

Start with rows of $n_{1}, n_{2}, \ldots, n_{k}$ stones
On each turn, take as many stones as you wish from one row

If no possible moves, you lose

$$
x \times x \times \underset{\sim}{x} \times x \times x \times x
$$

Start with row of \boldsymbol{n} pins
On each turn, take 1 or 2 adjacent pins
$\times \times \times$
If no possible moves, you lose

$$
\not x \times \times \times \times \times \times 0 \quad 0011
$$

$$
x \times x+x \not x x \rightarrow x \quad 0 \quad 0
$$

$$
x \times \times \quad \times x \quad \times \times x
$$

Finite Combinatorial Games
Divisors: Start with I...n, players take turns taking a number with remaining divisors; opponent gets all the remaining divisors. Game is over when no moves remain; winner is player with higher sum (draw if $:$)

Graph: take turns colonng a vertex in a graph with your color player who covers the most edges wins (draw if \Rightarrow)

\# final positions $=\binom{y}{z}=6 \quad \frac{4!}{2!(4-2)!}$

Dynamic Programming
Order positions by maximum distance to end.
Determine winner of distance 0 positions (end) by rules of game
Use recursive formula to determine value of other positions in order of increasing $\begin{array}{r}\text { distance }\end{array}$

