
    

CS 470 – Problem Set #5  page 1 of 5 

CPSC 470 – Artificial Intelligence 

Problem Set #5 – Decision Trees and Genetic Algorithms 

30 points 

Due Monday April 1st, 11:59:59pm 
 

Some reminders: 
 

• Grading contact: Allan Wu (allan.wu@yale.edu) is the point of contact for 
initial questions about grading for this problem set.   

• Late assignments are not accepted without a Dean’s excuse. 
• Collaboration policy: You are encouraged to discuss assignments with the 

course staff and with other students.  However, you are required to implement 
and write any assignment on your own.  This includes both pencil-and-paper 
and coding exercises.  You are not permitted to copy, in whole or in part, any 
written assignment or program as part of this course.  You are not to take 
code from any online repository or web source.  You will not allow your own 
work to be copied. Homework assignments are your individual responsibility, 
and plagiarism will not be tolerated.  

• Students taking CPSC570: There is no extra section for this assignment. Your 
assignment is the same as CPSC470. 

 

 

Problem #1 : Decision Trees (6 Points) 
 

Given the dataset below that consists of five examples (X1 through X5) for three Boolean 

attributes (A, B, and C) and a Boolean outcome, you are to assemble (by hand) an 

optimal decision tree for this data.   

 

 A B C Outcome 

X1 T T F T 

X2 F T F F 

X3 F T T T 

X4 T T T T 

X5 F F T F 

 

Your solution should show all calculations, starting with a comparison between using 

each of the three attributes (A, B, C) as the root of the tree.  You should show the 

Remainder values for each comparison, and show the final decision tree that represents 

the optimal decision tree. 

 

Please refer to the submission instructions to submit your solution to Gradescope. Your 

solution will be scored based on the accuracy of your calculations and the clarity of your 

explanations. 



    

CS 470 – Problem Set #5  page 2 of 5 

 

 

Problem #2: Genetic Algorithms (24 Points) 
 

In this problem, we will evolve a controller for a simulated ant.  Each ant must survive on 

its own in a world represented by a 2D grid of cells by following trails of food.  Each cell 

in the world either has a piece of food or is empty and the cells wrap-around (so, moving 

up when in the top row leaves the ant in the bottom row of the grid).  Shown below is an 

environment (called the “John Muir” trail) that consists of a 32 by 32 grid containing 89 

food cells (shown in gray). 

 

 
 

The ant’s position at any point in time can be specified by a cell location and a heading 

(north, south, east, or west).  The ant always starts in the cell in the upper left corner, 

facing right (east).  At the beginning of each time-step it gets one bit of sensory 

information: whether there is food in the cell in front of the cell it currently occupies (i.e., 

the cell it would move to if it moved forward). At each time-step it has one of four 

possible actions. It can move forward one cell; rotate clockwise ninety degrees without 

changing cells; rotate counter-clockwise ninety degrees without changing cells; or do 

nothing. If an ant moves onto a food-cell, it consumes the food and the food disappears; 

when the ant leaves that cell, the cell is empty.   The fitness of the ant is rated by counting 

how many food elements it consumes in 200 time-steps.  (An ant that consumes 10 cells 

worth of food total in 200 time-steps receives a fitness score of 10.) 

 

The controller for our ant will consist of 10 states.  At each time step, the ant takes the 

following actions: 

 1.  Read the sensor value. 

 2.  The controller changes state based on the sensor value. 

3.  The ant takes an action indicated by the new state (which may result in a 

change in position). 



    

CS 470 – Problem Set #5  page 3 of 5 

4.  If the ant is in a cell with food, the ant eats the food. 

Each of the ten states has a unique identifier (a number ranging from 0 to 9) and the 

content of that state can be represented by three digits: 

 

Digit # Range Meaning 

1 1-4 The action that the ant takes upon entering this state, where  

     1 = move forward one cell 

     2 = rotate clockwise ninety degrees without changing cells  

     3 = rotate counter-clockwise ninety degrees without changing cells 

     4 = do nothing 

2 0-9 If the ant is in this state and the sensor value is false (there is no food 

in the square ahead of it), then the ant will transition to the state with 

the unique identifier indicated by this digit.  

3 0-9 If the ant is in this state and the sensor value is true (there is food in 

the square ahead of it), then the ant will transition to the state with the 

unique identifier indicated by this digit. 

 

The art begins its life with the controller in state 0.  The entire genetic material for an ant 

thus consists of 10 states, each of which is represented by 3 digits, for a total of 30 digits. 

 

Your task is to construct a genetic algorithm that attempts to build a better ant through 

evolution.  Your algorithm should make use of multi-point crossover and mutation.  In 

each generation, you should test the fitness of each ant (individually) on the Muir trail.  

Begin with an initial population of at least 10 ants and run your algorithm for at least 40 

generations.   

 

The starter code package provides you with the following files: 

- geneticAlgorithm.py: the starter code.  

o It already implements the following functions for you (Please refer to the 

source for documentation): 

▪ ant_simulator: This is an ant simulator. It takes the food_map, 

map_size and ant_genes as parameters, and output the 

corresponding trial and the fitness.  

▪ get_map: It takes in the map file_name and return the food_map 

and map_size to be used in ant_simulator. 

▪ display_trials: It takes in the trial generated from ant_simulator, 

and the target_file name, and saves the trial in the target_file.  

▪ There is an example of how to use the functions implemented for 

you at the bottom. 

o You will need to implement the following functions (Please feel free to 

change the parameters and what to return to fit your implementation. The 

parameters mentioned above are just suggestions): 

▪ genetic_algorithm: This is the main function of the genetic 

algorithm. It takes in the population, the file name of the food_map, 

the maximum number of generations, the crossover probability, the 

mutation probability. It returns the maximum fitness in the last 



    

CS 470 – Problem Set #5  page 4 of 5 

generation, the individual (gene) with the maximum fitness in the 

last generation, the trial of the individual with the maximum fitness 

in the last generation, the overall statistics of all the generations (it 

is a list of [maximum fitness, minimum fitness, average fitness] of 

each generation), and the population in the last generation.  

▪ initialize_population: It takes in the number of population to be 

initialized and return the population (a list of individual/genes). 

▪ select: It selects the individuals as parents for the next generation. 

▪ crossover:  It takes the parents selected and performs crossover 

based on the crossover probability, and returns the population 

generated. 

▪ mutation: It takes a parent and performs mutation based on 

mutation probability, and returns the resulting individual. 

- There is an example in the main section (commented out) of how to use the 

results generated from the genetic_algorithm function, and output the figures and 

results needed to answer the questions required. It uses the python matlab library, 

and has already been installed in zoo. If you wish to install the library on your 

own computer, please feel free to search online, but we won’t be able to provide 

extra help on the library installation. Please also feel free to generate graphs in 

other ways, or modify the any parts of the code you like as long as your code can 

generate the questions required below. muir.txt: One of the maps you will need. 

- santefe.txt: Another map you will need. 

- trial.txt: The trial generated if you run the starter code without modification. 

 

You will need to make many design decisions on how to implement the algorithm and 

what parameter values to use.  The main section of the starter code already provides some 

hints of what parameters to use. Please feel free to add more if necessary. Your score on 

this problem will depend not only on the code that you write but also on how well 

you document your design decisions.  

 

Some notes: 

 

• You should not be running evolutions that take more than 30 minutes of compute 

time.  If you are, you are doing either something unnecessary (or more likely) 

incorrect. 

• No part of your score for this portion is based on the success of your individual 

ants.  GA’s include a high degree of randomness… sometimes, you’re just going 

to be unlucky. 

• Your score will be based on the accuracy and completeness of the code that you 

submit, the detail and comprehensiveness of your documentation, and your 

answers to the required questions asked below. 

 

 

With the write-up for your solution, you should answer the following questions (Please 

refer to the submission guidelines below for more information): 

 



    

CS 470 – Problem Set #5  page 5 of 5 

1) Fitness (3 points) 

Question 1.1 (1 pt): What is the fitness score of most-fit individual in the first generation 

on the Muir trail? 

Question 1.2 (1 pt): What was the fitness score of the most-fit individual in the last 

generation?  

Question 1.3 (1 pt): Please plot the fitness score of the most-fit individual in each 

generation.  

 

2) Please take a screenshot of the Path/trial of the most-fit individual in the final 

generation on the Muir trail. (2 points) 

 

3) Trials comparison. (4 points) 

Question 3.1 (1 pt): Please plot the individuals in the final generation and compare their 

performances on the Muir trail with their performances on the Santa Fe trail.  

Question 3.2 (3 pts): Do individuals that do well on one trail tend to do well on the other, 

and why? 

 

4) Your Implementation (15 points) 

 

Question 4.1 (10 pts): Please provide a brief description of your genetic algorithm: 

Question 4.2 (5 pts): Please document the parameters you chose (please feel free to add 

more parameters in the empty cells): 

 

Size of the population  

Number of generation  

Crossover probability  

Mutation probability  

  

  

  

  

 

Question 4.3: Please submit your python file. 

 

Submission Instructions: 
 

- Please submit all files on Gradescope. 

- For programming parts (Question 4.3), please submit to Problem Set 5 – 

Programming 

- For solutions to other parts, please submit to Problem Set 5 

o Here are some instructions of how to submit your solutions: 

https://www.youtube.com/watch?time_continue=100&v=KMPoby5g_nE 

o For each page, please include at most one question if the question has no 

subquestions, or at most one sub-question, which is, please do not link 

multiple questions/subquestions to the same page.  

https://www.youtube.com/watch?time_continue=100&v=KMPoby5g_nE

