too, we will have to pass it through the **`WeightedLearner`** function." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "psource(WeightedLearner)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The `WeightedLearner` function will then call the `PerceptronLearner`, during each iteration, with the modified dataset which contains the examples according to the weights associated with them." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Example\n", "\n", "We will pass the `PerceptronLearner` through `WeightedLearner` function. Then we will create an `AdaboostLearner` classifier with number of hypotheses or *K* equal to 5." ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": true }, "outputs": [], "source": [ "WeightedPerceptron = WeightedLearner(PerceptronLearner)\n", "AdaboostLearner = AdaBoost(WeightedPerceptron, 5)" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "iris2 = DataSet(name=\"iris\")\n", "iris2.classes_to_numbers()\n", "\n", "adaboost = AdaboostLearner(iris2)\n", "\n", "adaboost([5, 3, 1, 0.1])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "That is the correct answer. Let's check the error rate of adaboost with perceptron." ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Error ratio for adaboost: 0.046666666666666634\n" ] } ], "source": [ "print(\"Error ratio for adaboost: \", err_ratio(adaboost, iris2))" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "It reduced the error rate considerably. Unlike the `PerceptronLearner`, `AdaBoost` was able to learn the complexity in the iris dataset." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.6" } }, "nbformat": 4, "nbformat_minor": 2 }