Chomp
Play on $m \times n$ gid. Take turns selecting a remaining cell, remove all above and to right.
Last move loss finite, impartial, misere

$$
\text { Outcome class }=\text { who has winning strategy } \quad N \quad \begin{gathered}
\text { current } \\
\\
P
\end{gathered} \text { prev player wins }
$$

Any position in a finite, impartial, normal or misere game is an N or P position at least one move d. P position all moves do pos

000
001
010
100
110
101
011
206
020
002
111
120

For Nim, there is a winning mae if and only if the bitwise exclusive or of the number of stomes left in each row is non-zero, and the winning moves are the ones that make the bitwise exclusive or 0 .
(So a position is an N-position if and only if exclusive-or is $\neq 0$)

0000
0000000
0000000000

Proof (strong induction on $\#$ of stoncs lef.)
Base case $(n=0)$: The only game with 0 stomes is already over, previous player took last stone and won, so is a P position as required.
Ind step: Suppose $k>0$ and all postions with i stoms, $0 \leq i<k$ are N-positions iff their Nim-sums are non-zero.
\#t stones in ench rov erclusive or
[want to show it is a Ppos]

Suppose position m_{1}, \ldots, m_{r} has $m_{1}+\cdots+m_{r}=k$ and
m_{1} (4) …) (1) $m_{r}=0$. A move redous some m_{i} do m'i with $0 \leq m^{\prime} i<m_{i}$. The Nim- sum if the resultis

$$
\begin{aligned}
& =m_{1} \oplus \cdots \oplus m_{r} \oplus m_{i} \odot m_{i}^{\prime}=0 \odot m_{i} \oplus m_{i}^{\prime} \neq 0 \\
\text { Also, } & 0 \leqslant m_{i} \oplus m_{1}+\cdots+m_{i-1}+m_{i}^{\prime}+m_{i+1}+\cdots+m_{r}<m_{i} \notin m_{1}+\cdots+m_{r}=k
\end{aligned}
$$

so ind. hyp: applies - new pos is an N pos.

Also, $0 \leq m_{1}+\cdots+m_{i-1}+m_{i}^{\prime}+m_{i+1}+\cdots+m_{p}<m_{1}+\cdots+m_{r}=k$
so ind. hyp, applies - new pos is an N pos.
So all mors to \sim pos, cement P pos

Suppose position m_{1}, \ldots, m_{r} has $m_{1}+\cdots+m_{r}=k$ and
$m_{1} \oplus \cdots \oplus m_{r}=x \neq 0$. Find most significant bit mob of x.
there must be one; \rightarrow Find ' i sat. m_{i} has that bit at. Let $m_{i}^{\prime}=m_{i} \oplus x$. b/a misb changed
otherwise that Choose move that reduces m_{i} do $m_{i}^{\prime \prime}$. $m_{i}{ }^{\prime}$ i m_{i}, so legal! from 1 do 0
bit would not

$$
\begin{aligned}
& \text { Nim-sum of result is } m_{1} \oplus \cdots \oplus m_{i-1} \oplus m_{i}^{\prime} \oplus m_{i+1}\left(\oplus \cdots \left(\oplus m_{r}\right.\right. \\
& =m_{1}+\cdots+m_{i-1}+m_{i} \oplus \times\left(\oplus m_{i+1}(1) \cdots \oplus m_{r} \text { subshtite } m_{i}=m_{i} \oplus x\right. \\
& =m_{1}+\cdots+m_{i-1}+m_{i} \text {, (1) } m_{i+1}(1) \cdots \text { (1) } m_{r} \text { (1)X reorder } \\
& =x 0 \times=0
\end{aligned}
$$

Also, $\quad 0 \leqslant m_{1}+\cdots+m_{i-1}+m_{i}^{\prime}+m_{i+1}+\cdots+m_{p}<m_{1}+\cdots+m_{r}=k$
so ind. hyp, applies - new pos is a P pos.
So there is a mar do a P pas; original is an N pos.

normal

Sprague-Grundy Theorem: every finite, impartial combinatorial game is equivalent to some form of 1-row Nim

Corollary: If G is equivalent to ${ }^{*} \mathrm{n}$ and H is equivalent to *m then $\mathrm{G}+\mathrm{H}$ is equivalent to *($\mathrm{n} \oplus \mathrm{m}$)

Finding winning move

(1) compute table as above up do
size of largest group

(2) look up equivalence for each group $\approx+(4 \oplus 3 \oplus 3 \oplus 2)=\pi 6 \quad \frac{1}{4} \frac{10}{21}$ (3) compute xor

so N position plane

$$
4 \oplus 6=2
$$

$$
406=2
$$

Shad a mac on $\underset{i n}{ } x \times x \times x$ pos that results

$$
\begin{aligned}
& \text { (5) compute xor of that group } \\
& \text { and vesult foo }(3)
\end{aligned}
$$

$$
\begin{aligned}
& x \times x \times x-1 \\
& x . x \times x
\end{aligned} * 1+3 \approx *(103)=* 2
$$

$3 \oplus 2 \oplus 6=7 \begin{aligned} & 011 \\ & \frac{11 \%}{111} \\ & \frac{111}{}\end{aligned}$

$$
\begin{gathered}
3 \oplus Z \oplus(6 \oplus 7) \\
(3 \oplus 2 \oplus 6)>\oplus 7 \\
=0
\end{gathered}
$$

$$
\text { search all mons } \quad \cdots x \times x \times x \times x \times x
$$

$$
\text { fund one the resole, } \forall 4 \longleftarrow \text { from tribe again } 4 \neq 1
$$

$$
\text { in some thing } \approx+1
$$

$$
x x \cdot x x x x x x x x
$$

$$
x \times \cdots \underset{r-2}{x \times x \times x x} \quad 20^{2}=0 \quad 0 \neq 1
$$

$$
\begin{aligned}
& \text { move on group } \approx * 6(6,7 \text { have }
\end{aligned}
$$

