

Combinatorial Game:
\checkmark two-player
\checkmark turn-based
/ non-stochastic
no element of chance
\checkmark perfect information
you know everything

- all possible moves
normal-last move wins
misere - last move loses
finite - bound on fotenl
\# of moves
https://xkcd.com/1002/
- impartial $\begin{aligned} & \text { no ownership of pitas }\end{aligned}$
no ownership of pitas
find_solution(s)
if s is solved position return []
for every possible move m
- update s to reflect move $m \rightarrow$ make a copy of s that reflects move m
solution $=$ find_solution(s)
if solution is not NIL return [m] + solution
else undo move m in s (dort need undo if made a copy) return NIL
$0^{(4)} 0$
00

$0^{3} 0$
0000

Start with rows of $n_{1}, n_{2}, \ldots, n_{k}$ stones

If no possible moves, you lose (last move wins)

DEF: If player to make next move has a winning strategy, position is an N position; otherwise a P position
game is over and you won or
there is a move [so that for all opp moves you shill have winning strategy opponent goes to
THM: Nim position is P if and only if xor is 0 COR: Winning move mates for O

1) compute xor of numbers of stones, x
2) Find most sig 1 in result

- 3 find row r with that hit set

4) remain $\leftarrow x$ xor count (r)

Proof: Induction on number of stones (for all n, positions with n stores
Base case: $n=0 \rightarrow$ already lost so P
Induction: Let $n>0$ and assume positions with $m<n$ stones are P if and only if xor is 0
If xor is, \mathbf{O} all moves make it non-zero
ind. hyp applies -.

$$
\begin{aligned}
& \text { If xor is, } \mathrm{O} \quad \begin{array}{l}
\text { all moves mate it non-zero } \\
\text { ind } \\
\text { all mope applies are to } \mathrm{N}
\end{array} \\
& \text { If pos is xor is non-zero } \frac{1-5}{\text { ind above matte it } \mathrm{O}} \\
& \text { result apples } \\
& \text { start is }
\end{aligned}
$$

Start with one rows of \boldsymbol{n} stones

On each turn, take as $\mathbf{1 , 2 ,}$ or 3 stones one row P N N NP N N N N N
If no possible moves, you lose (last move wins) \quad Prove (ind) that n is $P \longleftrightarrow n$ (mod 4) (a Ba must of 4)

0

Start with three rows of $n_{1}, n_{2}, \ldots, n_{k}$ stones
On each turn, take as 1,2 , or 3 stones one row
If no possible moves, you lose (last move wins)

