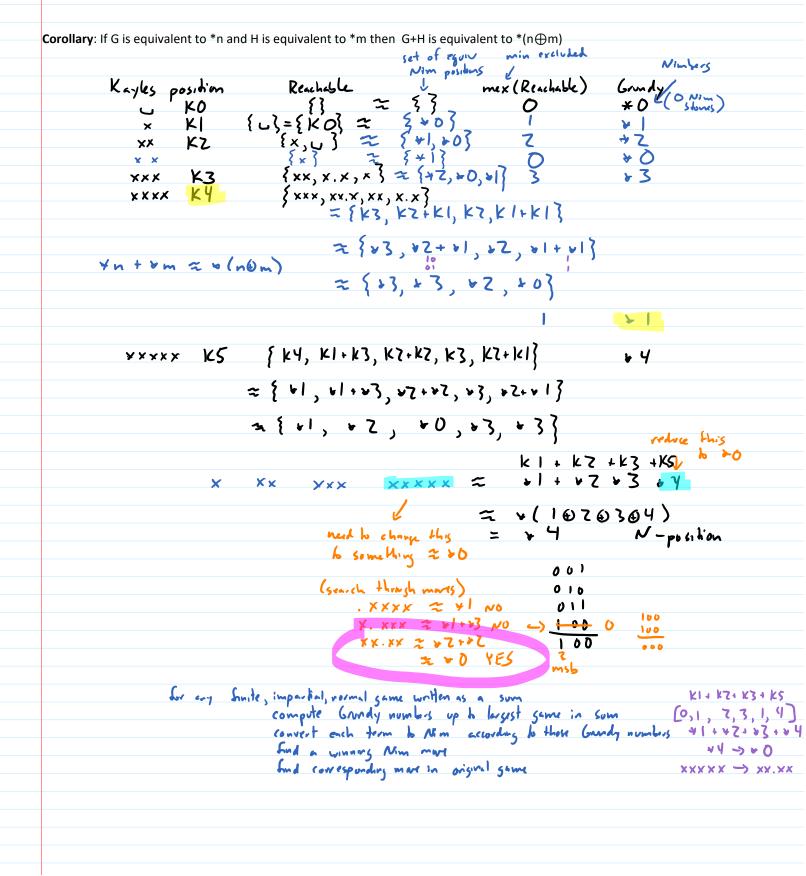
Nim N position Nim-sum For Nim, there is a winning more if and only if the bitwise exclusive or of the number of stones left in each row is non-zero, and the winning moves are the ones that make the bitwise exclusive or O. (So a position is an N-position if and only if Nim-sum ≠ 0) P-pos iff Nim-sum = 0 changes to O 34 100010 where the change doesn't mostler 100010 010000 001111 16 15 => 0 1 0 0 0 0 10110 001111) = 15 00000 101101 xor has become 0 45 less than -- P position Compute Nim-sum (Yor) × OIIII non-zero, N position (next player msb had mis in result has inning And vow w/mslo set change that row to old whe @ x < always legal (rodwang + of stones) more) Les any huite, impacted, normal convert to agriv firm of Nim compute mining more for Nim find equiv more in original same max # moves in game Proof (strong induction on # of stones kf) Base case (n=0): The only game with 0 stones is already over, previous player took last stone and won, so is a P position as required. Nim-sum=0 Ind step: Suppose K>O and all possions with i stones, Ofick are N-positions iff their Nim-sums are non-zero. Suppose position mi, ..., mr has mi+ ... + mr = k and mi @ ... @ mr = D. [want that mi, ..., mr is a P-position] A move from this position reduces some m; to m; where m; < m; and results in a position with Nim-sum want this @ ^mι δ ··· δm_{i-1} δm_i' θm_{in} ω··· θm_r <u>Θ</u>δ to be 70 = M1 & ... Om;., Om; Om;n O... Om Om; Om; so can apply ind hyp b set result is N pos] = $m_1 \oplus \dots \oplus m_{i-1} \oplus m_i \oplus m_i \oplus m_i \oplus \dots \oplus m_i \oplus m_i \oplus m_i'$ = 0 6 n; 6 m;'≠ 0 sinu mi≠mi $\begin{array}{rcl} Also, & O \leq m_{1} + \cdots + m_{i-1} + m_{i}' + m_{i+1} + \cdots + m_{r}' \leq k = m_{1} + \cdots + m_{r} & (L/c m_{i}' \leq m_{i}) \\ & So & ind. & hyp. & applies & so & m_{1,2} \dots, m_{i-1,j} m_{i}' s & m_{i+1,j} \dots, m_{r} & is & N-pos \end{array}$ More was arbitrary, so all mores load to N-pus, so original was a P-pos ← Suppose position mi,...,mr has mi+...+mr=k and mi@...@mr=x≠0. (want position N-pos

$$\begin{array}{c} \leftarrow \text{Suppose position } m_{1}, \dots, m_{r} \text{ by } m_{r}, \dots, m_{r} \text{ by } m_{r} m_{r} \text{ by } m_{r} m$$

Sprague-Grundy Theorem: every finite, normal, impartial combinatorial game is equivalent to some form of 1row Nim.

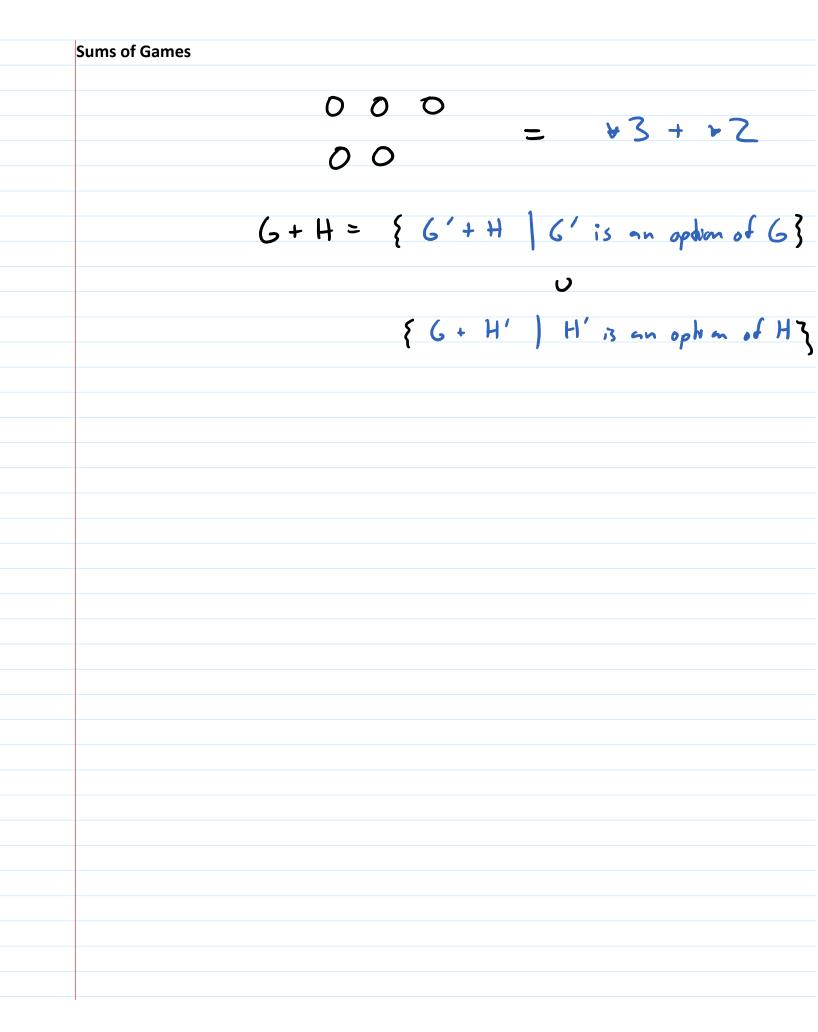


Game Positions

Game position = set of ophilons
Same position = set of ophilons

$$a = v 0$$

 $D = v 1$
 $0 0 = v 2$
 $0 0 0 = v 3$
 $0 0 0 = v 4$
Outcome class = who has winning chattery $N = west physe P = provins$
 $\{ \} = *D$ is a P position (but variant games)
 $position G$ is an N position if \exists option G' s.t. G' is P-position
P position if \forall uptions G' , G' is N-position
in a finity, normal, important game all positions are P or N



Equivalence of Games

For imported nerrows sums 6, 6', say
$$6 \approx 6'$$
 if and only if
for all other games H, $6+H$ and $6'+H$ have
serve actions chaps
Is $*2 \approx *1$? $*2 + u_{-1}^{2}$ $*1 + \frac{52}{4}$
 $P \text{ prot}(minore g)$ $N \text{ prot}(umany one
get $6 \text{ vir}(x)$)
Is $v5 \approx +3?$ $*5 + \frac{15}{4}$ $v3 + \frac{13}{4}$
 $N \text{ prot}(umany one
(uman $6 \text{ vir}(x)$)
 $P \text{ prot}$
Conjecture: Van, $n \in \mathbb{N}$, $m \neq n \rightarrow \forall m \neq \forall n$ (prot by showing $\forall m \pm \forall n \in \mathbb{N}$, $M \text{ prot}$
 $t \approx +2 + v1$ $\approx +3$
 $+2 + v1 + \frac{10}{2}$ $*3 + \frac{10}{2}$
 $+2 + v1 + \frac{10}{2}$ $*3 + \frac{10}{2}$
 $+2 + v1 + \frac{12}{2}$ $*3 + \frac{11}{2}$
 $+2 + v1 + \frac{12}{2}$ $*3 + \frac{12}{2}$
 $N = 1 \times 1 \times 2 + v1 \equiv v2$
 $+2 + v1 + \frac{12}{2}$ $*3 + \frac{32}{2}$
 $N = 1 \times 1 \times 2 + v1 \equiv v2$
 $+2 + v1 + \frac{12}{2}$ $*3 + \frac{32}{2}$
 $+3 + \frac{32}{2}$
 $+3 + \frac{32}{2}$$$