rague-Grun				
rague-Grun		• • • • • • •		
0	dy The	eorem: every finite, normal, impartial combinatorial game is equivalent to some form of 1-row Nim.		
rollary: If G	is eau	ivalent to $*n$ and H is equivalent to $*m$ then G+H is equivalent to $*(n\oplus m)$		
ond y. n o	is equ			
finita norr		anartial games, game over position - *0		
mille, non	11ai, 111	for each other position P in order of increasing length (max # moves to end)		
		start with S = empty set		
		for each move determine resulting position P'		
		look up what P' is equivalent to, add to S		
		compute mex(S), save that as equivalent to P		
. X X	•			
×		X		
x	• X (.	•		
	X	XXX .X.X .XXX .X>{*2*0*2*1*1} mex=*3		
X	. X	X		
× .	X	×		
X	< X	×		
r Kayles/Nin	1-like į more	games (reducing number of objects in a pile or splitting piles; than one pile at a time [easily decomposed into subgames])		
r Kayles/Nin 't move on	n-like (more	games (reducing number of objects in a pile or splitting piles; than one pile at a time [easily decomposed into subgames]) game-over position = *0		
r Kayles/Nin 't move on	n-like (more	games (reducing number of objects in a pile or splitting piles; than one pile at a time [easily decomposed into subgames]) game-over position = *0 for each other initial pile P in order of increasing size		
r Kayles/Nin 't move on	n-like (more	games (reducing number of objects in a pile or splitting piles; than one pile at a time [easily decomposed into subgames]) game-over position = *0 for each other initial pile P in order of increasing size start with S = empty set for each move		
r Kayles/Nin 't move on	n-like (more	games (reducing number of objects in a pile or splitting piles; than one pile at a time [easily decomposed into subgames]) game-over position = *0 for each other initial pile P in order of increasing size start with S = empty set for each move determine resulting position P', write as p1 + p2 + + pn (objects left in each pile)		
r Kayles/Nin I't move on	n-like (more	games (reducing number of objects in a pile or splitting piles; than one pile at a time [easily decomposed into subgames]) game-over position = *0 for each other initial pile P in order of increasing size start with S = empty set for each move determine resulting position P', write as p1 + p2 + + pn (objects left in each pile) look up what each pi is equivalent to, compute exclusive-or of all; add result to S		
r Kayles/Nin 't move on	n-like p more	games (reducing number of objects in a pile or splitting piles; than one pile at a time [easily decomposed into subgames]) game-over position = *0 for each other initial pile P in order of increasing size start with S = empty set for each move determine resulting position P', write as p1 + p2 + + pn (objects left in each pile) look up what each pi is equivalent to, compute exclusive-or of all; add result to S compute mex(S), save that as equivalent to P		
' Kayles/Nin 't move on	n-like p more	games (reducing number of objects in a pile or splitting piles; than one pile at a time [easily decomposed into subgames]) game-over position = *0 for each other initial pile P in order of increasing size start with S = empty set for each move determine resulting position P', write as p1 + p2 + + pn (objects left in each pile) look up what each pi is equivalent to, compute exclusive-or of all; add result to S compute mex(S), save that as equivalent to P		
Kayles/Nin 't move on	n-like į more	<pre>games (reducing number of objects in a pile or splitting piles; than one pile at a time [easily decomposed into subgames]) game-over position = *0 for each other initial pile P in order of increasing size start with S = empty set for each move determine resulting position P', write as p1 + p2 + + pn (objects left in each pile) look up what each pi is equivalent to, compute exclusive-or of all; add result to S compute mex(S), save that as equivalent to P</pre>	*0	
Kayles/Nin 't move on •	n-like p more	<pre>games (reducing number of objects in a pile or splitting piles; than one pile at a time [easily decomposed into subgames]) game-over position = *0 for each other initial pile P in order of increasing size start with S = empty set for each move determine resulting position P', write as p1 + p2 + + pn (objects left in each pile) look up what each pi is equivalent to, compute exclusive-or of all; add result to S compute mex(S), save that as equivalent to P</pre>	*0	
• Kayles/Nin I't move on	n-like (more	<pre>games (reducing number of objects in a pile or splitting piles; than one pile at a time [easily decomposed into subgames]) game-over position = *0 for each other initial pile P in order of increasing size start with S = empty set for each move determine resulting position P', write as p1 + p2 + + pn (objects left in each pile) look up what each pi is equivalent to, compute exclusive-or of all; add result to S compute mex(S), save that as equivalent to P</pre>	*0 *1 *2	
r Kayles/Nin 't move on 't X XX	n-like g more K0 K1 K2	<pre>games (reducing number of objects in a pile or splitting piles; than one pile at a time [easily decomposed into subgames]) game-over position = *0 for each other initial pile P in order of increasing size start with S = empty set for each move determine resulting position P', write as p1 + p2 + + pn (objects left in each pile) look up what each pi is equivalent to, compute exclusive-or of all; add result to S compute mex(S), save that as equivalent to P</pre> {} {} {} {, x., .x} = {*0, *1, *1} {	*0 *1 *2	
r Kayles/Nin I't move on X XX XXX	n-like p more	<pre>games (reducing number of objects in a pile or splitting piles; than one pile at a time [easily decomposed into subgames]) game-over position = *0 for each other initial pile P in order of increasing size start with S = empty set for each move determine resulting position P', write as p1 + p2 + + pn (objects left in each pile) look up what each pi is equivalent to, compute exclusive-or of all; add result to S compute mex(S), save that as equivalent to P {} {, x., .x} = {*0, *1, *1} {.xx, x.x,x} = {*2, (*1 xor*1) = *0, *1}</pre>	*0 *1 *2 *3	
r Kayles/Nin I't move on X XX XXX XXX	n-like (more K0 K1 K2 K3 K4	<pre>games (reducing number of objects in a pile or splitting piles; than one pile at a time [easily decomposed into subgames]) game-over position = *0 for each other initial pile P in order of increasing size start with S = empty set for each move determine resulting position P', write as p1 + p2 + + pn (objects left in each pile) look up what each pi is equivalent to, compute exclusive-or of all; add result to S compute mex(S), save that as equivalent to P</pre> {} {, x.,, x} = {*0, *1, *1} {, x.,, x,, z, = {*2, (*1 xor *1) = *0, *1} {, x., x.x,, x,, z, = {*3, *(1 xor 2) = *3, *2, *(1 xor 1) = *0}	*0 *1 *2 *3 *1	

FINANCE VIOLE	
$0, 1, 2, 3, 1, \frac{4}{4}, 3, 2, 1, 4, \frac{2}{6}, 6, 4, 1, 2, \frac{7}{7}, 1, 4$	
3 2 1 4 6 7 4 1 2 8 5 4 7 2 1 8 6 7	
size of largest group	
**** · **** · ***	
(2) tale in the sails and	
*4 *3 *3 *2 C Tail of elonating the group	1
100 move here to 100 ver 110 - 010	01
100 move here! to 100 xor 110 = 010	
011	
011	
010	
110 (9) find group	that has I
IIU In Same pl	ace as MSB
·	of you
possible moves on xxxxx = $\{xxxx = *1, xxxx = *(1 xor 3) = *2 (5) compute xor of the$	group
and vesult fam	· (C) '
	•
a winning move is to x.xxx.xxxxxxxx	
to disambiguate between multiple winning move in	
programming assignment:	
for each group loft >right	
if group has msb of xor set	
for each position left -> right	
for each move at that position fewer pins->more pins	
if move is a winning move then STOP	

Equivalence of Games

For imparkal, normal games 6, 6', say 6=6' if and only if G + H, G' + H have same outcome class (N, P) for all impartial normal combinatorial games H **Is +2 \approx +1?** $*2 + _*1 _$ $*1 + _*1 _$ **I**s **¥5 ≈ ¥3?** *5+_*3____ Not N *3 + __*3____ P Conjecture: $\forall m, n \in \mathbb{N}$, $m \neq n \longrightarrow m$ is not equivalent to n(*m + *m is P; *n + *m is N) E + 2 + + 1 2 + 3 YES! ¥Z+ ≥l + <u>*1</u> **∂}+** *<u>1</u> Ν Ν ¥Z+ >1 + <u>*2</u> **₹3+** *<u>2</u> Ν Ν ***}+** _*3 **∀Z+ >l +**<u>*3</u> Р Р ¥Z+ ≥| +<u>*</u>4 **₹}+** <u>*4</u> Ν Ν

¥2+ **≥**| +____ *****3+ ___ Conjecture: +n + +m ~ *(n xor m)