For Nim, there is a winning mace if and only if the bitwise exclusive or of the number of stomas left in each row is non-zero, and the winning moves are the ones that make the bitwise exclusive or 0 .
(4) 0000

70000000
 0111
$5 \neq 0 \quad 0$

$$
x \oplus 010=0
$$

$$
00 \Rightarrow 010
$$

Lemma: If m_{1}, \ldots, m_{n} stones left in each row and $m_{1} \odot m_{2} \odot \cdots \odot m_{r}=0$ then all moves $m_{i} \rightarrow m_{i}{ }^{\prime}$ make Nim-sum non-zero. $m_{i}=$ it stones in row i
Proof: Suppose $m_{1} \oplus \cdots, \oplus m_{r}=0$ Let $m_{i} \rightarrow m_{i}{ }^{\prime}$ be a legal move. So $m_{i}{ }^{\prime}<m_{i}$.
Then resulting Nim-sum is $m_{1} \oplus \cdots \oplus m_{i-1} \oplus m_{i}^{\prime} \oplus m_{i+1} \oplus \cdots \oplus m_{r}$

$$
\begin{aligned}
\text { bitwise exclusive or } & =m_{0} \oplus \cdots \oplus m_{i-1} \oplus m_{i}^{\prime} \oplus m_{i+1} \oplus \cdots \oplus m_{r} \oplus\left(m_{i} \odot m_{i}\right) \\
& =m_{0} \oplus \cdots \oplus m_{i-1} \oplus m_{i} \oplus m_{i+1} \oplus \cdots \oplus m_{r-} \oplus\left(m_{i}^{\prime} \odot m_{i}\right) \\
& =\underbrace{}_{1} \oplus\left(m_{i}^{\prime} \oplus m_{i}\right)=m_{i}^{\prime} \oplus m_{i} \notin \odot \subseteq \text { since } m_{i}^{\prime} \neq m_{i}
\end{aligned}
$$

Lemur: If m_{1}, \ldots, m_{n} stones left in each row and $m_{1} \oplus m_{2} \oplus \cdots \oplus m_{r} \neq 0$ then there is a move $m_{i} \rightarrow m_{i}{ }^{\prime}$ make $N_{i m}$ sum zero.

Proof: Suppose $m_{1} \oplus \cdots \oplus m_{r}=x \neq 0$. Find most significant bit mst of x.
Find i sat. m_{i} has that bat sat. Let $m_{i}^{\prime}=m_{i} \oplus x$ (must be 1 bor bat in xor Choose mare that reduces m_{i} of $m_{i}^{\prime \prime}$. $m_{i}^{\prime \prime}$ ¿ m_{i},so legal! 2 to be 1) Nim-sum of result is $m_{1} \oplus \cdots \oplus m_{i-1} \oplus m_{i} \oplus\left(4 m_{i+1}\left(\oplus \cdots(\oplus) m_{r}\right.\right.$

$$
\begin{aligned}
& =m_{1}+\cdots+m_{i-1}+m_{i} \odot \times m_{i+1} \oplus \cdots \oplus m_{r} \\
& =m_{1}+\cdots+m_{i-1}+m_{i} \oplus m_{i+1} \oplus \cdots \oplus m_{r} \oplus x \\
& =x(0 \times=0
\end{aligned}
$$

THM: Player has a winning move in Nim iff Nim-sum at start of turn is non-zero.
Proof: (strong induction on \# of stones left)
Base case $(n=0)$: The only game with 0 stones is already over, previous player took last stone and won, so no pinning moves.

Ind step: Suppose $k>0$ and all positions with i stones, $0 \leq i<k$ have winning moves if and only if Nim-sum is non-zero
Two cases:a) Nim-sum is non-zero
Than there is a move to Nim-sum zero position with $k^{\prime}<k$ stones other player then has no winning move
Move is a winning move
b) Nim-sum is zero

All moves are to ${\text { Nim-sumnon-zero positions with } k^{\prime}<k \text { stones }}_{k}$ Other player has a winning response to all moves.
Original position is a losing position.

Start with row of \mathbf{n} pins
On each turn, take 1 or 2 adjacent pins
If no possible moves, you lose
(normal)
last move loses $=$ misére)
impartial: possible moves dort depend on turn

Sprague-Grundy Theorem: every finite, normal, impartial combinatorial game is equivalent to some form of 1-row Nim.

$$
\text { Nimber } n=\text { game of } 1 \text {-row Nim } w / n \text { stumes }
$$

Corollary: If G is equivalent to ${ }^{*} \mathrm{n}$ and H is equivalent to ${ }^{*} \mathrm{~m}$ then $\mathrm{G}+\mathrm{H}$ is equivalent to $*(\mathrm{n} \oplus \mathrm{m})$

For finite, normal, impartial games:

$$
\begin{aligned}
& \text { game-over position }=* 0 \\
& \text { for each other position } P \text { in order of increasing length (max \# moves to end) } \\
& \text { start with } S=\text { empty set } \quad \longrightarrow \text { or any order s.t. when you gat do } \\
& \text { for each move a position, have already iterated through } \\
& \text { determine resulting position } \mathrm{P}^{\prime} \text { resulting positions } \\
& \text { look up what } P^{\prime} \text { is equivalent to, add to } S \\
& \text { compute } \operatorname{mex}(S) \text {, save that as equivalent to } P \\
& \begin{aligned}
\longrightarrow \text { minimum excludent }= & \min \text { non-ny } \\
& \text { integ. not in set }
\end{aligned}
\end{aligned}
$$

Moving coins:

start with coins in row of spaces $0, \ldots, n-1$; at most one coin per space players take turns moving any coin to an unoccupied space to the left last move wins

For Kayles/Nim-like games (reducing number of objects in a pile or splitting piles; can't move on more than one pile at a time [easily decomposed into subgames])
game-over position $=* 0$
for each other initial pile P in order of increasing size
start with $S=$ empty set
for each move
determine resulting position P^{\prime}, write as $\mathrm{p} 1+\mathrm{p} 2+\ldots+\mathrm{pn}$ (objects left in each pile) look up what each pi is equivalent to, compute exclusive-or of all; add result to S compute mex(S), save that as equivalent to P

Finding winking move
$0,1,2,3,1,4,3,2,1,4,2,6,4,1,2,7,1,4$,
$3,2,1,4,6,7,4,1,2,8,5,4,7,2,1,8,6,7$
(1) compute table as above up do size of largest group

(2) look up equivalence for each group
(3) compute xor
(4) Find group that has 1
in same place as MSB
(5) compute xor of that group
and result fam (3)

$\times \times \times \times \times \quad \times \times \times \times \times \times \quad \times x$

$\cdots x \times x \times x \times \times \times x$
$\times \cdots \times \times \times \times \times \times x$
$x \times \cdots x \times x \times x x$
$\times \times \times \times \times \times \times \times x$

