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Where are we heading?

Exploiting ubiquitous computing
– Small devices, sensors, smart materials, cars, etc
– Are we there? Cell-phone, watch, pen, smart-jacket, etc.

Planetary-scale Information Utilities
Infrastructure is transparent and always active
Extensive use of redundancy of hardware and data

– Devices that negotiate their interfaces automatically
– Elements that tune, repair, and maintain themselves



So what does this mean?

Personal Information Mgmt is the Killer App
Time to move beyond the Desktop
Information Technology as a Utility

Some people think OceanStore is the answer



OceanStore: An Architecture of Global-
Scale Persistent Storage



OceanStore: ~ a Utility Infrastructure

You want storage but without the issues of 
backup, loss, secure
[is there a need?] Outsourcing of storage is 
already common
[basic idea] to pay your monthly bill and your 
data is always there
– One company, one bill, simple pay structure



OceanStore: ~ desired properties

Automatic maintenance
– Adapt to failure, repair itself, changes

How long should information be guaranteed?
Divorce information from location…
– System not disabled from natural disasters -> 

how do you solve this?
– Adopts in changes in demands and regional 

outages



Assumptions

Untrusted Infrastructure
– Untrusted components, only ciphertext in infrastructure

(Responsible) Entity
– Storage Provider would guarantee the durability and consistency of data
– Only trusted with integrity not content of data

Well Connected
– Producers and consumers most of time connected to high-bandwidth 

network
Promiscuous Caching (data that can flow anywhere is referred to as 
nomadic data) (difference between NFS/AFS)

– Data can be cached anytime, anywhere
Optimistic Concurrency via Conflict Resolution (CVS)

– Avoid locking in wide area!



Underlying Technology

Access Control
Data Update
– Primary Replica
– Archival Storage
– Secondary Replica

Data Read
Data Location & Routing ;Tapestry



Access Control

Reader Restriction
– Encrypt All Data
– Distribute Encryption Key to Users with Read 

Permission

Writer Restriction
– Access Control List (ACL) for an Object
– All Writes be Signed so that Well-behaved 

Servers and Clients Verify them based on the 
ACL



Underlying Technology

Access Control
Data Update
– Primary Replica
– Archival Storage
– Secondary Replica

Data Read
Data Location & Routing (Tapestry)



Data Update (1/2)

– Adding a New Version to the Head of Version 
Stream

– Array of Potential Actions each Guarded by a 
Predicate

Predicate Examples
– Checking Latest Version_Num, Comparing a Region of Bytes to 

an Expected Value, etc.

Action Examples
– Replacing a Set of Bytes, Appending New Data, Truncating the 

Object, etc.

Timestamp
Client ID
<Predicate 1, Action 1>
<Predicate 2, Action 2>

. . .
<Predicate N, Action N>
Client Signature

< Update Message Format >



Data Update (2/2)

Application

Primary Replica
(Inner Ring)

Archival Storages

Application
Secondary

Replica
Secondary

Replica

< OceanStore Update Path >



Primary Replica

Inner Ring
– A Set of Servers that Implement Object’s Primary Replica
– Applies Updates and Creates New Versions

Serialization
Access Control
Create Archival Fragments

– Update Agreements
Byzantine Agreement Protocol

– Distributed Decision Process in which All Non-faulty Participants 
Reach the Same Decision for a Group of Size 3f+1, no more than
f Faulty Servers



Archival Storage

Simple Replication
– Tolerance of One Failure for an Addition 100% Storage Cost

Erasure Codes
– Efficient and Stable Storage for Archival Copies
– Storage Cost by a Factor of N/M
– Original Block can be Reconstructed from Any M Fragments

Block

Fragment 1

Fragment 2

Fragment N

. . .

Fragment 1

Fragment 2

Fragment M

. . .
Encoded by

Erasure Code

M < N

Fragment 3



Secondary Replica

Whole-block Caching to Avoid Erasure Codes on 
Frequently-read Objects

Push-based Update
– Every Time the Primary Replica Applies an Update

Dissemination Tree
– Application-level Multicast Tree
– Rooted at Primary Replica
– Parent Nodes are Pre-existing Replicas to Serve Objects



Underlying Technology

Access Control
Data Update
– Primary Replica
– Archival Storage
– Secondary Replica

Data Read
Data Location & Routing (Tapestry)



Data Read

Application

Primary Replica
(Inner Ring)

Archival Storages

Secondary
Replica

1. AGUID

2. Latest VGUID

3. Search Blocks from
Secondary Replicas

4. Search enough Fragments
from Archival Storages



Introspective Optimization

Mimics adaptation in biological systems
Optimization of Plaxton mesh – (cluster 
reorganization, attempts to identify and group 
closely related files) (which is Tapestry, more 
robust, etc.)
Replica Management – adjusts the number 
and location of floating replicas in order to 
service access requests more efficiently



OceanStore Conclusions

OceanStore: another utility provider
– Global Utility model for persistent data storage

OceanStore assumptions:
– Untrusted infrastructure with a responsible party
– Mostly connected with conflict resolution
– Continuous on-line optimization

OceanStore properties:
– Provides security, privacy, and integrity
– Provides extreme durability
– Lower maintenance cost through redundancy, continuous adaptation, self-

diagnosis and repair
– Large scale system has good statistical properties

(Pond is Next) hopefully a better idea of conflict resolution and 
encryption



Pond

Java Implementation of OceanStore proposal
Included Components

Initial floating replica design
Conflict resolution and Byzantine agreement

Routing facility (Tapestry)
Bloom Filter location algorithm 
Plaxton-based locate and route data structures

Introspective gathering of tacit info and adaptation
Initial archival facilities 

Interleaved Reed-Solomon codes for fragmentation
Methods for signing and validating fragments

Target Applications
– Email application, proxy for web caches, streaming multimedia 

applications



Pond ~ current status

Subsystems operational
– Fault-tolerant inner ring - only inner ring can apply 

updates – access control, serialization 
– Self-organizing second tier (allows for faster 

fetching, reads)
– Erasure-coding archive (deep-archival)



Pond

JNI for crypto, SEDA stages, 280+kLOC Java



Pond ~ Testing & Results

Ran 500 virtual nodes on PlanetLab
– Inner Ring in SF Bay Area
– Replicas clustered in 7 largest P-Lab sites

Streams updates to all replicas
– One writer - content creator – repeatedly appends to data 

object
– Others read new versions as they arrive
– Measure network resource consumption

(next slide)



Results of ‘NFS vs. OceanStore’

120.354.94773.937.24.5Total
703221.542.2212.6V(r+w)
1.51.56.91.61.50.5IV(r)
1.91.88.31.91.81.1III(r)
40.416.89.424110.3II(w)
6.62.80.94.31.90I(w)

1024512NFS1024512NFSPhase
OceanStoreLinuxOceanStoreLinux

(PL: NFS UW, 
IR in UCB, S, 
UW)WAN(local cluster)LAN

All experiments are run with the archive disabled using 512 or 1024-bit keys, as 
indicated by the column headers.  Times are in seconds, and each data point is the 
average over at least three trials.  The standard deviation for all points was less than 
7.5% of the mean. 



Future Research areas

The removal of bottlenecks in updates and 
redundancy propagation
Improve stability in global distributed environment, 
e.g. better load balancing techniques
Data Structure Improvement
Management of replicas
Archival Repair
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Preface: From Tapestry to Chord 
and beyond

Who am I:
– 3rd Year PhD student in system group
– http://www.cs.yale.edu/~zhengma

What will I present:
– Distributed file sharing and P2P system
– Routing algorithms for DHT



Talk Outline of this part

Motivation for OceanStore and Tapestry

Tapestry overview and details (optional)

Motivation for P2P system and DHT

Chord overview and details (optional)

Ongoing work / Open problems



Challenges in the Wide-area

Trends:
– Exponential growth in CPU, storage
– Network expanding in reach and b/w

Can applications leverage new resources?
– Scalability: increasing users, requests, traffic
– Resilience: more components more failures
– Management: intermittent resource availability complex 

management schemes
Proposal: an infrastructure that solves these issues 
and passes benefits onto applications



Driving Applications

Leverage of cheap & plentiful resources: 
CPU cycles, storage, network bandwidth
Global applications share distributed resources

– Shared computation:
SETI, Entropia

– Shared storage (Today’s focus)
OceanStore, Gnutella

– Shared bandwidth
Application-level multicast, content distribution networks

Question: Are they really in large demand? Vague 
future or not? What else? Killer app?



Answers: my 3 cents

End 2 End arguments in network community
– Implement a feature on upper layer as much as 

we can to have easier deployment for Internet
Fast development of applications
– Moore law in computer hardware

Relatively slow change in Internet core
– Not too many industrial researchers who work on 

core networking. 
(http://www.icir.org/floyd/talks/NSF-Jan03.pdf)



Key problem: Location and 
Routing

Hard problem in a system like this:
– Locating and messaging to resources and data

Goals for a wide-area overlay infrastructure
– Easy to deploy
– Scalable to millions of nodes, billions of objects
– Available in presence of routine faults
– Self-configuring, adaptive to network changes
– Localize effects of operations/failures
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What is Tapestry?

A prototype of a decentralized, scalable, fault-tolerant, adaptive
location and routing infrastructure
(Zhao, Kubiatowicz, Joseph et al. U.C. Berkeley)
Network layer of OceanStore
Routing: Suffix-based hypercube

– Similar to Plaxton, Rajamaran, Richa (SPAA97)
Decentralized location:

– Virtual hierarchy per object with cached location references
Core API:

– publishObject(ObjectID, [serverID])
– routeMsgToObject(ObjectID)
– routeMsgToNode(NodeID)



Tapestry details (optional)

Namespace (nodes and objects)
– 160 bits 280 names before name collision
– Each object has its own hierarchy rooted at Root

f (ObjectID) = RootID, via a dynamic mapping function
Suffix routing from A to B

– At hth hop, arrive at nearest node hop(h) s.t. 
hop(h) shares suffix with B of length h digits

– Example: 5324 routes to 0629 via
5324 2349 1429 7629 0629

Object location:
– Root responsible for storing object’s location
– Publish / search both route incrementally to root



Publish / Lookup (optional)

Publish object with ObjectID:
// route towards “virtual root,” ID=ObjectID
For (i=0, i<Log2(N), i+=j) {    //Define hierarchy

j is # of bits in digit size, (i.e. for hex digits, j = 4 )
Insert entry into nearest node that matches on
last i bits
If no matches found, deterministically choose alternative
Found real root node, when no external routes left

Lookup object
Traverse same path to root as publish, except search for entry at 

each node
For (i=0, i<Log2(N), i+=j) {

Search for cached object location
Once found, route via IP or Tapestry to object



Tapestry Mesh (optional)
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What is a P2P system?

A distributed system architecture:
– No centralized control
– Nodes are  symmetric in function

Larger number of unreliable nodes
Enabled by technology improvements

Node
Node

Node Node

Node

Internet



How did it start?

Killer app: Napster – free music sharing over 
the Internet
– Will this survive from the legal issues?

Key idea: share the storage and bandwidth 
of individual (home) users
– From Economic perspective: merchandise 

exchange economy -- willing to give because of 
willing to get.



The promise of P2P computing

Reliability: no central point of failure
– Many replicas
– Geographic distribution

High capacity through parallelism:
– Many disks
– Many network connections
– Many CPUs

Automatic configuration
Useful in public and proprietary settings



No lower layer support from Internet: 
Application-level overlays

ISP3

ISP1 ISP2

Site 1

Site 4

Site 3Site 2

N

N N

N

N

N
ISP2

ISP2

•One per application

•Nodes are decentralized

• P2P systems are overlay networks 
without central control



Routing in P2P Systems:

Data centric routing instead of node centric
– Need mapping from Data to its location in the 

network; then use direct application connection to 
the node

All links refer to TCP/UDP connection from 
the applications



Evolution of routing in p2p

Centralized server: Napster 
Flooding: Gnutella 
DHT based: Tapestry, Chord, CAN, … 

dN1/dLog NLog NLog NPath length

N1/dLog NLog NNMessage

dLog NLog N1(const)Neighbors

CANChordTapestryGnutellaScheme



Distributed hash table (DHT)

Distributed hash table

Distributed application
get (key) data

node node node….

put(key, data)

Lookup service
lookup(key) node IP address

• Application may be distributed over many nodes
• DHT distributes data storage over many nodes

(File sharing)

(DHash)

(Chord)



DHT interface

Put(key, value) and get(key) → value
– Simple interface!

API supports a wide range of applications
– DHT imposes no structure/meaning on keys

Key/value pairs are persistent and global
– Can store keys in other DHT values
– And thus build complex data structures



A DHT makes a good shared
infrastructure

Many applications can share one DHT service
– Much as applications share the Internet

Eases deployment of new applications
Pools resources from many participants

– Efficient due to statistical multiplexing
– Fault-tolerant due to geographic distribution



DHT implementation challenges

1. Scalable lookup
2. Balance load (flash crowds)
3. Handling failures
4. Coping with systems in flux
5. Network-awareness for performance
6. Robustness with untrusted participants
7. Programming abstraction
8. Heterogeneity
9. Anonymity
10. Indexing

Goal: simple, provably-good algorithms

Chord
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What is Chord? What does it do?

In short: a peer-to-peer lookup system
Given a key (data item), it maps the key onto a node 
(peer).
Uses consistent hashing to assign keys to nodes .
Solves problem of locating key in a collection of 
distributed nodes.
Maintains routing information as nodes join and 
leave the system



Chord – addressed problems

Load balance: distributed hash function, 
spreading keys evenly over nodes
Decentralization: chord is fully distributed, no 
node more important than other, improves 
robustness
Scalability: logarithmic growth of lookup costs 
with number of nodes in network, even very large 
systems are feasible
Availability: chord automatically adjusts its 
internal tables to ensure that the node responsible 
for a key can always be found



Example Application

Highest layer provides a file-like interface to user including user-friendly 
naming and authentication

This file systems maps operations to lower-level block operations

Block storage uses Chord to identify responsible node for storing a block 
and then talk to the block storage server on that node

File System

Block Store

Chord

Block Store

Chord

Block Store

Chord

Client Server Server



Chord details (optional)

Consistent hash function assigns each node and 
key an m-bit identifier.
SHA-1 is used as a base hash function.
A node’s identifier is defined by hashing the node’s 
IP address.
A key identifier is produced by hashing the key
(chord doesn’t define this. Depends on the 
application).

– ID(node) = hash(IP, Port)

– ID(key) = hash(key)



Chord details (optional)

In an m-bit identifier space, there are 2m identifiers.
Identifiers are ordered on an identifier circle modulo 
2m.
The identifier ring is called Chord ring.
Key k is assigned to the first node whose identifier is 
equal to or follows (the identifier of) k in the identifier 
space.
This node is the successor node of key k, denoted 
by successor(k).



Consistent Hashing :Successor Nodes (opt)
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X key

successor(1) = 1

successor(2) = 3successor(6) = 0



Consistent Hashing (opt)

For m = 6, # of identifiers is 64.
The following Chord ring has 10 nodes and stores 5 
keys.
The successor of key 10 is node 14.



Acceleration of Lookups (optional)

Lookups are accelerated by maintaining additional routing 
information

Each node maintains a routing table with (at most) m entries 
(where N=2m) called the finger table

ith entry in the table at node n contains the identity of the first node, 
s, that succeeds n by at least 2i-1 on the identifier circle (clarification on 
next slide)

s = successor(n + 2i-1) (all arithmetic mod 2)

s is called the ith finger of node n, denoted by n.finger(i).node



Finger Tables (1) (optional)
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Finger Tables (2) - characteristics

Each node stores information about only a small 
number of other nodes, and knows more about 
nodes closely following it than about nodes farther
away

A node’s finger table generally does not contain 
enough information to determine the successor of an 
arbitrary key k

Repetitive queries to nodes that immediately 
precede the given key will lead to the key’s 
successor eventually



Node Joins – with Finger Tables
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Node Departures – with Finger Tables
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Chord – The Math (optional)

Every node is responsible for about K/N keys (N nodes, K keys)

When a node joins or leaves an N-node network, only O(K/N) keys 
change hands (and only to and from joining or leaving node)

Lookups need O(log N) messages

To reestablish routing invariants and finger tables after node 
joining or leaving, only O(log2N) messages are required
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Many recent DHT-based projects

File sharing [CFS, OceanStore, PAST, Ivy, …]
Web cache [Squirrel, ..]
Backup store [Pastiche]
Censor-resistant stores [Eternity, FreeNet,..]
DB query and indexing [Hellerstein, …]
Event notification [Scribe]
Naming systems [ChordDNS, Twine, ..]
Communication primitives  [I3, …]



Some open problems

http://www.cs.rice.edu/Conferences/IPTPS02
O(log n) path lengths with O(1) neighbors
Trade off when combining with other 
properties
Routing hop spots
Incorporating geography (neighbor 
selection/proximity routing)
Exploit the heterogeneity in p2p system



My 2 cents

What can we really do with p2p system?
– File Sharing (legal issues)
– P2P service in education 

(http://chronicle.com/prm/daily/2004/01/2004012606n.htm) 
– Video streaming
– Spam watch (Middleware2003)

Security:
– Possibility of attacks the p2p system.
– Privacy.

Thanks !
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Motivation

Sharing of data in distributed systems
Each user in a distributed system is potentially a 
creator as well as consumer of data

– User may use/update information at a remote site
– Physical movement of a user may require his data to be 

accessible elsewhere
Goal: provide ease of data sharing in a secure, 
reliable, efficient, and usable manner that is 
independent of the size and complexity of the 
distributed system



Main Issues

Data Consistency
– A mechanism must be provided in order to ensure 

that each user can see changes that others are 
making to their copies of data

– Lock is used as concurrency control to ensure 
consistency

– Things become more complex when replication is 
implemented for high availability and data 
persistence, since different replica may be 
inconsistent because of server failure, etc



Main Issues (cont.)

Location Transparency
– The name of a file is devoid of location information. An 

explicit file location mechanism dynamically maps file 
names to storage sites

– A uniform name space is provided to users
Security

– DFS must provide authentication and authorization (once 
users are authenticated, the system must ensure that the 
performed operations are permitted on the resources 
accessed)

– Encryption becomes an indispensable building block



Main Issues (cont.)

Availability
– System should be available despite server crash or network 

partition
– Replication, the basic technique used to achieve high 

availability, introduces complication of its own (how to 
propagate changes in a consistent and efficient manner?)

Data Persistence
– The loss or destruction of a device does not lead to lost 

data
– Replication is also useful for this purpose



Main Issues (cont.)

Performance
– The network is considerably slower than the internal buses. 

Therefore, the less clients have to access servers, the more 
performance can be achieved 

– Caching can lower network load
– Store hints information at client

A hint is a piece of information that can substantially improve 
performance if correct but has no semantically negative 
consequence if erroneous. (e.g. file location information)

– Transferring data in bulk reduces protocol processing 
overhead



Case Study 1. NFS

Sun Microsystems Network File System, first 
released by Sun in 1985
The most used DFS on networks of workstations
Design Consideration: portability and heterogeneity

– Sun made a careful distinction between the NFS protocol, 
and a specific implementation of an NFS server or client (by 
other vendors)

– NFS has been ported to almost all existing operating 
systems like MVS, MacOS, OS/2 and MS-DOS



NFS (cont.)

Stateless Protocol
– Server don’t store information about the state of 

client access to its files
– Each RPC request from a client contains all the 

information needed to satisfy the request
– Simplify crash recovery on servers
– Sacrifice functionality and Unix compatibility: NFS 

doesn’t support locks and therefore doesn’t 
assure consistency



NFS (cont.)

Naming and Location
– NFS clients are usually configured so that each sees a Unix 

file name space with a private root
– The name space on each client can be different. It’s the job 

of system administrator to determine how each client will 
view the directory structure

– Location transparency is obtained by convention, rather 
than being a basic architectural feature of NFS

– Name-to-site bindings are static.



NFS (cont.)

Caching
– NFS clients cache individual pages of remote files and 

directories in their main memory
– When a client caches any block of a file, it also caches a 

timestamp indicating when the file was last modified on the 
server

– A validation check is always performed when a file is 
opened and when the server is contacted to satisfy a cache 
miss. After a check, cached blocks are assumed valid for a 
finite interval of time

– If a cached page is modified, it is marked as dirty ad 
scheduled to be flushed to the server. The actual flushing 
will occur after some delay. However, all dirty pages will be 
flushed to the server before a close operation on the file 
completes



NFS (cont.)

Replication
– As originally specified, NFS did not support data replication
– More recent versions of NFS support replication via a 

mechanism called Automounter. (Automounter allows 
remote mount points to be specified using a set of servers 
rather than a single server. However, propagation of 
modifications to replicas has to be done manually) 

– This replication mechanism is intended primarily for READ-
ONLY files (frequently read but rarely modified)



NFS (cont.)

Security
– NFS uses the underlying Unix file protection mechanism on 

servers for access checks
– In the early versions of NFS, mutual trust was assumed 

among all participating machines. The identity of a user was 
determined by a client machine and accepted without 
further validation by a server

– More recent versions of NFS use DES-based mutual 
authentication to provide a higher level of security. However, 
since file data in RPC packets is not encrypted, NFS is still 
vulnerable



Case Study 2. AFS

Andrew File System, started in 1983 at CMU
Design Consideration: scalability and 
security
– Many design decisions in Andrew are influenced 

by its anticipated final size of 5000 to 10000 
nodes

– Scale renders security a serious concern, since it 
has to be enforced rather than left to the good will 
of the user community



AFS (cont.)

Naming and Location
– The file name space on an Andrew workstation is 

partitioned into a shared and a local name space
– The shared name space is local transparent and is identical 

on all workstations. It is partitioned into disjoint sub trees, 
and each sub tree is assigned to a single server, called its 
custodian. Each server contains a copy of a fully replicated 
location database that maps files to custodians

– The local name space is unique to each workstation and is 
relatively small. It only contains temporary files or files 
needed for workstation initialization



AFS (cont.)

Caching
– Files in the shared name space are cached on demand on 

the local disks of workstations. A cache manager, called 
Venus, runs on each workstation

– When a file is opened, Venus checks the cache for the 
presence of a valid copy. Read and write operations on an 
open file are directed to the cached copy. No network traffic 
is generated by such requests. If a cached file is modified, it 
is copied back to the custodian when the file is closed

– Cache consistency is maintained by the mechanism called 
callback. When a file is cached from a server, the latter 
makes a note of this fact and promises to inform the client if 
the file is updated by someone else



AFS (cont.)

Replication
– Replication of READ-ONLY data (frequently read 

but rarely modified)
– Subtrees that contain such data may have read-

only replicas at multiple servers. Propagation of 
changes to the read-only replicas is done by an 
explicit operational procedure



AFS (cont.)

Concurrency Control
– Provided by emulation of the Unix flock system 

call.
– Lock and unlock operations on a file are 

performed directly to its custodian



AFS (cont.)

Security
– Servers are physically secure, are accessible only to trusted 

operators, and run only trusted system software. Neither the 
network nor workstations are trusted by servers

– AFS uses Kerberos protocol for mutual authentication 
between client and server. Kerberos protocol is a two-step 
authentication scheme. When a user logs in to a 
workstation, his password is used to establish a 
communication channel to an authentication server. An 
authentication ticket is obtained from the authentication 
server and saved for future use



Case Study 3. CODA

Coda File System, developed since 1987 at 
CMU
A distributed file system with its origin in 
AFS2
Design Consideration: availability
– Coda’s goal is to provide the highest degree of 

availability in the face of all realistic failures, 
without significant loss of usability, performance, 
or security



CODA (cont.)

Server Replication
– The unit of replication in Coda is volume. A volume is a 

collection of files that are stored on one server and form a 
partial subtree of the shared file name space

– The set of servers that contain replicas of a volume is its 
volume storage group (VSG). For each volume from which it 
has cached data, Venus keeps track of the subset of the 
VSG that is currently accessible. This subset is reffered to 
as the accessible volume storage group (AVSG)



CODA (cont.)

Server Replication (cont.)
– The replication strategy is a variant of the read-one, write-all 

approach. When a file is closed after modification, it is 
transferred to all members of the AVSG

– When servicing a cache miss, a client obtains data from one 
member of its AVSG called the preffered server. Although 
data is transferred only from one server, the other servers 
are contacted to verify that the preferred server does indeed 
have the latest copy of data. If not, the member of the 
AVSG with the latest copy is made the preferred site and 
the AVSG is notified that some of its members have stale 
replicas



CODA (cont.)

Disconnected Operation
– Disconnected operation offers possibility of accessing 

distributed file system files without being connected to the 
network at all

– Disconnected operation begins when no member of a VSG 
is accessible. But it only provides access to data that was 
cached at the client at the start of disconnected operation. 
When disconnected operation ends, modified files and 
directories are propagated to the AVSG. Should conflicts 
occur, CODA provides some tools for the user to decide 
which update must prevail



CODA (cont.)

Disconnected Operation (cont.)
– Coda allows a user to specify a prioritized list of 

files and directories that Venus should strive to 
retain in the cache. Once each 10 minutes, a 
process is initiated in order to bring to the local 
disk all files with larger priorities



NFS vs. AFS vs. CODA

GOOD. Access control 
lists. Kerberos
authentication between 
client and server

GOOD. Access control 
lists. Kerberos
authentication between 
client and server

POOR. Server trust on 
clients

Security

EXCELLENT. Server 
replication. Disconnected 
operations

POORPOORAvailability

GOODFAIR. Automatic backup 
tools

POOR. Delayed writes 
may cause loss of data

Data Persistence

GOOD. Looks for the 
“closest” replica

FAIR. Large latency on 
non-cached files, though

POOR. Inefficient 
protocol

Performance

EXCELLENT. Ideal for 
wide area networks with 
low degree of file sharing

EXCELLENT. Ideal for 
wide area networks with 
low degree of file sharing

POOR. Server saturate 
rapidly

Scalability 

POOR. Session 
semantics weakened by 
server replication

FAIR. Session semanticsPOOR. Concurrent 
access generates 
unpredictable results

Consistency 

GOOD. Overhead is 
distributed among clients

POOR. Just for read-only 
directories

POOR. Just for read-only 
directories

Replication

Local diskLocal diskMain memoryClient Cache Location

CODAAFSNFS



Case Study 4. GFS

Google File System, developed at Google
A scalable distributed file system for large 
distributed data-intensive applications
GFS provides fault tolerance while running 
on inexpensive commodity hardware, and  
delivers high aggregate performance to a 
large number of clients.



GFS (cont.)

GFS vs. Traditional FS
– component failures are the norm rather than the 

exception 
– files are huge by traditional standards 
– most files are mutated by appending new data 

rather than overwriting existing data 
– co-designing the applications and the file system 

API 



GFS (cont.)

Architecture



GFS (cont.)

Clients cache metadata but don’t cache file 
data
The systems maintains a number of replicas 
for each chunk to ensure data persistence
Master controls concurrent access to files 
and directories
GFS doesn’t scale. Its single master is a 
bottleneck



GFS (cont.)

High performance achieved by very specific design 
and optimization aiming at Google’s environment
Fast recovery of master as well as master replication 
ensures high availability

– Logs are used in recovery of master

GFS is a successful system. But it brings few new 
concepts in DFS design and implementation. Its lack 
of generality determines that it cannot have wide 
application



Open Problems

High availability
– CODA’s goal is to provide highest degree of 

availability without significant loss of performance. 
However, it sacrifices consistency

– Consistency, availability and performance seem 
to be mutually contradictory in a distributed 
system. Is there a way to achieve high availability 
without loss of consistency and performance?



Open Problems (cont.)

Scalability
– AFS-like systems take scalability as a dominant 

design consideration. Such systems give users in 
different continents the possibility of sharing files

– With rapid growth of Internet, we need global 
scale distributed file system with infinite scalability



Open Problems (cont.)

Heterogeneity
– It’s desirable that users running different 

operating system could share data through a 
distributed file systems

– Ubiquitous computing places requirement on 
heterogeneity

– Coping with heterogeneity is inherently difficult 
because of the presence of multiple 
computational environments, each with its own 
notion of file naming and functionality



Open Problems (cont.)

Multimedia Support
– Multimedia applications deal with huge amounts 

of information which can currently get to terabytes 
of data and transfer rates of hundreds of 
megabytes per second

– We need distributed file systems with high I/O 
bandwidth and fast response



Open Problems (cont.)

Security
– Security may turn out to be the bane of global 

scale distributed systems
– we need to take extra measures to make sure 

that information is protected from prying eyes and 
malicious hands



Thank you! Questions?



Backup Slides



Data Model

Data Object
– A File in a Traditional File System
– Named by an Active Globally-Unique Identifier, 

AGUID
Location Independent
Preventing Name Space Collisions

SHA-1

AGUID

Application-specified Name + Owner’s Public Key



Data Model

Data Object
– Sequences of Read-only 

Versions
– Block Reference



SHA-1 (http://www.itl.nist.gov/fipspubs/fip180-1.htm)

Secure Hash Algorithm, SHA-1, for computing a condensed representation of a message 
or a data file. When a message of any length < 264 bits is input, the SHA-1 produces a 
160-bit output called a message digest. The message digest can then be input to the 
Digital Signature Algorithm (DSA) which generates or verifies the signature for the 
message. Signing the message digest rather than the message often improves the 
efficiency of the process because the message digest is usually much smaller in size than 
the message. The same hash algorithm must be used by the verifier of a digital signature 
as was used by the creator of the digital signature. 

The SHA-1 is called secure because it is computationally infeasible to find a message 
which corresponds to a given message digest, or to find two different messages which 
produce the same message digest. Any change to a message in transit will, with very high 
probability, result in a different message digest, and the signature will fail to verify. SHA-1 is 
a technical revision of SHA (FIPS 180). A circular left shift operation has been added to the 
specifications in section 7, line b, page 9 of FIPS 180 and its equivalent in section 8, line c, 
page 10 of FIPS 180. This revision improves the security provided by this standard. The 
SHA-1 is based on principles similar to those used by Professor Ronald L. Rivest of MIT 
when designing the MD4 message digest algorithm ("The MD4 Message Digest Algorithm," 
Advances in Cryptology - CRYPTO '90 Proceedings, Springer-Verlag, 1991, pp. 303-311), 
and is closely modelled after that algorithm. 



SHA-1 (http://www.itl.nist.gov/fipspubs/fip180-1.htm)



The probabilistic query process

10101

n1 n2

n3

n4

1 3
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11010

11010

11100

00011

00011
The replica at n1 is looking for object X, 
whose GUID hashes to bits 0, 1, and 3.  
Bloom filters are the rounded boxes 
where as square boxes are neighbor 
filters.



Byzantine Agreement

Byzantium, 1453 AD. The city of Constantinople, the last remnants of the hoary Roman Empire, is under 
siege. Powerful Ottoman battalions are camped around the city on both sides of the Bosporus, poised to 
launch the next, perhaps final, attack. Sitting in their respective camps, the generals are meditating. 
Because of the redoubtable fortifications, no battalion by itself can succeed; the attack must be carried out 
by several of them together or otherwise they would be thrusted back and incur heavy losses that would 
infuriate the Grand Sultan. Worse, that would jeopardize the prospects of a defeated general to become 
Vizier. The generals can agree on a common plan of action by communicating thanks to the messenger 
service of the Ottoman Army which can deliver messages within an hour, certifying the identity of the 
sender and preserving the content of the message. Some of the generals however, are secretly conspiring 
against the others. Their aim is to confuse their peers so that an insufficient number of generals is 
deceived into attacking. The resulting defeat will enhance their own status in the eyes of the Grand Sultan. 
The generals start shuffling messages around, the ones trying to agree on a time to launch the offensive, 
the others trying to split their ranks... 

Menlo Park, 1982 AD. The situation above describes a classical coordination problem in distributed 
computing known as byzantine agreement which was introduced in two seminal papers by Lamport, 
Pease and Shostak [23,30]. Broadly stated, a basic problem in distributed computing is this: Can a set of 
concurrent processes achieve coordination in spite of the faulty behaviour of some of them? The faults to 
be tolerated can be of various kinds. The most stringent requirement for a fault-tolerant protocol is to be 
resilient to so-called byzantine failures: a faulty process can behave in any arbitrary way, even conspire 
together with other faulty processes in an attempt to make the protocol work incorrectly. The identity of 
faulty processes is unknown, reflecting the fact that faults can (and do) happen unpredictably. 



SEDA

SEDA is an acronym for staged event-driven architecture, and 
decomposes a complex, event-driven application into a set of stages
connected by queues. This design avoids the high overhead 
associated with thread-based concurrency models, and decouples 
event and thread scheduling from application logic. By performing 
admission control on each event queue, the service can be well-
conditioned to load, preventing resources from being overcommitted
when demand exceeds service capacity. SEDA employs dynamic 
control to automatically tune runtime parameters (such as the 
scheduling parameters of each stage), as well as to manage load, for 
example, by performing adaptive load shedding. Decomposing 
services into a set of stages also enables modularity and code reuse, 
as well as the development of debugging tools for complex event-
driven applications. 



Other distributed file systems

Freenet – storage system designed to achieve anonymity in terms of publisher and the 
consumer of content – document driven.  Does NOT provide permanent file storage, load
balancing, is not scalable
Free Haven – decentralized, trade offs time, bandwidth, latency, to get better anonymity 
and robustness, no dynamic management of underlying tree structure.  Focus is on 
persistence, lacks efficiency, but also does not guarantee long-term survivability. 
Publius – mainly focuses on availability and anonymity, distributes files as shares over n 
web servers. J of these shares are enough to reconstruct a file. It lacks accountability, 
DoS, garbage clean-up, smooth join/leave for servers.
Mojo Nation – centralized file storage system.  Uses a Central Service Broker.  Breaks up 
files into chunks and distributes these chunks among different computers in the network.  
Main goals are increased band-width and load balancing.  There is no long-term durability 
of data.  Swarm distribution – is the parallel download of file fragments, reconstructed on 
the client.  Mojos are like credits, the more your contribute, storage, network, the more you 
can get!
Farsite – Logically, a single hierarchical file system is visible from all access points, but 
underneath files are replicated and distributed among the client machines.  There is NO 
responsible party, thus it is possible for loss of data due to an untrusted entity. 



Path of Update



Types of data (coding) models

Two distinct forms of data: active and archival
Active Data in Floating Replicas

– Per object virtual server
– Logging for updates/conflict resolution
– Interaction with other replicas to keep data consistent
– May appear and disappear like bubbles

Archival Data in Erasure-Coded Fragments
– M-of-n coding: Like hologram

Data coded into n fragments, any m of which are sufficient to reconstruct (e.g 
m=16, n=64)
Coding overhead is proportional to n÷m (e.g 4)
Law of large numbers advantage to fragmentation

– Fragments are self-verifying
– OceanStore equivalent of stable store



Two levels of routing

Fast probabilistic searching for routing cache
– Task of routing a particular message is handled by the aggregate

resources of many different nodes.  By exploiting multiple routing paths to 
the destination, this serves to limit the power of nodes to deny service to a 
client, second, message route directly to their destination avoiding the 
multiple round-trips that a separate data location and routing process 
wound incur, finally the underlying infrastructure has more up-to-date 
information about the current location of entities than the clients.  

– Attenuated bloom filters 
Plaxton Mesh used if above fails

– Underlying routing structure
– Continuous adaptation

Network behavior
DoS attacks
Faulty servers
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Plaxton Mesh use

Tapestry (more on this later!)
OceanStore enhancements for reliability:

– Documents have multiple roots 
– Each node has multiple neighbor links
– Searches proceed along multiple paths

Tradeoff between reliability and bandwidth?
– Routing-level validation of query results

Highly redundant and fault-tolerant structure that 
spreads data location load evenly while finding local 
objects quickly



Automatic Maintenance

Byzantine Commitment for inner ring:
– Can tolerate up to 1/3 faulty servers in inner ring

Bad servers can be arbitrarily bad
Cost ~n2 communication

– Continuous refresh of set of inner-ring servers



Information stored in OceanStore

Where is persistent information stored?
How is it protected?
Does it last forever?
How is it managed?
Who owns the storage?



Applications

OceanStore solves problems of consistency, security, privacy, 
wide-scale data dissemination, dynamic optimization, durable 
storage, and disconnected operation; this allows application 
developers to focus on higher-level concerns.
(with that in mind) what are some possible uses:  groupware, 
personal information management tools, calendars, email, 
contact lists, and distributed design tools.  Nomadic email a 
user’s email to migrate closer to his client, reducing the round 
trip to fetch messages from a remote server
Can be used to generate very large digital libraries and 
repositories for scientific data, also new stream applications 
such as sensor data aggregations and dissemination



Pond ~ what is missing?

– Full Byzantine-fault-tolerant agreement
– Tentative update sharing
– Inner ring membership rotation
– Flexible ACL support
– Proactive replica placement


