Fixed Point

Can't Stop Graph

Number of anchors for standard solitaire game $\leq \frac{4}{4} \cdot \frac{6}{4} \cdot 8 \cdot 10 \cdot 12 \cdot 14 \cdot 12 \cdot 10 \cdot 8 \cdot 6 \cdot 4$ \#places marker loot all are reachecter, can be in 3's column some are symutive)

Piecewise Linear

$$
\begin{aligned}
& A=p_{1} \cdot \min \left(p_{p_{3}} \cdot A_{1} p_{4} \cdot F, E\right)+p_{2} \cdot \min (E, E) \\
& \left.p_{1} \cdot \min \mid p_{p_{3}} \cdot A_{1} p_{4} \cdot F, E\right)+p_{2} \cdot \min (E, F)-A=0
\end{aligned}
$$

solve bor A numerically

Newton's Method

3+ Players
E_{1} [pos] $=$ expected wins at position pos for PI
$E_{2}[p \circ s]=$
E_{n} [pos] $=$ expected wins at position pos for Pun

For pos P, player i's turn, compute $E_{i}[$ pos] as usual
for player $j, i \neq j$, once P_{i} 's is known at pos, calculate P (pos \rightarrow pos') using that strategy for successor positions pos', \longrightarrow probability that P_{i}^{\prime} 's stactery results in pops when

$$
E_{j}[\text { pos }]=\sum_{\text {pos }} P\left(\text { pos } \rightarrow \text { pos } s^{\prime}\right) \cdot E_{j}\left[\text { pos }{ }^{\prime}\right]
$$

(valve iteration, Noun's method must also he oud differently when applicable bo infinite games)

