

$$T_{OPT}$$
: policy that maximizes $V_{T_{OPT}}(S_0)$ in that state $V(S) = V_{T_{OPT}}(S)$

Value iteration (= introduce turn limit)

generally

$$V(s) = \max_{s} \sum_{s'} P(s,s',a) \cdot (\underbrace{R(s,s',a) + YV(s')}_{interval in the advisorab})^{2}$$
 $Top_{T}(s) = \operatorname{argmax} (2(s,a))$
 $V(r,c,n) = \operatorname{value} \text{ of state} (r,c) = \operatorname{value} \text{ of state} (r,c) = \operatorname{value} \text{ of } \text$

V(r,c,n) converges to V(r,c) as n 1

TD Valve Learning

observe $s \xrightarrow{\pi(s)} s'$ siving a reward R(s, s', a)get discounted when reward $Y \cdot V^{\pi}(s')$ sample of $V^{\pi}(s) = R(s, s', a) + Y V^{\pi}(s')$

= (1-d)V"(s) + & R(s,s',a)+8V"(s')

initialize
$$Q(s,a) = \begin{cases} R(s) & \text{for terminal } s \\ 0 & \text{otherwise} \end{cases}$$

while not done

while s not terminal E-snedy is sood randomly uniformly choose a ction a Put & choose a randomly uniformly less choose a randomly uniformly

observe transition (s,a,r,s')

update Q(s,a) \leftarrow Q(s,a) \leftarrow Q(s,a)

update Q(s,a) \leftarrow Q(s,a)

learning rate (ever)

Generalization:

Ones	Oms Z
Twos 4	Twos 4
Threes	Threes
Forms	Fours 16
Eves 20	Lives
51xe5 \8	51xc5 8
	•
3K z3	3K 17
YK O	
YK O	4K 0
55 30	55 L5
4	L \$
C	C
Y 50	Y 50
after roll!	after roll 1
۶ , ۵	ζ ₂ =
·	•
Q(s,,a) ==	Q(s ₁ , ~)
- 17 /	7

Function Approximators — lan a fm that approximates Q(5, a)

Linear Approximator

Define features of states and possibly actions

In state s

Choose netion a using exploit /explore policy

Observe transition (5, a, +, 5')

Update
$$Q(s,a) \leftarrow Q(s,a) + \alpha (ymax Q(s',a') - Q(s,a))$$

$$W_{i} \leftarrow W_{i} + \alpha (r + \gamma \max Q(s',a') - Q(s,a)) \cdot f_{i}(s,a)$$

Given feature of states f:5-TR

 $f_{\alpha}: S \times A \rightarrow \mathbb{R}$ $f_{\alpha}(s, \lambda) = \begin{cases} f(s) : f_{\alpha}(s, \lambda) \\ 0:0 \text{ otherwise.} \end{cases}$

Beware: A-berning may diverge decrense & as time T keep fonties on some scale as reward

Football: which possition is better

(30, 4, 10, 6)

(50, 4, 10, 20)

1-10 from 30 W/ 30 sec remaining

1-10 From 50 -/ 100 Sec remaining

(35,2,5,12)

(35,3,20,12) 2-20 from 35 w/ 60 ac

3-5 frm 38 -160ac