Modifying Xen: Enabling Parallel Migration and SplitVM Testing

Student: John Tam

Advisor: Professor Jakub Szefer (EE)

Introduction:

Data centers form the foundation of cloud computing, an increasingly important computing paradigm. Virtual machines are one of the primary units of computation in cloud computing; in cloud computing data centers, many physical servers—each running hypervisor virtualization software—provide computing resources needed to run the virtual servers. However, failures do occur: whether it’d be by security breach, or a hardware failure, a VM may need to be migrated away from its original host. In such a situation, one available server alone may not have the resources needed to run the VM, while two or more servers may have the resources needed when combined.

Xen is an open-source virtual machine monitor (VMM), or hypervisor, developed by the University of Cambridge, which allows multiple commodity operating systems to share conventional hardware in a safe and resource managed fashion, but without sacrificing either performance or functionality.

Objectives:

Currently, Xen operates with a singular migration from Host A to Host B. In this project, I seek to modify Xen to allow a single VM on Host A to be migrated, or cloned in parallel, onto Host B and Host C. Therefore, the Xen migration algorithm must be modified such that the VM on Host A will be migrated to Hosts B and C at the same time. There are certain challenges included in modifying the algorithm; in

1. http://caslab.eng.yale.edu/research.html
2. Ibid.
3. Ibid.
particular, they include opening up parallel connections to the child hosts and modifying the existing migration algorithm to use multiple threads, one for each connection. Reviewing the code will also take a nontrivial amount of time, due to the number of macros and simply, the sheer lines of code in Xen and as I modify the code, the (possibly many) times rebooting the machines. The ultimate goal is to have the VM running on both Hosts B and C, with no VM left on Host A.

Furthermore, I would like to investigate the Quick Emulator (QEMU) code and analyze how it interfaces with Xen. QEMU is an open-source hosted hypervisor. This is part of an ongoing investigation by Professor Jakub Szefer’s Computer Architecture and Security Lab; I am to be, at the very least, competent in understanding QEMU’s interface with Xen and able to explain it to others working in the lab, and formalize it via the lab’s Wiki and/or in the final project report and/or a presentation to the lab.

Possible stretch goals include modifying Xen domain structs to hold information about the migrated/cloned VM’s other clone; I would have to augment Xen’s existing domain info struct, which stores information about each VM, so that the child Hosts B and C after parallel migration hold information about the other child host. In essence, the hosts will know about each other. Furthermore, partial migration is of immediate interest; I would modify the parallel migration algorithm that I will develop so only part of the VM in Host A is sent to Host B, and the remaining part of the VM to Host C. I also aim to help with team members Faisal Zaghoul and Michael Hoot with performing SPLASH-2 benchmarks (this will possibly be in the final project report if obviously relevant). I hope I will have enough time to accomplish all of these goals during this semester, depending on how my role evolves throughout this semester in lab.

Significance:

This is only a part of an ongoing project, Split Virtual Machine Execution for Reliability and Security, at Professor Jakub Szefer’s Computer Architecture and Security Lab. These goals comprise a crucial part of the ongoing project, which has
the promise of increasing the reliability, security, and utilization of cloud computing providers in both public and private sectors.

Furthermore, I have no prior experience with Operating Systems or Distributed Systems. However, they are things I’d like to very much gain experience with before I leave Yale this December, as I am a second-semester senior. More personally, this semester will be a great challenge as I am concurrently trying to complete a late Computer Science B.S. degree, having taken 1 CS credit in my junior year, 4 CS credits in the Spring 2015, 3 CS credits during the summer, and 4 CS credits this semester (including this senior project). I am looking forward to meeting this challenge.

Deliverables:

1) Final project report; a side part of the report will hopefully include a more formal analysis of the QEMU interface with Xen, available to the lab and the Yale community at large.

2) Pushed parallel migration algorithm code to the CAS-Lab Github; this will be open to the lab and presumably the Yale community at large.

3) **Possibilities:**
 a. Further modifying Xen open-source code to augment domain info structs to hold info about another host.
 b. Modifying Deliverable 2’s code (or creating a new algorithm) for partial parallel migration.
 c. Formalized benchmarks in the final project report.
 d. Oral presentation to the lab.