Sprague-Grundy Theorem: every finite, normal, impartial combinatorial game is equivalent to some form of 1-row Nim.

Corollary: If G is equivalent to ${ }^{*} \mathrm{n}$ and H is equivalent to *m then $\mathrm{G}+\mathrm{H}$ is equivalent to *( $\mathrm{n} \oplus \mathrm{m}$ )

| For finite, normal, impartial games: | game-over position $=* 0$ |
| :---: | :---: |
| for each other position P in order of increasing length (max \# moves to end) |  |
| start with S = empty set |  |
| for each move |  |
| determine resulting position $\mathrm{P}^{\prime}$ |  |
| look up what $P^{\prime}$ is equivalent to, add to $S$ |  |
| compute mex(S), save that as equivalent to $P$ |  |
| . X X . |  |
| $x$. . $x$ |  |
| $x \cdot x$ |  |
| $\times \times$ |  |
|  |  |
|  |  |
| $\times \times . x$ |  |
| $\times \times \times$ |  |
| $\times \times \times \times$ |  |

For Kayles/Nim-like games (reducing number of objects in a pile or splitting piles; can't move on more than one pile at a time [easily decomposed into subgames])

## game-over position $=* 0$

for each other initial pile $P$ in order of increasing size
start with $S=$ empty set
for each move
determine resulting position $\mathrm{P}^{\prime}$, write as $\mathrm{p} 1+\mathrm{p} 2+\ldots+\mathrm{pn}$ (objects left in each pile)
look up what each pi is equivalent to, compute exclusive-or of all; add result to S compute mex(S), save that as equivalent to $P$

|  |  | \{\} | *0 |
| :---: | :---: | :---: | :---: |
| X |  | $\{\}=.\{* 0\}$ | *1 |
| x x |  | \{.., $x ., . x\}=\{* 0, * 1, * 1\}$ | *2 |
| xxx | K3 | $\{. x x, x . x, . . x\}=\left\{{ }^{*} 2,(* 1\right.$ xor* 1$\left.)={ }^{*} 0,{ }^{*} 1\right\}$ | *3 |
| XXXX |  | $\{. x x x, x . x x, . . x x, x . . x\}=\{* 3, *(1$ xor 2$)=* 3, * 2, *(1$ xor 1$)=* 0\}$ | *1 |
| XXXXX |  | \{.xxxx, x.xxx, xx.xx, ..xxx, x..xx $=\left\{{ }^{*} 1, *(1\right.$ xor 3$)=* 2, *(2$ xor 2$)=* 0, * 3, *(1$ xor 2$\left.)=* 3\right\}$ | 4 |

Finding winking move
$0,1,2,3,1,4,3,2,1,4,2,6,4,1,2,7,1,4$,
$3,2,1,4,6,7,4,1,2,8,5,4,7,2,1,8,6,7$
(1) compute table as above up do
size of largest group


a winning move is to $x . x x x . x x x x x x . x x x . x x$
to disambiguate between multiple winning move in programming assignment:
for each group left->right
if group has mab of xor set
for each position left -> right
for each move at that position fewer pins->more pins
if move is a winning move then STOP

Game position = set of options (set of positions you can move to)

In traditional 1-row Nim

$$
\begin{aligned}
& = \\
0 & =\{.\}=\{\{ \}\}=* 1 \\
00 & =\{., 0\}=\{\{ \},\{\{ \}\}\}=*_{2} \\
000 & =\{\{ \},\{\{ \}\},\{\{ \},\{\{ \}\}\}\}=*_{3} \\
\mathbf{O O O O} & =
\end{aligned}
$$

Outcome class: N - next player has a winning strategy -- there is a move to a P position $P$ - previous has winning strategy -- all moves are to $N$ positions

$$
\begin{aligned}
& \}=* O \text { is a position } \\
& O=* 1 \text { is a } N \text { position } \\
& O O=* 2 \text { is an } N \text { position } \\
& O O O=* 3 \text { is an } N \text { position }
\end{aligned}
$$

$$
\left.\begin{array}{c}
0<00 \\
00
\end{array} \begin{array}{c}
\mathrm{G}+\mathrm{H}=\left\{\begin{array}{l}
*_{3+* 2} \\
\mathrm{G}^{\prime}+\mathrm{H} \mid \mathrm{G}^{\prime} \text { is an option of } \mathrm{G} \\
u
\end{array}\right. \\
\left\{\mathrm{G}+\mathrm{H}^{\prime} \mid \mathrm{H}^{\prime} \text { is an option of } \mathrm{H}\right.
\end{array}\right\}
$$

For important, normal sames $6,6^{\prime}$, say $6 \approx 6^{\prime}$ if and inly if $G+H, G^{\prime}+H \begin{aligned} & \text { have same outcome class (N, P) for all impartial normal } \\ & \text { combinatorial games } H\end{aligned}$

$$
\begin{gathered}
\text { Is } \\
\text { No! }
\end{gathered} \approx \underset{\mathrm{N}}{*} \approx \frac{* 5 ?}{* 3+{\underset{\mathrm{P}}{ }}_{* 3}}
$$

Conjecture: $\forall m, n \in \mathbb{N}, m \neq n \quad \rightarrow \quad{ }^{*} m$ is not equivalent to ${ }^{n} n$

$$
\begin{aligned}
& \text { (* } \left.\mathrm{m}+{ }^{*} \mathrm{~m} \text { is } \mathrm{P} ;{ }^{*} \mathrm{n}+{ }^{*} \mathrm{~m} \text { is } \mathrm{N}\right) \\
& \text { Is } \forall 2+\forall 1 \approx \quad * 3 \\
& \text { YES! } \\
& +2+21+\underset{N}{*} \quad+3+*_{1} \\
& +2+21+* 2 \quad+3+* 2 \\
& \begin{array}{rr}
* 2+21+* 3 \\
P & +3+{ }^{* 3}
\end{array}
\end{aligned}
$$

$$
+2+21+\ldots \quad+3+
$$

Conjecture: $\forall n+* m \approx{ }^{*}(\mathrm{n}$ xor m$)$

