Implementing DIFC with PCHIP
A Novel Proof Framework

Eric J. Love

Yale University

April 5, 2011
Motivation

- Previous formulation in Coq inadequate for real tasks
- Need to clean up proof framework
- Biggest mistake: don’t use Coq to “compute”!
- Build a new formal semantics model first
- Use Coq later for implementation
- Also, want to extend semantics for information flow
Start from scratch: Formalization of Types

- value = \{lo, hi\} : Type
- \(\forall_n \text{bits } n \triangleq \mathbb{N}_n \rightarrow \text{value} : Type\)
- \(\forall_n \text{signal } n \triangleq \mathbb{N} \rightarrow \text{bits } n : Type\)
- \(\forall_n \text{wire } n : Type\)
- \(\text{SEnv} \triangleq \forall_n \text{wire } n \rightarrow \text{signal } n : Type\)
- \(\text{module} \triangleq \text{SEnv} \rightarrow \text{SEnv} : Type\)
In order to discuss semantics of our Verilog formulation, we must first introduce the concept of a *typing judgement*.

Definition

A *typing judgement* of the form $H ⊢ s : T$ is a representation of the knowledge that signal s has the type T in environment H. By *environment*, we mean the inside of a module's main body.
We assume that a wire or reg can only be declared once within a module (must be checked by compiler, otherwise the following inference rules will be unsound).

\[
\begin{align*}
\langle \text{module } H (\ldots) C \rangle \\
\vdash H : \text{module}
\end{align*}
\]

\[
\begin{align*}
\langle \text{module } H (\ldots) \text{ begin } \ldots \times \text{wire}[(n+1):0];\ldots \text{ end} \rangle \\
H \vdash x : \text{wire } n
\end{align*}
\]
Type Inference Rules for Expressions

Within a module’s body, each expression has a type associated with it. Here are some basic inference rules.

\[
\begin{align*}
H & \vdash w : \text{wire } n \quad E = w \\
\hline
H & \vdash E : \text{wire } n
\end{align*}
\]

\[
\begin{align*}
H & \vdash E : \text{wire } n \\
\hline
H & \vdash \neg E : \text{wire } n
\end{align*}
\]

\[
\begin{align*}
H & \vdash E_1 : \text{wire } n \\
H & \vdash E_2 : \text{wire } m \\
\hline
H & \vdash E_1 \equiv E_2 : \text{wire } 1
\end{align*}
\]

\[
\begin{align*}
op & \in \{\&, \hat{}, |\}
\end{align*}
\]

\[
\begin{align*}
H & \vdash E_1 : \text{wire } n \\
H & \vdash E_2 : \text{wire } m \\
n & \leq m \\
\hline
H & \vdash E_1 \text{ op } E_2 : \text{wire } n
\end{align*}
\]
Define an operator $[H \triangleright E : \text{wire } n] : \text{SEnv} \rightarrow \text{signal } n$

- Returns a function mapping environments to signals
- Semantics of expressions parametrized on past history of signals in containing module
 (Represented by SEnv variable ρ)
Semantic Equivalence Relations

- Define an equivalence relation \equiv^n between signals:
 \[
 s_1 \equiv^n s_2 \iff \forall t, k < n s_1(k, t) = s_2(k, t) \tag{1}
 \]
 (Recall that s_1 is a function $\mathbb{N}_n \to \mathbb{N} \to \text{value}$. The reflexive, symmetric, and transitive properties clearly hold for \equiv^n)

- Define another equivalence relation \equiv on expression semantic functions:
 \[
 \llbracket H' \gg E' : \text{wire } n \rrbracket \equiv \llbracket H \gg E : \text{wire } n \rrbracket \iff
 \forall \rho \llbracket H' \gg E' : \text{wire } n \rrbracket(\rho) \equiv^n \llbracket H \gg E : \text{wire } n \rrbracket(\rho) \tag{2}
 \]
 Recall that $\vdash \llbracket H \gg E : \text{wire } n \rrbracket(\rho) : \text{signal } n$ and is thus a mapping of clock cycle (\mathbb{N}) onto a set of bits (bits n).
Some Useful Semantic Primitives

- Define V_{dd} as an expression that always evaluates to hi:

 \[
 \llbracket H \triangleright V_{dd} : \text{wire 1} \rrbracket \rho t = \text{hi}
 \]

- Similarly, G_{nd} always lo:

 \[
 \llbracket H \triangleright G_{nd} : \text{wire 1} \rrbracket \rho t = \text{lo}
 \]
Further Semantics: ρt-Abstractions

- Want to define semantics w/o referencing ρ and t constantly
- A ρt abstraction is a semantic definition parametrized w.r.t. these two var’s and has type
 $(\text{SEnv} \rightarrow \text{signal } n) \rightarrow (\text{SEnv} \rightarrow \text{signal } m) \rightarrow (\text{SEnv} \rightarrow \text{signal } l)$
 for some n, m, and l in the case of a binary operator.
- Will allow us to map two $[H \triangleright E : \text{wire } n]$’s onto one and recursively define semantics of expression trees
- Also have abstractions of type
 $(\text{SEnv} \rightarrow \text{signal } n) \rightarrow (\text{SEnv} \rightarrow \text{signal } m)$ for unary operators, such as NOT
Some ρt-Abstractions for Selected Operators

- Give definitions for AND, OR, and NOT w/ semantic inference rules
- Definition of AND operator:

\[
F_1 = [H \triangleright E_1 : \text{wire } n_1] \quad F_2 = [H \triangleright E_2 : \text{wire } n_2] \\
F_1 \rho t k = \text{lo} \lor F_2 \rho t k = \text{lo} \\
\text{and}(F_1, F_2) \rho t k = \text{lo}
\]

\[
F_1 = [H \triangleright E_1 : \text{wire } n_1] \quad F_2 = [H \triangleright E_2 : \text{wire } n_2] \\
F_1 \rho t k = \text{hi} \land F_2 \rho t k = \text{hi} \\
\text{and}(F_1, F_2) \rho t k = \text{hi}
\]

- Imagine analogous definitions for OR and NOT...
Using Abstractions for Expression Semantics

- Consider the case of \([H \triangleright E_1 \& E_2 : \text{wire } n]\).
- Semantics described with abstraction as:

 \[
 \left[H \triangleright E_1 \& E_2 : \text{wire } n \right] = \text{and} \left(\left[H \triangleright E_1 : \text{wire } n_1 \right], \left[H \triangleright E_2 : \text{wire } n_2 \right] \right)
 \]

- Other cases analogous:

 \[
 \left[H \triangleright E_1 | E_2 : \text{wire } n \right] = \text{or} \left(\left[H \triangleright E_1 : \text{wire } n_1 \right], \left[H \triangleright E_2 : \text{wire } n_2 \right] \right)
 \]

 \[
 \left[H \triangleright \neg E : \text{wire } n \right] = \text{not} \left(\left[H \triangleright E : \text{wire } n \right] \right)
 \]
Representing Wire Assignment Statements

- For simple assignment statements we have a proof rule:

\[
\begin{array}{c}
\langle \text{module } H(\ldots) \ldots \text{ assign } w = E; \ldots \rangle \\
H \vdash w : \text{wire } n \quad H \vdash E : \text{wire } n \\
\hline
[H \triangleright w : \text{wire } n] \equiv [H \triangleright E : \text{wire } n]
\end{array}
\]

- We also introduce new rules for expressions with conditionals:

\[
E = \langle E_1 \ ? \ E_2 : E_3 \rangle \\
[H \triangleright E_1 : \text{wire } n_1] \rho t 0 = \text{hi} \\
H \vdash E_2 : \text{wire } n \quad H \vdash E_3 : \text{wire } n \\
\forall k < n [H \triangleright E : \text{wire } n] \rho t k = [H \triangleright E_2 : \text{wire } n] \rho t k
\]

- (Analogous rule for \text{lo} case of \text{E}_1 \ldots)
Non-Blocking Assignment: The Update Rule

Need to represent `always @ (...) begin ... end` blocks in proof rules

First, establish that command C updates some register:

$$C = \langle w <= E \rangle$$
$$\text{upd}_C \left(w \leftarrow V_{dd} \ E \right)$$

Says that whenever V_{dd} is hi (i.e. always), the command C will update the value of w to E.

Then define “no-update” condition for a command:

$$C = \langle w <= E \rangle \quad w' \neq w$$
$$\overline{\text{upd}_C \left(w' \leftarrow V_{dd} \right)}$$
Sequential Statement Update Rules

\[
C = \langle C_1; C_2 \rangle \quad \text{upd}_{C_2} \left(w \overset{E_1}{\leftarrow} \right) \quad \text{upd}_{C_1} \left(w \overset{E_1}{\leftarrow} E_2 \right)
\]

\[
\text{upd}_C \left(w \overset{E_1}{\leftarrow} E_2 \right)
\]

\[
C = \langle C_1; C_2 \rangle \quad \text{upd}_{C_2} \left(w \overset{E_2}{\leftarrow} \right) \quad \text{upd}_{C_1} \left(w \overset{E_1}{\leftarrow} E_2 \right)
\]

\[
\text{upd}_C \left(w \overset{E_1}{\leftarrow} E_2 \right)
\]

\[
C = \langle C_1; C_2 \rangle \quad \text{upd}_{C_1} \left(w \overset{E}{\leftarrow} \right) \quad \text{upd}_{C_2} \left(w \overset{E}{\leftarrow} \right)
\]

\[
\text{upd}_C \left(w \overset{E}{\leftarrow} \right)
\]
If-Statement Update Rules

\[
C = \langle \text{if } (B) \ C_1 \text{ else } C_2 \rangle \quad \text{upd}_{C_1} \left(w \leftarrow^{E_1} E_2 \right) \\
\text{upd}_C \left(w \leftarrow^{B \& E_1} E_2 \right)
\]

\[
C = \langle \text{if } (B) \ C_1 \text{ else } C_2 \rangle \quad \text{upd}_{C_2} \left(w \leftarrow^{E_1} E_2 \right) \\
\text{upd}_C \left(w \leftarrow^{(\neg B) \& E_1} E_2 \right)
\]
Module Update Rules

\[\langle \text{module } H(\ldots) \ C \rangle \quad \text{upd}_C \left(w \leftarrow E_1 \ E_2 \right) \]

\[H \triangleright w \leftarrow E_1 \ E_2 \]

\[H \vdash E_1 : \tau_1 \]

\[H \vdash E_2 : \tau \quad H \triangleright w \leftarrow E_1 \ E_2 \quad \expsem_{HE_1\tau_1} \rho \ t \ 0 = \text{hi} \]

\[[H \triangleright w : \text{wire } \tau] \rho \ (t + 1) = [H \triangleright E_2 : \text{wire } \tau] \rho \ t \]
Define a substitution mapping δ as a set of two-tuples:

$$\delta = \{ (w_1, w'_1), \ldots, (w_n, w'_n) \},$$

where w_i and w'_i are wires.

Use δ to represent a connections to a module’s inputs/outputs.

Define a module instantiation predicate with a new proof rule:

$$\langle \text{module } H (\ldots) \ldots \text{name } H'(\text{domain}(\delta)) \ldots \rangle$$

$$\delta = \{ (w_1, w'_1), \ldots, (w_n, w'_n) \}$$

$$\forall w_i \in \text{domain}(\delta) \quad H \vdash w_i : \tau_i \land H' \vdash w'_i : \tau_i$$

$$H \gg H'(\delta)$$

Read as “H instantiates H' with parameters δ.”

Take $\text{domain}(\delta)$ to be the set \{ $w | \exists w'(w, w' \in \delta)$ \}
Defining Module Instance Semantics

\[(X, X') \in \delta \quad H \gg H'(\delta)\]

\[\forall (w, w') \in \delta [H' \triangleright w' : \text{wire } \tau] \equiv [H \triangleright w : \text{wire } \tau]\]

\[\Rightarrow [H' \triangleright X' : \text{wire } \tau_2] = F\]

\[\therefore [H \triangleright X : \text{wire } \tau_2] = F\]
Decentralized Information Flow Control (DIFC)

- A method for controlling the flow of information in programs
- Developed by Andrew Myers and Barbara Liskov in 2000
- Implemented for JFlow programming languages (Myers)
- Also used in several OS: Asbestos, HiStar, Flume
We define *label* to be a set of tags:
\[L = \{t_1, t_2, \ldots, t_n\} \]

A *tag* represents some guarantee about the source of information.

Each piece of “information” has two labels associated with it: one for secrecy, and one for integrity.
Secrecy and Integrity

- A secrecy label L_S is a set of tags representing the sources of information that something has possibly seen.
- An integrity label L_I is a set of tags representing the sources of information that endorse the contents of the label's carrier.
- Always safe to add to L_S, and remove label from L_I.
- Only designated principals (here: modules) may do opposite: declassify data by removing secrecy labels or endorse by adding integrity.
We assign information labels to objects of type bits n.

- Can make assertions about all possible bits produced by some wire
 (= Inference hypotheses)

- Then prove assertions about labels of bits produced by expressions
Inference Rules for Labels

\[L_S(\llbracket H \triangleright E_1 : \text{wire } n \rrbracket \rho t) = L_{S1} \]
\[L_S(\llbracket H \triangleright E_2 : \text{wire } n \rrbracket \rho t) = L_{S2} \]
\[L_I(\llbracket H \triangleright E_1 : \text{wire } n \rrbracket \rho t) = L_{I1} \]
\[L_I(\llbracket H \triangleright E_2 : \text{wire } n \rrbracket \rho t) = L_{I2} \]
\[\text{op} \in \{\&, |, \sim\} \quad \quad E = \langle E_1 \text{ op } E_2 \rangle \]

\[L_S(\llbracket H \triangleright E : \text{wire } n \rrbracket \rho t) = L_{S1} \cup L_{S2} \]
\[L_I(\llbracket H \triangleright E : \text{wire } n \rrbracket \rho t) = L_{I1} \cap L_{I2} \]
Explained by Myers/Liskov as “leak” through if-stmts
Must handle in Verilog model:
```verilog
if(B) begin ... w <= E ... end
```
Inference rule:
\[
H \triangleright w \leftrightarrow^{E_1} E_2 \quad \quad \quad \quad \quad \quad \quad [H \triangleright E_1 : \text{wire } n_1] = F_1 \\
F_1 \rho t 0 = \text{hi} \quad \quad \quad [H \triangleright E_2 : \text{wire } n_2] = F_2 \\
[H \triangleright w : \text{wire } n] = F \quad \quad \quad L_S(F_1 \rho t) = L_{S1} \\
L_I(F_1 \rho t) = L_{I1} \quad \quad \quad L_S(F_2 \rho t) = L_{S2} \quad \quad \quad L_I(F_2 \rho t) = L_{I2} \\
L_S(F \rho (t + 1)) = L_{S1} \cup L_{S2} \\
L_I(F \rho (t + 1)) = L_{I1} \cap L_{I2}
\]