Muldi-Armed Bandit
$\begin{array}{cl}\text { Given unknown probability distabutions } & R_{1}, \ldots, R_{k} \\ \text { with means } & \mu_{1}, \cdots, \mu_{k}\end{array} \quad\left(\mu^{*}=\max _{1 \leq i s k} \mu_{i}\right)$
Choose indics i_{1}, i_{2}, \ldots to optimize payout

Regret $=$ difference between cumulative payout and best expectations

$$
\rho_{r}=T \cdot \mu^{v}-\sum_{t=1}^{T} \hat{r}_{t} \quad \hat{r}_{t}=\text { reward at dime } t
$$

"optimal" means $P\left(\lim _{T \rightarrow \infty} \frac{P_{T}}{T}=0\right)=1 \quad$ zeno regret

$$
\begin{aligned}
& \mu_{1}=\frac{2}{3} \\
& \frac{1}{2} \quad 0 \\
& \mu_{3}=Z=\mu^{*} \\
& \mu_{2}=\frac{7}{8}
\end{aligned}
$$

$$
\text { aus regret } 2-\frac{2}{3}=\frac{4}{3}
$$

uniform rotation: $\begin{array}{lllllllll}1 & 2 & 3 & 2 & 3 & 2^{2} & 1 & 2^{t} & \ldots\end{array}$

$$
\lim _{T \rightarrow \infty} \frac{\rho_{T}}{T}=\frac{59}{72}
$$

tot expected regent over seq of 3 plays

$$
=\frac{4}{3}+\frac{9}{8}=\frac{59}{24}
$$

greedy: play each once, play arm w/ hist result boner

$$
\begin{aligned}
& \left.\begin{array}{llllllllllll}
1 & 2 & 3 & 1 & 1 & 1 & 1 & 1 & 1 & \ldots & T \rightarrow \infty \\
P_{r} \\
T
\end{array}=\frac{y}{3}\right] \begin{array}{l}
\text { och } \\
\text { with } \\
\text { Push }>0
\end{array} \\
& \begin{array}{lllllllllll}
1 & 2 & 3 & 2 & 2 & 2 & 2 & 2 & 2 & \cdots
\end{array} \lim _{T \rightarrow \infty} \frac{P_{T}}{T}=\frac{9}{8} \quad \text { prub>0 } \\
& \begin{array}{lllllll}
1 & 2 & 3 & 3 & 3 & 3 & 3 \\
\lim _{T \rightarrow \infty} & \frac{P_{T}}{T}=0
\end{array} \\
& P\left(\lim _{T \rightarrow \infty} \frac{P_{T}}{T}=0\right)<1
\end{aligned}
$$

E-greedy: play each arm once, then play randomly chosen arm, $y /$ probability ε arm with best any observed reward otherwise

$$
\lim _{T \rightarrow \infty} \frac{P_{T}}{T}=\frac{\varepsilon}{k} \cdot \sum_{i=1}^{k}\left(\mu^{*}-\mu_{i}\right)>0 \quad \text { (assuming not all } \text { arms ane op k mac) }
$$

