AlphaBeta wants to know is next child better than best so far?
(for max nopssible answers: 1) no valve $\leqslant \alpha$
2) Yes, and the value is exactly - $\alpha<$ value $\angle B$
3) yes, and so good you dent even want to know

$$
\text { value } \geq \beta
$$

Scout wants th know is next child better than bust so far?
(for max nodes)

1) no
2) yes

$$
\text { Valve } \leq \alpha
$$

value $>\alpha \longleftarrow$ if yes,
need bo distinguish. between

Scout (p, α, β, depth,h)
if p is terminal then return value (p)
if depth $=0$ then return havistic (p)
if p is a max position
bust $\leftarrow-\infty$
for each reachable position in order of $P^{\prime} n^{\text {and }}$ goodness while $\alpha<\beta$

$$
\begin{aligned}
& \text { if } p^{\prime} \text { is first } r^{+s} \\
& \text { score } \leftarrow S_{\text {cost }}\left(p^{\prime}, a, B, \alpha_{y} \text { th }-1, h\right)
\end{aligned}
$$

else
null winton (assuming integers)

best $\leftarrow \max$ (best, score)
so value of $p \geq B$ cut off
return best $\underset{\text { bax }}{\leftarrow}$ (best, α) (or tail-hard version)
els
! min position; symmetric

Transposition Table
Positions may be reachable by multiple sequences of moves
Keep table of values for all positions examined in tree
Keys: positions lower, upper boons
"if exact (glen h, depth)
Valves: (valve/bound, move, depth)
if value/boond from shallower search, ignore
Add check at start of $A-B$ if pos present and searched depth \geq desired depth if value is exact, return value else if upper bound $<\alpha$ redinual ely if lowerbound and value 2 Bredinval

Save returned values in table
fixed size -replacement policy deepest
Mayst
newest
two-level

MTD-f

$$
\operatorname{MTD}-f(\underline{n}, \underline{f}, d)
$$

assuming integer values
lower Bound $\leftarrow-\infty$
upper Bound
$g \longleftarrow \infty$

$$
g \leftarrow f
$$

while lower Bound <ape rBound

$$
\begin{aligned}
& B \leftarrow \max (\text { lowerBound } t 1, g) \\
& g \leftarrow \underline{A-B}(n, B-1, B, d) \\
& \text { if } g<B \text { upper Bound } \leftarrow=g \text { most of the time } \\
& \text { else } \quad g
\end{aligned}
$$

return g

