

CS 470/570 – Problem Set #8 page 1 of 8

CPSC 470/570 – Artificial Intelligence
Problem Set #8 – Computer Vision

25 points
Due Friday April 26th, 11:59:59pm

Some	reminders:
	

• Grading	contact:	Camilla	Gu	(camilla.gu@yale.edu)	is	the	point	of	contact	for	
initial	questions	about	grading	for	this	problem	set.		

• Late	assignments	are	not	accepted	without	a	Dean’s	excuse.
• Collaboration	 policy:	 You	are	encouraged	to	discuss	assignments	with	 the	

course	 staff	 and	 with	 other	 students.	 	 However,	 you	 are	 required	 to	
implement	 and	 write	 any	 assignment	 on	 your	 own.	 	 This	 includes	 both	
pencil-and-paper	 and	 coding	 exercises.	 	 You	 are	 not	 permitted	 to	 copy,	 in	
whole	or	 in	part,	any	written	assignment	or	program	as	part	of	 this	course.		
You	are	not	to	take	code	from	any	online	repository	or	web	source.		You	will	
not	 allow	 your	 own	 work	 to	 be	 copied.	 Homework	 assignments	 are	 your	
individual	responsibility,	and	plagiarism	will	not	be	tolerated.	

• Students	taking	CPSC570:	There	is	no	extra	section	for	this	assignment.	
Your	assignment	is	the	same	as	CPSC470.

In this assignment, you will complete computer vision tasks. The main library to use is
skimage in python. It comes pre-installed with several Python distributions. It is also
available on the zoo machines if you don’t have it on your machine. However, we may
not be able to help with library installation. The other library you may need is numpy,
which was used in ps6.

Problem #1 : Edge Detection (10 Points)

We have provided an image “yale.png” along with this problem set. You can import this
image into python using the command:

from skimage import io
img = io.imread('yale.png')

This will create a three-dimensional array called img, which is a numpy array with
dimensions of HxWx3 where H is the height of the image and W is the width of the
image. The last index gives access to the red, green and blue components of each pixel.
Thus, img[0, 1, 2] gives you the blue component of the pixel in the first row and the
second column. You can view the dimension of img with np.shape().

CS 470/570 – Problem Set #8 page 2 of 8

You can then view this image:

io.imshow(img)
io.show()

Take the color image and convert it to a grayscale image:

from skimage.color import rgb2gray
grey_img = rgb2gray(img)

This grayscale image grey_img is a 2-D array of dimensions HxW. More information
on rgb2gray can be found here:
https://scikit-image.org/docs/dev/auto_examples/color_exposure/plot_rgb_to_gray.html

In this section, you will detect the edges within the grayscale image using the following
methods mentioned in class (lecture 24):

- Sobel operator
- Robert’s cross
- the Canny edge detector

Here are the implementation details corresponding to each method:

Sobel Operator

- Documentation:
https://scikit-image.org/docs/dev/api/skimage.filters.html#skimage.filters.sobel

- Sample code:
from skimage.filters import sobel
sobel_edge = sobel(grey_img)

Robot’s Cross

- Documentation:
https://scikit-image.org/docs/dev/api/skimage.filters.html#skimage.filters.roberts

- Sample code:
from skimage.filters import roberts
robert_cross_edge = roberts(grey_img)

The Canny Edge Detector

- Documentation:
https://scikit-image.org/docs/dev/api/skimage.feature.html#skimage.feature.canny

- For this operator, there are several parameters you can set (e.g., low_threshold,
high_threshold, and sigma). Try a few different values of each of these parameter
settings and see how they impact the edge image.

- Sample code:
from skimage import feature
canny_edge = feature.canny(grey_img)

CS 470/570 – Problem Set #8 page 3 of 8

Question 1. Insert below pictures of your greyscale original image and the three edge
images. Please scale each image to be roughly half of the page, and clearly label each (4
points).

CS 470/570 – Problem Set #8 page 4 of 8

CS 470/570 – Problem Set #8 page 5 of 8

Question 2. Answer the following questions regarding the Canny edge detection method.

a) what impact does the “low_threshold” have on the image? (1 point)

b) what impact does the “high_threshold” have on the image? (1 point)

c) what impact does “sigma” have on the image? (1 point)

Question 3. Please write a short paragraph that answers the following question:
If a robot were to acquire a camera image that looked like your original image, and if that
robot needed to navigate through the scene shown in the image, which of the edge
detecting methods gives the best results? (Which method picks out the boundaries of
major obstacles without providing too many details?) How do you judge this? (3 points)

CS 470/570 – Problem Set #8 page 6 of 8

Problem #2 : Finding Color Blobs (15 Points)

In this problem, we will use region growing techniques on a color image to identify areas
of an image that belong to several simple geometric shapes. We will use the image
shown below (which you can also find in the problem set folder).

Figure 1

Your goal is to identify the location of the centroid (the center of mass) and the extent (in
the form of a bounding box) of each of the balls and rectangular blocks in the scene.

Your solution for doing this does NOT need to be elegant or general. It just needs to
work on images that contain these same objects (although they might be in various
positions.) You can assume that there will be little or no occlusion.

You are free to solve this problem any way that you want. Here is one idea:

1. Divide the color image into three separate color-channel images (one for red,
blue and green). You can do this with the command like:

redImage = img[:, :, 0]

2. Binarize the images by applying a threshold. For example, to get a binary
image (consisting of zeros and ones only) that has a 1 anywhere the red value is
greater than 125, you would use the command like (please note that this is just an
example which may or may work. Also you may need to use
np.logical_and()):

redBinary = redImage > 125;

3. Label connected components in the binary images using region growing. (We
looked at region growing on slide 20 of the lecture 24.) The function
measure.label()will do this calculation for you and produce a tagged image
and the number of tags (n) used (you can find more information here:
https://scikit-
image.org/docs/dev/api/skimage.measure.html#skimage.measure.label):

CS 470/570 – Problem Set #8 page 7 of 8

from skimage import measure
redTagged, redN = measure.label(redBinary, neighbors = 8,
return_num = True)

Where neighbors is either 4 (for 4-connected regions) or 8 (for 8-connected
regions). (Although the documentation mentions the argument is deprecated, you
can still feel free to use it for the purpose of this assignment.) If you found the
proper threshold in step 2, you will find 2 regions for each color.

4. Extract a binary image showing the location of each tagged region. For
example, to get the binary image of the region with tag 1, you could type:

yellow_ball = yellowTagged == 1

5. Compute the boundary (the maximum and minimum row and column for the
tagged region) and the centroid (the average row and column position of each
pixel in the tagged region).

Please answer the following questions.
Question 1. Please provide a description of how your code works (5 points)

CS 470/570 – Problem Set #8 page 8 of 8

Question 2. Please complete the table below (5 points)

Object

Centroid Maximum Minimum

row col row Col row col
Yellow ball (at left)
Green block (at left)
Yellow block (at left)
Red ball (in center)
Blue block (in center)
Green block (in center)
Red ball (at right)
Blue block (at right)

Question 3. Please copy and paste your code below. (5 points)

