
Distributed Storage

Wesley Maness
Zheng Ma
Hong Ge

Outline of today

Overview of a distributed storage system
(Wesley)
Routing in such system and DHT (Zheng)
Distributed File System (Hong)

Where are we heading?

Exploiting ubiquitous computing
– Small devices, sensors, smart materials, cars, etc
– Are we there? Cell-phone, watch, pen, smart-jacket, etc.

Planetary-scale Information Utilities
Infrastructure is transparent and always active
Extensive use of redundancy of hardware and data

– Devices that negotiate their interfaces automatically
– Elements that tune, repair, and maintain themselves

So what does this mean?

Personal Information Mgmt is the Killer App
Time to move beyond the Desktop
Information Technology as a Utility

Some people think OceanStore is the answer

OceanStore: An Architecture of Global-
Scale Persistent Storage

OceanStore: ~ a Utility Infrastructure

You want storage but without the issues of
backup, loss, secure
[is there a need?] Outsourcing of storage is
already common
[basic idea] to pay your monthly bill and your
data is always there
– One company, one bill, simple pay structure

OceanStore: ~ desired properties

Automatic maintenance
– Adapt to failure, repair itself, changes

How long should information be guaranteed?
Divorce information from location…
– System not disabled from natural disasters ->

how do you solve this?
– Adopts in changes in demands and regional

outages

Assumptions

Untrusted Infrastructure
– Untrusted components, only ciphertext in infrastructure

(Responsible) Entity
– Storage Provider would guarantee the durability and consistency of data
– Only trusted with integrity not content of data

Well Connected
– Producers and consumers most of time connected to high-bandwidth

network
Promiscuous Caching (data that can flow anywhere is referred to as
nomadic data) (difference between NFS/AFS)

– Data can be cached anytime, anywhere
Optimistic Concurrency via Conflict Resolution (CVS)

– Avoid locking in wide area!

Underlying Technology

Access Control
Data Update
– Primary Replica
– Archival Storage
– Secondary Replica

Data Read
Data Location & Routing ;Tapestry

Access Control

Reader Restriction
– Encrypt All Data
– Distribute Encryption Key to Users with Read

Permission

Writer Restriction
– Access Control List (ACL) for an Object
– All Writes be Signed so that Well-behaved

Servers and Clients Verify them based on the
ACL

Underlying Technology

Access Control
Data Update
– Primary Replica
– Archival Storage
– Secondary Replica

Data Read
Data Location & Routing (Tapestry)

Data Update (1/2)

– Adding a New Version to the Head of Version
Stream

– Array of Potential Actions each Guarded by a
Predicate

Predicate Examples
– Checking Latest Version_Num, Comparing a Region of Bytes to

an Expected Value, etc.

Action Examples
– Replacing a Set of Bytes, Appending New Data, Truncating the

Object, etc.

Timestamp
Client ID
<Predicate 1, Action 1>
<Predicate 2, Action 2>

. . .
<Predicate N, Action N>
Client Signature

< Update Message Format >

Data Update (2/2)

Application

Primary Replica
(Inner Ring)

Archival Storages

Application
Secondary

Replica
Secondary

Replica

< OceanStore Update Path >

Primary Replica

Inner Ring
– A Set of Servers that Implement Object’s Primary Replica
– Applies Updates and Creates New Versions

Serialization
Access Control
Create Archival Fragments

– Update Agreements
Byzantine Agreement Protocol

– Distributed Decision Process in which All Non-faulty Participants
Reach the Same Decision for a Group of Size 3f+1, no more than
f Faulty Servers

Archival Storage

Simple Replication
– Tolerance of One Failure for an Addition 100% Storage Cost

Erasure Codes
– Efficient and Stable Storage for Archival Copies
– Storage Cost by a Factor of N/M
– Original Block can be Reconstructed from Any M Fragments

Block

Fragment 1

Fragment 2

Fragment N

. . .

Fragment 1

Fragment 2

Fragment M

. . .
Encoded by

Erasure Code

M < N

Fragment 3

Secondary Replica

Whole-block Caching to Avoid Erasure Codes on
Frequently-read Objects

Push-based Update
– Every Time the Primary Replica Applies an Update

Dissemination Tree
– Application-level Multicast Tree
– Rooted at Primary Replica
– Parent Nodes are Pre-existing Replicas to Serve Objects

Underlying Technology

Access Control
Data Update
– Primary Replica
– Archival Storage
– Secondary Replica

Data Read
Data Location & Routing (Tapestry)

Data Read

Application

Primary Replica
(Inner Ring)

Archival Storages

Secondary
Replica

1. AGUID

2. Latest VGUID

3. Search Blocks from
Secondary Replicas

4. Search enough Fragments
from Archival Storages

Introspective Optimization

Mimics adaptation in biological systems
Optimization of Plaxton mesh – (cluster
reorganization, attempts to identify and group
closely related files) (which is Tapestry, more
robust, etc.)
Replica Management – adjusts the number
and location of floating replicas in order to
service access requests more efficiently

OceanStore Conclusions

OceanStore: another utility provider
– Global Utility model for persistent data storage

OceanStore assumptions:
– Untrusted infrastructure with a responsible party
– Mostly connected with conflict resolution
– Continuous on-line optimization

OceanStore properties:
– Provides security, privacy, and integrity
– Provides extreme durability
– Lower maintenance cost through redundancy, continuous adaptation, self-

diagnosis and repair
– Large scale system has good statistical properties

(Pond is Next) hopefully a better idea of conflict resolution and
encryption

Pond

Java Implementation of OceanStore proposal
Included Components

Initial floating replica design
Conflict resolution and Byzantine agreement

Routing facility (Tapestry)
Bloom Filter location algorithm
Plaxton-based locate and route data structures

Introspective gathering of tacit info and adaptation
Initial archival facilities

Interleaved Reed-Solomon codes for fragmentation
Methods for signing and validating fragments

Target Applications
– Email application, proxy for web caches, streaming multimedia

applications

Pond ~ current status

Subsystems operational
– Fault-tolerant inner ring - only inner ring can apply

updates – access control, serialization
– Self-organizing second tier (allows for faster

fetching, reads)
– Erasure-coding archive (deep-archival)

Pond

JNI for crypto, SEDA stages, 280+kLOC Java

Pond ~ Testing & Results

Ran 500 virtual nodes on PlanetLab
– Inner Ring in SF Bay Area
– Replicas clustered in 7 largest P-Lab sites

Streams updates to all replicas
– One writer - content creator – repeatedly appends to data

object
– Others read new versions as they arrive
– Measure network resource consumption

(next slide)

Results of ‘NFS vs. OceanStore’

120.354.94773.937.24.5Total
703221.542.2212.6V(r+w)
1.51.56.91.61.50.5IV(r)
1.91.88.31.91.81.1III(r)
40.416.89.424110.3II(w)
6.62.80.94.31.90I(w)

1024512NFS1024512NFSPhase
OceanStoreLinuxOceanStoreLinux

(PL: NFS UW,
IR in UCB, S,
UW)WAN(local cluster)LAN

All experiments are run with the archive disabled using 512 or 1024-bit keys, as
indicated by the column headers. Times are in seconds, and each data point is the
average over at least three trials. The standard deviation for all points was less than
7.5% of the mean.

Future Research areas

The removal of bottlenecks in updates and
redundancy propagation
Improve stability in global distributed environment,
e.g. better load balancing techniques
Data Structure Improvement
Management of replicas
Archival Repair

Outline of today

Overview of a distributed storage system
(Wesley)
Routing in such system and DHT (Zheng)
Distributed File System (Hong)

Preface: From Tapestry to Chord
and beyond

Who am I:
– 3rd Year PhD student in system group
– http://www.cs.yale.edu/~zhengma

What will I present:
– Distributed file sharing and P2P system
– Routing algorithms for DHT

Talk Outline of this part

Motivation for OceanStore and Tapestry

Tapestry overview and details (optional)

Motivation for P2P system and DHT

Chord overview and details (optional)

Ongoing work / Open problems

Challenges in the Wide-area

Trends:
– Exponential growth in CPU, storage
– Network expanding in reach and b/w

Can applications leverage new resources?
– Scalability: increasing users, requests, traffic
– Resilience: more components more failures
– Management: intermittent resource availability complex

management schemes
Proposal: an infrastructure that solves these issues
and passes benefits onto applications

Driving Applications

Leverage of cheap & plentiful resources:
CPU cycles, storage, network bandwidth
Global applications share distributed resources

– Shared computation:
SETI, Entropia

– Shared storage (Today’s focus)
OceanStore, Gnutella

– Shared bandwidth
Application-level multicast, content distribution networks

Question: Are they really in large demand? Vague
future or not? What else? Killer app?

Answers: my 3 cents

End 2 End arguments in network community
– Implement a feature on upper layer as much as

we can to have easier deployment for Internet
Fast development of applications
– Moore law in computer hardware

Relatively slow change in Internet core
– Not too many industrial researchers who work on

core networking.
(http://www.icir.org/floyd/talks/NSF-Jan03.pdf)

Key problem: Location and
Routing

Hard problem in a system like this:
– Locating and messaging to resources and data

Goals for a wide-area overlay infrastructure
– Easy to deploy
– Scalable to millions of nodes, billions of objects
– Available in presence of routine faults
– Self-configuring, adaptive to network changes
– Localize effects of operations/failures

Talk Outline

Motivation for OceanStore and Tapestry

Tapestry overview and details (optional)

Motivation for P2P system and DHT

Chord overview and details (optional)

Ongoing work / Open problems

What is Tapestry?

A prototype of a decentralized, scalable, fault-tolerant, adaptive
location and routing infrastructure
(Zhao, Kubiatowicz, Joseph et al. U.C. Berkeley)
Network layer of OceanStore
Routing: Suffix-based hypercube

– Similar to Plaxton, Rajamaran, Richa (SPAA97)
Decentralized location:

– Virtual hierarchy per object with cached location references
Core API:

– publishObject(ObjectID, [serverID])
– routeMsgToObject(ObjectID)
– routeMsgToNode(NodeID)

Tapestry details (optional)

Namespace (nodes and objects)
– 160 bits 280 names before name collision
– Each object has its own hierarchy rooted at Root

f (ObjectID) = RootID, via a dynamic mapping function
Suffix routing from A to B

– At hth hop, arrive at nearest node hop(h) s.t.
hop(h) shares suffix with B of length h digits

– Example: 5324 routes to 0629 via
5324 2349 1429 7629 0629

Object location:
– Root responsible for storing object’s location
– Publish / search both route incrementally to root

Publish / Lookup (optional)

Publish object with ObjectID:
// route towards “virtual root,” ID=ObjectID
For (i=0, i<Log2(N), i+=j) { //Define hierarchy

j is # of bits in digit size, (i.e. for hex digits, j = 4)
Insert entry into nearest node that matches on
last i bits
If no matches found, deterministically choose alternative
Found real root node, when no external routes left

Lookup object
Traverse same path to root as publish, except search for entry at

each node
For (i=0, i<Log2(N), i+=j) {

Search for cached object location
Once found, route via IP or Tapestry to object

Tapestry Mesh (optional)

4

2

3

3

3

2

2

1

2

4

1

2

3

3

1

3
4

1

1

4 3
2

4

NodeID
0x43FE

NodeID
0x13FENodeID

0xABFE

NodeID
0x1290

NodeID
0x239E

NodeID
0x73FE

NodeID
0x79FE

NodeID
0x23FE

NodeID
0x73FF

NodeID
0x555E

NodeID
0x035E

NodeID
0x44FE

NodeID
0x9990

NodeID
0xF990

NodeID
0x993E

NodeID
0x04FE

NodeID
0x43FE

Talk Outline

Motivation for OceanStore and Tapestry

Tapestry overview and details (optional)

Motivation for P2P system and DHT

Chord overview and details (optional)

Ongoing work / Open problems

What is a P2P system?

A distributed system architecture:
– No centralized control
– Nodes are symmetric in function

Larger number of unreliable nodes
Enabled by technology improvements

Node
Node

Node Node

Node

Internet

How did it start?

Killer app: Napster – free music sharing over
the Internet
– Will this survive from the legal issues?

Key idea: share the storage and bandwidth
of individual (home) users
– From Economic perspective: merchandise

exchange economy -- willing to give because of
willing to get.

The promise of P2P computing

Reliability: no central point of failure
– Many replicas
– Geographic distribution

High capacity through parallelism:
– Many disks
– Many network connections
– Many CPUs

Automatic configuration
Useful in public and proprietary settings

No lower layer support from Internet:
Application-level overlays

ISP3

ISP1 ISP2

Site 1

Site 4

Site 3Site 2

N

N N

N

N

N
ISP2

ISP2

•One per application

•Nodes are decentralized

• P2P systems are overlay networks
without central control

Routing in P2P Systems:

Data centric routing instead of node centric
– Need mapping from Data to its location in the

network; then use direct application connection to
the node

All links refer to TCP/UDP connection from
the applications

Evolution of routing in p2p

Centralized server: Napster
Flooding: Gnutella
DHT based: Tapestry, Chord, CAN, …

dN1/dLog NLog NLog NPath length

N1/dLog NLog NNMessage

dLog NLog N1(const)Neighbors

CANChordTapestryGnutellaScheme

Distributed hash table (DHT)

Distributed hash table

Distributed application
get (key) data

node node node….

put(key, data)

Lookup service
lookup(key) node IP address

• Application may be distributed over many nodes
• DHT distributes data storage over many nodes

(File sharing)

(DHash)

(Chord)

DHT interface

Put(key, value) and get(key) → value
– Simple interface!

API supports a wide range of applications
– DHT imposes no structure/meaning on keys

Key/value pairs are persistent and global
– Can store keys in other DHT values
– And thus build complex data structures

A DHT makes a good shared
infrastructure

Many applications can share one DHT service
– Much as applications share the Internet

Eases deployment of new applications
Pools resources from many participants

– Efficient due to statistical multiplexing
– Fault-tolerant due to geographic distribution

DHT implementation challenges

1. Scalable lookup
2. Balance load (flash crowds)
3. Handling failures
4. Coping with systems in flux
5. Network-awareness for performance
6. Robustness with untrusted participants
7. Programming abstraction
8. Heterogeneity
9. Anonymity
10. Indexing

Goal: simple, provably-good algorithms

Chord

Talk Outline

Motivations for OceanStore and Tapestry

Tapestry overview and details (optional)

Motivations for P2P system and DHT

Chord overview and details (optional)

Ongoing work / Open problems

What is Chord? What does it do?

In short: a peer-to-peer lookup system
Given a key (data item), it maps the key onto a node
(peer).
Uses consistent hashing to assign keys to nodes .
Solves problem of locating key in a collection of
distributed nodes.
Maintains routing information as nodes join and
leave the system

Chord – addressed problems

Load balance: distributed hash function,
spreading keys evenly over nodes
Decentralization: chord is fully distributed, no
node more important than other, improves
robustness
Scalability: logarithmic growth of lookup costs
with number of nodes in network, even very large
systems are feasible
Availability: chord automatically adjusts its
internal tables to ensure that the node responsible
for a key can always be found

Example Application

Highest layer provides a file-like interface to user including user-friendly
naming and authentication

This file systems maps operations to lower-level block operations

Block storage uses Chord to identify responsible node for storing a block
and then talk to the block storage server on that node

File System

Block Store

Chord

Block Store

Chord

Block Store

Chord

Client Server Server

Chord details (optional)

Consistent hash function assigns each node and
key an m-bit identifier.
SHA-1 is used as a base hash function.
A node’s identifier is defined by hashing the node’s
IP address.
A key identifier is produced by hashing the key
(chord doesn’t define this. Depends on the
application).

– ID(node) = hash(IP, Port)

– ID(key) = hash(key)

Chord details (optional)

In an m-bit identifier space, there are 2m identifiers.
Identifiers are ordered on an identifier circle modulo
2m.
The identifier ring is called Chord ring.
Key k is assigned to the first node whose identifier is
equal to or follows (the identifier of) k in the identifier
space.
This node is the successor node of key k, denoted
by successor(k).

Consistent Hashing :Successor Nodes (opt)

6

1

2

6

0

4

26

5

1

3

7

2
identifier

circle

identifier

node

X key

successor(1) = 1

successor(2) = 3successor(6) = 0

Consistent Hashing (opt)

For m = 6, # of identifiers is 64.
The following Chord ring has 10 nodes and stores 5
keys.
The successor of key 10 is node 14.

Acceleration of Lookups (optional)

Lookups are accelerated by maintaining additional routing
information

Each node maintains a routing table with (at most) m entries
(where N=2m) called the finger table

ith entry in the table at node n contains the identity of the first node,
s, that succeeds n by at least 2i-1 on the identifier circle (clarification on
next slide)

s = successor(n + 2i-1) (all arithmetic mod 2)

s is called the ith finger of node n, denoted by n.finger(i).node

Finger Tables (1) (optional)

0

4

26

5

1

3

7

1
2
4

[1,2)
[2,4)
[4,0)

1
3
0

finger table
start int. succ.

keys
1

2
3
5

[2,3)
[3,5)
[5,1)

3
3
0

finger table
start int. succ.

keys
2

4
5
7

[4,5)
[5,7)
[7,3)

0
0
0

finger table
start int. succ.

keys
6

Finger Tables (2) - characteristics

Each node stores information about only a small
number of other nodes, and knows more about
nodes closely following it than about nodes farther
away

A node’s finger table generally does not contain
enough information to determine the successor of an
arbitrary key k

Repetitive queries to nodes that immediately
precede the given key will lead to the key’s
successor eventually

Node Joins – with Finger Tables

0

4

26

5

1

3

7

1
2
4

[1,2)
[2,4)
[4,0)

1
3
0

finger table
start int. succ.

keys
1

2
3
5

[2,3)
[3,5)
[5,1)

3
3
0

finger table
start int. succ.

keys
2

4
5
7

[4,5)
[5,7)
[7,3)

0
0
0

finger table
start int. succ.

keys

finger table
start int. succ.

keys

7
0
2

[7,0)
[0,2)
[2,6)

0
0
3

6

6

6
6

6

Node Departures – with Finger Tables

0

4

26

5

1

3

7

1
2
4

[1,2)
[2,4)
[4,0)

1
3
0

finger table
start int. succ.

keys
1

2
3
5

[2,3)
[3,5)
[5,1)

3
3
0

finger table
start int. succ.

keys
2

4
5
7

[4,5)
[5,7)
[7,3)

6
6
0

finger table
start int. succ.

keys

finger table
start int. succ.

keys

7
0
2

[7,0)
[0,2)
[2,6)

0
0
3

6

6

6

0

3

Chord – The Math (optional)

Every node is responsible for about K/N keys (N nodes, K keys)

When a node joins or leaves an N-node network, only O(K/N) keys
change hands (and only to and from joining or leaving node)

Lookups need O(log N) messages

To reestablish routing invariants and finger tables after node
joining or leaving, only O(log2N) messages are required

Talk Outline

Motivations for OceanStore and Tapestry

Tapestry overview and details (optional)

Motivations for P2P system and DHT

Chord overview and details (optional)

Ongoing work / Open problems

Many recent DHT-based projects

File sharing [CFS, OceanStore, PAST, Ivy, …]
Web cache [Squirrel, ..]
Backup store [Pastiche]
Censor-resistant stores [Eternity, FreeNet,..]
DB query and indexing [Hellerstein, …]
Event notification [Scribe]
Naming systems [ChordDNS, Twine, ..]
Communication primitives [I3, …]

Some open problems

http://www.cs.rice.edu/Conferences/IPTPS02
O(log n) path lengths with O(1) neighbors
Trade off when combining with other
properties
Routing hop spots
Incorporating geography (neighbor
selection/proximity routing)
Exploit the heterogeneity in p2p system

My 2 cents

What can we really do with p2p system?
– File Sharing (legal issues)
– P2P service in education

(http://chronicle.com/prm/daily/2004/01/2004012606n.htm)
– Video streaming
– Spam watch (Middleware2003)

Security:
– Possibility of attacks the p2p system.
– Privacy.

Thanks !

Outline of today

Overview of a distributed storage system
(Wesley)
Routing in such system and DHT (Zheng)
Distributed File System (Hong)

Motivation

Sharing of data in distributed systems
Each user in a distributed system is potentially a
creator as well as consumer of data

– User may use/update information at a remote site
– Physical movement of a user may require his data to be

accessible elsewhere
Goal: provide ease of data sharing in a secure,
reliable, efficient, and usable manner that is
independent of the size and complexity of the
distributed system

Main Issues

Data Consistency
– A mechanism must be provided in order to ensure

that each user can see changes that others are
making to their copies of data

– Lock is used as concurrency control to ensure
consistency

– Things become more complex when replication is
implemented for high availability and data
persistence, since different replica may be
inconsistent because of server failure, etc

Main Issues (cont.)

Location Transparency
– The name of a file is devoid of location information. An

explicit file location mechanism dynamically maps file
names to storage sites

– A uniform name space is provided to users
Security

– DFS must provide authentication and authorization (once
users are authenticated, the system must ensure that the
performed operations are permitted on the resources
accessed)

– Encryption becomes an indispensable building block

Main Issues (cont.)

Availability
– System should be available despite server crash or network

partition
– Replication, the basic technique used to achieve high

availability, introduces complication of its own (how to
propagate changes in a consistent and efficient manner?)

Data Persistence
– The loss or destruction of a device does not lead to lost

data
– Replication is also useful for this purpose

Main Issues (cont.)

Performance
– The network is considerably slower than the internal buses.

Therefore, the less clients have to access servers, the more
performance can be achieved

– Caching can lower network load
– Store hints information at client

A hint is a piece of information that can substantially improve
performance if correct but has no semantically negative
consequence if erroneous. (e.g. file location information)

– Transferring data in bulk reduces protocol processing
overhead

Case Study 1. NFS

Sun Microsystems Network File System, first
released by Sun in 1985
The most used DFS on networks of workstations
Design Consideration: portability and heterogeneity

– Sun made a careful distinction between the NFS protocol,
and a specific implementation of an NFS server or client (by
other vendors)

– NFS has been ported to almost all existing operating
systems like MVS, MacOS, OS/2 and MS-DOS

NFS (cont.)

Stateless Protocol
– Server don’t store information about the state of

client access to its files
– Each RPC request from a client contains all the

information needed to satisfy the request
– Simplify crash recovery on servers
– Sacrifice functionality and Unix compatibility: NFS

doesn’t support locks and therefore doesn’t
assure consistency

NFS (cont.)

Naming and Location
– NFS clients are usually configured so that each sees a Unix

file name space with a private root
– The name space on each client can be different. It’s the job

of system administrator to determine how each client will
view the directory structure

– Location transparency is obtained by convention, rather
than being a basic architectural feature of NFS

– Name-to-site bindings are static.

NFS (cont.)

Caching
– NFS clients cache individual pages of remote files and

directories in their main memory
– When a client caches any block of a file, it also caches a

timestamp indicating when the file was last modified on the
server

– A validation check is always performed when a file is
opened and when the server is contacted to satisfy a cache
miss. After a check, cached blocks are assumed valid for a
finite interval of time

– If a cached page is modified, it is marked as dirty ad
scheduled to be flushed to the server. The actual flushing
will occur after some delay. However, all dirty pages will be
flushed to the server before a close operation on the file
completes

NFS (cont.)

Replication
– As originally specified, NFS did not support data replication
– More recent versions of NFS support replication via a

mechanism called Automounter. (Automounter allows
remote mount points to be specified using a set of servers
rather than a single server. However, propagation of
modifications to replicas has to be done manually)

– This replication mechanism is intended primarily for READ-
ONLY files (frequently read but rarely modified)

NFS (cont.)

Security
– NFS uses the underlying Unix file protection mechanism on

servers for access checks
– In the early versions of NFS, mutual trust was assumed

among all participating machines. The identity of a user was
determined by a client machine and accepted without
further validation by a server

– More recent versions of NFS use DES-based mutual
authentication to provide a higher level of security. However,
since file data in RPC packets is not encrypted, NFS is still
vulnerable

Case Study 2. AFS

Andrew File System, started in 1983 at CMU
Design Consideration: scalability and
security
– Many design decisions in Andrew are influenced

by its anticipated final size of 5000 to 10000
nodes

– Scale renders security a serious concern, since it
has to be enforced rather than left to the good will
of the user community

AFS (cont.)

Naming and Location
– The file name space on an Andrew workstation is

partitioned into a shared and a local name space
– The shared name space is local transparent and is identical

on all workstations. It is partitioned into disjoint sub trees,
and each sub tree is assigned to a single server, called its
custodian. Each server contains a copy of a fully replicated
location database that maps files to custodians

– The local name space is unique to each workstation and is
relatively small. It only contains temporary files or files
needed for workstation initialization

AFS (cont.)

Caching
– Files in the shared name space are cached on demand on

the local disks of workstations. A cache manager, called
Venus, runs on each workstation

– When a file is opened, Venus checks the cache for the
presence of a valid copy. Read and write operations on an
open file are directed to the cached copy. No network traffic
is generated by such requests. If a cached file is modified, it
is copied back to the custodian when the file is closed

– Cache consistency is maintained by the mechanism called
callback. When a file is cached from a server, the latter
makes a note of this fact and promises to inform the client if
the file is updated by someone else

AFS (cont.)

Replication
– Replication of READ-ONLY data (frequently read

but rarely modified)
– Subtrees that contain such data may have read-

only replicas at multiple servers. Propagation of
changes to the read-only replicas is done by an
explicit operational procedure

AFS (cont.)

Concurrency Control
– Provided by emulation of the Unix flock system

call.
– Lock and unlock operations on a file are

performed directly to its custodian

AFS (cont.)

Security
– Servers are physically secure, are accessible only to trusted

operators, and run only trusted system software. Neither the
network nor workstations are trusted by servers

– AFS uses Kerberos protocol for mutual authentication
between client and server. Kerberos protocol is a two-step
authentication scheme. When a user logs in to a
workstation, his password is used to establish a
communication channel to an authentication server. An
authentication ticket is obtained from the authentication
server and saved for future use

Case Study 3. CODA

Coda File System, developed since 1987 at
CMU
A distributed file system with its origin in
AFS2
Design Consideration: availability
– Coda’s goal is to provide the highest degree of

availability in the face of all realistic failures,
without significant loss of usability, performance,
or security

CODA (cont.)

Server Replication
– The unit of replication in Coda is volume. A volume is a

collection of files that are stored on one server and form a
partial subtree of the shared file name space

– The set of servers that contain replicas of a volume is its
volume storage group (VSG). For each volume from which it
has cached data, Venus keeps track of the subset of the
VSG that is currently accessible. This subset is reffered to
as the accessible volume storage group (AVSG)

CODA (cont.)

Server Replication (cont.)
– The replication strategy is a variant of the read-one, write-all

approach. When a file is closed after modification, it is
transferred to all members of the AVSG

– When servicing a cache miss, a client obtains data from one
member of its AVSG called the preffered server. Although
data is transferred only from one server, the other servers
are contacted to verify that the preferred server does indeed
have the latest copy of data. If not, the member of the
AVSG with the latest copy is made the preferred site and
the AVSG is notified that some of its members have stale
replicas

CODA (cont.)

Disconnected Operation
– Disconnected operation offers possibility of accessing

distributed file system files without being connected to the
network at all

– Disconnected operation begins when no member of a VSG
is accessible. But it only provides access to data that was
cached at the client at the start of disconnected operation.
When disconnected operation ends, modified files and
directories are propagated to the AVSG. Should conflicts
occur, CODA provides some tools for the user to decide
which update must prevail

CODA (cont.)

Disconnected Operation (cont.)
– Coda allows a user to specify a prioritized list of

files and directories that Venus should strive to
retain in the cache. Once each 10 minutes, a
process is initiated in order to bring to the local
disk all files with larger priorities

NFS vs. AFS vs. CODA

GOOD. Access control
lists. Kerberos
authentication between
client and server

GOOD. Access control
lists. Kerberos
authentication between
client and server

POOR. Server trust on
clients

Security

EXCELLENT. Server
replication. Disconnected
operations

POORPOORAvailability

GOODFAIR. Automatic backup
tools

POOR. Delayed writes
may cause loss of data

Data Persistence

GOOD. Looks for the
“closest” replica

FAIR. Large latency on
non-cached files, though

POOR. Inefficient
protocol

Performance

EXCELLENT. Ideal for
wide area networks with
low degree of file sharing

EXCELLENT. Ideal for
wide area networks with
low degree of file sharing

POOR. Server saturate
rapidly

Scalability

POOR. Session
semantics weakened by
server replication

FAIR. Session semanticsPOOR. Concurrent
access generates
unpredictable results

Consistency

GOOD. Overhead is
distributed among clients

POOR. Just for read-only
directories

POOR. Just for read-only
directories

Replication

Local diskLocal diskMain memoryClient Cache Location

CODAAFSNFS

Case Study 4. GFS

Google File System, developed at Google
A scalable distributed file system for large
distributed data-intensive applications
GFS provides fault tolerance while running
on inexpensive commodity hardware, and
delivers high aggregate performance to a
large number of clients.

GFS (cont.)

GFS vs. Traditional FS
– component failures are the norm rather than the

exception
– files are huge by traditional standards
– most files are mutated by appending new data

rather than overwriting existing data
– co-designing the applications and the file system

API

GFS (cont.)

Architecture

GFS (cont.)

Clients cache metadata but don’t cache file
data
The systems maintains a number of replicas
for each chunk to ensure data persistence
Master controls concurrent access to files
and directories
GFS doesn’t scale. Its single master is a
bottleneck

GFS (cont.)

High performance achieved by very specific design
and optimization aiming at Google’s environment
Fast recovery of master as well as master replication
ensures high availability

– Logs are used in recovery of master

GFS is a successful system. But it brings few new
concepts in DFS design and implementation. Its lack
of generality determines that it cannot have wide
application

Open Problems

High availability
– CODA’s goal is to provide highest degree of

availability without significant loss of performance.
However, it sacrifices consistency

– Consistency, availability and performance seem
to be mutually contradictory in a distributed
system. Is there a way to achieve high availability
without loss of consistency and performance?

Open Problems (cont.)

Scalability
– AFS-like systems take scalability as a dominant

design consideration. Such systems give users in
different continents the possibility of sharing files

– With rapid growth of Internet, we need global
scale distributed file system with infinite scalability

Open Problems (cont.)

Heterogeneity
– It’s desirable that users running different

operating system could share data through a
distributed file systems

– Ubiquitous computing places requirement on
heterogeneity

– Coping with heterogeneity is inherently difficult
because of the presence of multiple
computational environments, each with its own
notion of file naming and functionality

Open Problems (cont.)

Multimedia Support
– Multimedia applications deal with huge amounts

of information which can currently get to terabytes
of data and transfer rates of hundreds of
megabytes per second

– We need distributed file systems with high I/O
bandwidth and fast response

Open Problems (cont.)

Security
– Security may turn out to be the bane of global

scale distributed systems
– we need to take extra measures to make sure

that information is protected from prying eyes and
malicious hands

Thank you! Questions?

Backup Slides

Data Model

Data Object
– A File in a Traditional File System
– Named by an Active Globally-Unique Identifier,

AGUID
Location Independent
Preventing Name Space Collisions

SHA-1

AGUID

Application-specified Name + Owner’s Public Key

Data Model

Data Object
– Sequences of Read-only

Versions
– Block Reference

SHA-1 (http://www.itl.nist.gov/fipspubs/fip180-1.htm)

Secure Hash Algorithm, SHA-1, for computing a condensed representation of a message
or a data file. When a message of any length < 264 bits is input, the SHA-1 produces a
160-bit output called a message digest. The message digest can then be input to the
Digital Signature Algorithm (DSA) which generates or verifies the signature for the
message. Signing the message digest rather than the message often improves the
efficiency of the process because the message digest is usually much smaller in size than
the message. The same hash algorithm must be used by the verifier of a digital signature
as was used by the creator of the digital signature.

The SHA-1 is called secure because it is computationally infeasible to find a message
which corresponds to a given message digest, or to find two different messages which
produce the same message digest. Any change to a message in transit will, with very high
probability, result in a different message digest, and the signature will fail to verify. SHA-1 is
a technical revision of SHA (FIPS 180). A circular left shift operation has been added to the
specifications in section 7, line b, page 9 of FIPS 180 and its equivalent in section 8, line c,
page 10 of FIPS 180. This revision improves the security provided by this standard. The
SHA-1 is based on principles similar to those used by Professor Ronald L. Rivest of MIT
when designing the MD4 message digest algorithm ("The MD4 Message Digest Algorithm,"
Advances in Cryptology - CRYPTO '90 Proceedings, Springer-Verlag, 1991, pp. 303-311),
and is closely modelled after that algorithm.

SHA-1 (http://www.itl.nist.gov/fipspubs/fip180-1.htm)

The probabilistic query process

10101

n1 n2

n3

n4

1 3

2
4b

5

4a

X

(0,1,3)11100

11011

11010

11010

11100

00011

00011
The replica at n1 is looking for object X,
whose GUID hashes to bits 0, 1, and 3.
Bloom filters are the rounded boxes
where as square boxes are neighbor
filters.

Byzantine Agreement

Byzantium, 1453 AD. The city of Constantinople, the last remnants of the hoary Roman Empire, is under
siege. Powerful Ottoman battalions are camped around the city on both sides of the Bosporus, poised to
launch the next, perhaps final, attack. Sitting in their respective camps, the generals are meditating.
Because of the redoubtable fortifications, no battalion by itself can succeed; the attack must be carried out
by several of them together or otherwise they would be thrusted back and incur heavy losses that would
infuriate the Grand Sultan. Worse, that would jeopardize the prospects of a defeated general to become
Vizier. The generals can agree on a common plan of action by communicating thanks to the messenger
service of the Ottoman Army which can deliver messages within an hour, certifying the identity of the
sender and preserving the content of the message. Some of the generals however, are secretly conspiring
against the others. Their aim is to confuse their peers so that an insufficient number of generals is
deceived into attacking. The resulting defeat will enhance their own status in the eyes of the Grand Sultan.
The generals start shuffling messages around, the ones trying to agree on a time to launch the offensive,
the others trying to split their ranks...

Menlo Park, 1982 AD. The situation above describes a classical coordination problem in distributed
computing known as byzantine agreement which was introduced in two seminal papers by Lamport,
Pease and Shostak [23,30]. Broadly stated, a basic problem in distributed computing is this: Can a set of
concurrent processes achieve coordination in spite of the faulty behaviour of some of them? The faults to
be tolerated can be of various kinds. The most stringent requirement for a fault-tolerant protocol is to be
resilient to so-called byzantine failures: a faulty process can behave in any arbitrary way, even conspire
together with other faulty processes in an attempt to make the protocol work incorrectly. The identity of
faulty processes is unknown, reflecting the fact that faults can (and do) happen unpredictably.

SEDA

SEDA is an acronym for staged event-driven architecture, and
decomposes a complex, event-driven application into a set of stages
connected by queues. This design avoids the high overhead
associated with thread-based concurrency models, and decouples
event and thread scheduling from application logic. By performing
admission control on each event queue, the service can be well-
conditioned to load, preventing resources from being overcommitted
when demand exceeds service capacity. SEDA employs dynamic
control to automatically tune runtime parameters (such as the
scheduling parameters of each stage), as well as to manage load, for
example, by performing adaptive load shedding. Decomposing
services into a set of stages also enables modularity and code reuse,
as well as the development of debugging tools for complex event-
driven applications.

Other distributed file systems

Freenet – storage system designed to achieve anonymity in terms of publisher and the
consumer of content – document driven. Does NOT provide permanent file storage, load
balancing, is not scalable
Free Haven – decentralized, trade offs time, bandwidth, latency, to get better anonymity
and robustness, no dynamic management of underlying tree structure. Focus is on
persistence, lacks efficiency, but also does not guarantee long-term survivability.
Publius – mainly focuses on availability and anonymity, distributes files as shares over n
web servers. J of these shares are enough to reconstruct a file. It lacks accountability,
DoS, garbage clean-up, smooth join/leave for servers.
Mojo Nation – centralized file storage system. Uses a Central Service Broker. Breaks up
files into chunks and distributes these chunks among different computers in the network.
Main goals are increased band-width and load balancing. There is no long-term durability
of data. Swarm distribution – is the parallel download of file fragments, reconstructed on
the client. Mojos are like credits, the more your contribute, storage, network, the more you
can get!
Farsite – Logically, a single hierarchical file system is visible from all access points, but
underneath files are replicated and distributed among the client machines. There is NO
responsible party, thus it is possible for loss of data due to an untrusted entity.

Path of Update

Types of data (coding) models

Two distinct forms of data: active and archival
Active Data in Floating Replicas

– Per object virtual server
– Logging for updates/conflict resolution
– Interaction with other replicas to keep data consistent
– May appear and disappear like bubbles

Archival Data in Erasure-Coded Fragments
– M-of-n coding: Like hologram

Data coded into n fragments, any m of which are sufficient to reconstruct (e.g
m=16, n=64)
Coding overhead is proportional to n÷m (e.g 4)
Law of large numbers advantage to fragmentation

– Fragments are self-verifying
– OceanStore equivalent of stable store

Two levels of routing

Fast probabilistic searching for routing cache
– Task of routing a particular message is handled by the aggregate

resources of many different nodes. By exploiting multiple routing paths to
the destination, this serves to limit the power of nodes to deny service to a
client, second, message route directly to their destination avoiding the
multiple round-trips that a separate data location and routing process
wound incur, finally the underlying infrastructure has more up-to-date
information about the current location of entities than the clients.

– Attenuated bloom filters
Plaxton Mesh used if above fails

– Underlying routing structure
– Continuous adaptation

Network behavior
DoS attacks
Faulty servers

4

2
3

3

3
2

2
1

2

4

1

2

3

3

1

34
1

1

4 3
2

4

NodeID
0x43FE

NodeID
0x13FENodeID

0xABFE

NodeID
0x1290

NodeID
0x239E

NodeID
0x73FE

NodeID
0x423E

NodeID
0x79FE

NodeID
0x23FE

NodeID
0x73FF

NodeID
0x555E

NodeID
0x035E

NodeID
0x44FE

NodeID
0x9990

NodeID
0xF990

NodeID
0x993E

NodeID
0x04FE

NodeID
0x43FE

Basic Plaxton Mesh – an
incremental suffix based routing

Plaxton Mesh use

Tapestry (more on this later!)
OceanStore enhancements for reliability:

– Documents have multiple roots
– Each node has multiple neighbor links
– Searches proceed along multiple paths

Tradeoff between reliability and bandwidth?
– Routing-level validation of query results

Highly redundant and fault-tolerant structure that
spreads data location load evenly while finding local
objects quickly

Automatic Maintenance

Byzantine Commitment for inner ring:
– Can tolerate up to 1/3 faulty servers in inner ring

Bad servers can be arbitrarily bad
Cost ~n2 communication

– Continuous refresh of set of inner-ring servers

Information stored in OceanStore

Where is persistent information stored?
How is it protected?
Does it last forever?
How is it managed?
Who owns the storage?

Applications

OceanStore solves problems of consistency, security, privacy,
wide-scale data dissemination, dynamic optimization, durable
storage, and disconnected operation; this allows application
developers to focus on higher-level concerns.
(with that in mind) what are some possible uses: groupware,
personal information management tools, calendars, email,
contact lists, and distributed design tools. Nomadic email a
user’s email to migrate closer to his client, reducing the round
trip to fetch messages from a remote server
Can be used to generate very large digital libraries and
repositories for scientific data, also new stream applications
such as sensor data aggregations and dissemination

Pond ~ what is missing?

– Full Byzantine-fault-tolerant agreement
– Tentative update sharing
– Inner ring membership rotation
– Flexible ACL support
– Proactive replica placement

