
Advanced Topics on Information Systems Spring 2004 Dimitrios Lymberopoulos

Advanced Topics on Information Systems

Embedded Software: The Case of Sensor Networks

Graduate Student: Dimitrios Lymberopoulos

Instructor: A. Silberschatz

Advanced Topics on Information Systems Spring 2004 Dimitrios Lymberopoulos

Outline
Basic Concepts of Embedded Software – Black Box

The case of Sensor Networks
Hardware Overview

Software for Sensor Networks
TinyOS

NesC

Demo using Berkeley’s Mica2 motes!

PalOS

TinyGALS

Re-programmability Issues
Maté

SensorWare

Advanced Topics on Information Systems Spring 2004 Dimitrios Lymberopoulos

Conclusions – Open research problems

Advanced Topics on Information Systems Spring 2004 Dimitrios Lymberopoulos

Basic Concepts

Advanced Topics on Information Systems Spring 2004 Dimitrios Lymberopoulos

Embedded Software

Main Features

Timeliness

Concurrency

Liveness

Heterogeneity

Reactivity

Robustness

Low power

Scaleable
Interaction with the physical world

User Input Output

Advanced Topics on Information Systems Spring 2004 Dimitrios Lymberopoulos

Basic Concepts

Embedded Software is not software fro small computers

Its principal role is not the transformation of data but rather the interaction
with the physical world

It executes on machines that are not computers (cars, airplanes,
telephones, audio equipment, robots, security systems…)

Advanced Topics on Information Systems Spring 2004 Dimitrios Lymberopoulos

Since it interacts with the physical world must acquire some properties of
the physical world. It takes time. It consumes power. It does not terminate
until it fails

Advanced Topics on Information Systems Spring 2004 Dimitrios Lymberopoulos

Basic Concepts – More Challenges

The engineers that write embedded software are rarely computer scientists

The designer of the embedded software should be the person who best
understands the physical world of the application

Therefore, better abstractions are required for the domain expert in order to
do her job

Advanced Topics on Information Systems Spring 2004 Dimitrios Lymberopoulos

On the other hand, applications become more and more dynamic and their
complexity is growing rapidly

Advanced Topics on Information Systems Spring 2004 Dimitrios Lymberopoulos

Outline
Basic Concepts of Embedded Software – Black Box

The case of Sensor Networks
Hardware Overview

Software for Sensor Networks
TinyOS

NesC

Demo using Berkeley’s Mica2 motes!

PalOS

TinyGALS

Re-programmability Issues
Maté

SensorWare

Advanced Topics on Information Systems Spring 2004 Dimitrios Lymberopoulos

Conclusions – Open research problems

Advanced Topics on Information Systems Spring 2004 Dimitrios Lymberopoulos

Why Sensor Networks?

Sensor networks meet all the challenges that were previously described
(Event driven, concurrent, robust, real time, low power…)

In addition sensor nodes have to exchange information using wireless
communication by forming a network.

Communication is expensive.

Advanced Topics on Information Systems Spring 2004 Dimitrios Lymberopoulos

What is a Sensor Network?

A sensor network is composed of a large number of sensor nodes which
are densely deployed in a region

Each sensor node consists of sensing, data processing and communication
components and contains its own limited source of power

Sensor nodes are locally carry out simple computations and transmit only
the required and partially processed data

Sensor nodes are small in size, low-cost, low-power multifunctional devices
that can communicate in short distances

Advanced Topics on Information Systems Spring 2004 Dimitrios Lymberopoulos

Outline
Basic Concepts of Embedded Software – Black Box

The case of Sensor Networks
Hardware Overview

Software for Sensor Networks
TinyOS

NesC

Demo using Berkeley’s Mica2 motes!

PalOS

TinyGALS

Re-programmability Issues
Maté

SensorWare

Advanced Topics on Information Systems Spring 2004 Dimitrios Lymberopoulos

Conclusions – Open research problems

Advanced Topics on Information Systems Spring 2004 Dimitrios Lymberopoulos

Hardware Platforms for Sensor Networks
The Berkeley “Motes” family

Advanced Topics on Information Systems Spring 2004 Dimitrios Lymberopoulos

Hardware Platforms for Sensor Networks
WeC Berkeley “Mote” architecture

Objectives: Low idle time – Stay in inactive mode for as much time as possible

Advanced Topics on Information Systems Spring 2004 Dimitrios Lymberopoulos

Hardware Platforms for Sensor Networks
UCLA’s MK-II platform

Task 2

Delta Q

Task 1

Timer
Interrupt

Expired Event Q

Timer
Task

Handler 1

Handler 2

Handler 3

PALOS
Core

PALOS

ARM/THUMB 40MHz
Running uCos-ii

RS-485 &
External Power

MCU I/F
Host Computer, GPS, etc

ADXL 202E
MEMS Accelerometer

UI: Pushbuttons

Advanced Topics on Information Systems Spring 2004 Dimitrios Lymberopoulos

Outline
Basic Concepts of Embedded Software – Black Box

The case of Sensor Networks
Hardware Overview

Software for Sensor Networks
TinyOS

NesC

Demo using Berkeley’s Mica2 motes!

PalOS

TinyGALS

Re-programmability Issues
Maté

SensorWare

Advanced Topics on Information Systems Spring 2004 Dimitrios Lymberopoulos

Conclusions – Open research problems

Advanced Topics on Information Systems Spring 2004 Dimitrios Lymberopoulos

Hardware Platforms for Sensor Networks

Sensor network hardware platforms are resource constrained but at the
same time they must be very reactive and participate in complex distributed
algorithms

Traditional operating systems and programming models are inappropriate
for sensor networks (and for embedded systems)

Advanced Topics on Information Systems Spring 2004 Dimitrios Lymberopoulos

TinyOS

Designed for low power Adhoc Sensor Networks (initially designed for the
WesC Berkeley motes)

Key Elements

Sensing, Computation, Communication, Power

Resource Constraints

Power, Memory, Processing

Adapt to Changing Technology

Modularity & Re-use

Advanced Topics on Information Systems Spring 2004 Dimitrios Lymberopoulos

TinyOS

Multithreading

Two-level scheduling structure

Event oriented OS

Advanced Topics on Information Systems Spring 2004 Dimitrios Lymberopoulos

TinyOS – Main Idea

Hurry up and Sleep

Execute Processes Quickly

Interrupt Driven

Sleep Mode

Sleep (µWatt power) while waiting for something to happen

Advanced Topics on Information Systems Spring 2004 Dimitrios Lymberopoulos

TinyOS Memory Model

STATIC

No HEAP (malloc)

No FUNCTION Pointers

Global Variables

Conserve memory

Use pointers, don’t copy buffers

Local Variables

On Stack

Free

STACK

GLOBAL

Advanced Topics on Information Systems Spring 2004 Dimitrios Lymberopoulos

TinyOS Structure
TinyOS

Tiny scheduler Graph of components

Each component has four interrelated parts:

1. A set of command handlers

2. A set of event handlers

3. Simple tasks

4. An encapsulated fixed-size frame

Each component declares the commands it uses and the events it signals
(modularity)

Applications are layers of components where higher level components
issue commands to lower level components and lower level components
signal events to higher level components

Advanced Topics on Information Systems Spring 2004 Dimitrios Lymberopoulos

TinyOS Structure

Event handlers are invoked to deal with hardware events

Tasks perform the primary work. They are atomic with respect to other
tasks and run to completion. They can be preempted by events

Commands, events and handlers execute in the context of the frame and
operate on its state.

Commands are non-blocking requests made to lower level components.
They deposit request parameters into their frames and post a task for later
execution

Advanced Topics on Information Systems Spring 2004 Dimitrios Lymberopoulos

TinyOS Process Categories

Events

Time Critical

Interrupts cause Events (timer, ADC)

Small/Short duration

Interrupt Tasks

Tasks

Time Flexible

Run sequentially by TinyOS Scheduler

Run to completion with other Tasks

Interruptible

Advanced Topics on Information Systems Spring 2004 Dimitrios Lymberopoulos

TinyOS Kernel

Advanced Topics on Information Systems Spring 2004 Dimitrios Lymberopoulos

TinyOS Application Example

Drawback: Concurrency model designed around radio bit sampling

Advanced Topics on Information Systems Spring 2004 Dimitrios Lymberopoulos

TinyOS Application Evaluation (1)

Scheduler only occupies 178 bytes

Complete application only requires 3
KB of instruction memory and 226
bytes of data (less than 50% of the
512 bytes available)

Only processor_init, TinyOS
scheduler, and C runtime are
required

2263450Total

30
16
0

172
178
82

Processor_init
TinyOS scheduler
C runtime

0
0

32
8

40
40
8
1
1
1
1

40
8

88
40
78

146
356
334
810
310
84
64

196
314
198

Routing
AM_dispatch
AM_temperature
AM_light
AM
RADIO_packet
RADIO_byte
RFM
Light
Temp
UART
UART_packet
I2C

Data
Size
(bytes)

Code
Size
(bytes)

Component Name

Advanced Topics on Information Systems Spring 2004 Dimitrios Lymberopoulos

TinyOS Application Evaluation (2)

12.259Interrupt (hardware cost)

17.75

2.5
2.5

11.5
12.75

2

Time
(µs)

971Interrupt (software cost)

1.25
1.25

6
6

10
10
46
51

Post an Event

Call a Command

Post a task to scheduler

Context switch overhead

18Byte copy

Normalized
to byte copy

Cost
(cycles)

Operations

Advanced Topics on Information Systems Spring 2004 Dimitrios Lymberopoulos

TinyOS

• Offers Modularity, Reusability

• Programmers have to deal with the
asynchronous nature of the system.

Difficult to write programs

• Low memory requirements
(small footprint)

• HW/SW boundary adjustment
would significantly reduce power

consumption and efficiency

• Multithreading and Event-driven
operating system

DisadvantagesAdvantages

Note: NesC programming model addresses most of these disadvantages!

Lack of communication among tasks.

Advanced Topics on Information Systems Spring 2004 Dimitrios Lymberopoulos

NesC – The TinyOS Language

A pre-processor

NesC output is a C program file that is compiled and linked using gnu
gcc tools

A programming language specifically designed for TinyOS

Dialect of C

Variables, Tasks, Calls, Events, Signals

Component Wiring

Advanced Topics on Information Systems Spring 2004 Dimitrios Lymberopoulos

NesC – TinyOS

Configuration

A “Wiring” of components together

Component

Building block of TinyOS

An entity that performs a specific set of services

Can be “wired together” (Configured) to build more complex
Components

Implementation in a module (code)

Wiring of other components in a Configuration

Advanced Topics on Information Systems Spring 2004 Dimitrios Lymberopoulos

TinyOS Component Structure

Implementation

Defines internal workings of a Component

May include “wires” to other components

Interface

Declares the services provided and the services used

INTERFACE

IMPLEMENTATION

Component Types

Modules

Configurations

Advanced Topics on Information Systems Spring 2004 Dimitrios Lymberopoulos

Interface Elements

Events

Sends Signals to the User

Commands

Provides services to User

Mandatory (Implicit) Commands

.init – invoked on boot-up

.start – enables the component services

.stop – halt or disable the component

Advanced Topics on Information Systems Spring 2004 Dimitrios Lymberopoulos

Commands and Signals

Signals

Triggers an Event at the connected Component

Flow upwards

Pass parameters

Control returns to Signaling Component

Commands

Similar to C functions

Pass parameters

Control returns to caller

Flow downwards

Component 1

Component 3

Component 2

Event Handler

Signal

Signal

Event Command

Command

Advanced Topics on Information Systems Spring 2004 Dimitrios Lymberopoulos

Events and Tasks

May preempt the execution of a task or other hardware
interrupt
Commands and events that are executed as part of a
hardware event handler must be declared with the async
keyword

Hardware event handlers are executed in response to a
hardware interrupt and always run to completion

Functions whose execution is deferred

Once scheduled (started)

Run to completion

Do not preempt one another
(executed sequentially)

EVENTS

TASKS

Advanced Topics on Information Systems Spring 2004 Dimitrios Lymberopoulos

Data Race Conditions

The NesC compiler reports potential data races to the programmer at
compile time

Races are avoided by:

Accessing shared data exclusively within tasks

Having all accesses within atomic statements

Tasks may be preempted by other asynchronous code

Variables can be declared with the norace keyword (should be used with
extreme caution)

Advanced Topics on Information Systems Spring 2004 Dimitrios Lymberopoulos

TinyOS messaging

A standard message format is used for passing information between nodes

Messages include: Destination Address, Group ID, Message Type,
Message Size and Data.

Advanced Topics on Information Systems Spring 2004 Dimitrios Lymberopoulos

Active Messaging

Each message on the network specifies a HANDLER ID in the header.

HANDLER ID invokes specific handler on recipient nodes

When a message is received, the EVENT wired that HANDLER ID is
signaled

Different nodes can associate different receive event handlers with the
same HANDLER ID

Advanced Topics on Information Systems Spring 2004 Dimitrios Lymberopoulos

BLINK: A Simple Application

A simple application that toggles the red led on the Berkeley mote every
1sec.

Advanced Topics on Information Systems Spring 2004 Dimitrios Lymberopoulos

BLINK: A Simple Application

Blink.nc

configuration Blink {
}
implementation {
components Main, BlinkM, SingleTimer, LedsC;

Main.StdControl -> BlinkM.StdControl;
Main.StdControl -> SingleTimer.StdControl;
BlinkM.Timer -> SingleTimer.Timer;
BlinkM.Leds -> LedsC;

}

Advanced Topics on Information Systems Spring 2004 Dimitrios Lymberopoulos

StdControl Interface

StdControl.nc

interface StdControl {
command result_t init();
command result_t start();
command result_t stop();

}

Advanced Topics on Information Systems Spring 2004 Dimitrios Lymberopoulos

BLINK NesC Code
BlinkM.nc
module BlinkM {

provides {
interface StdControl;

}
uses {
interface Timer;
interface Leds;

}
}
implementation {

command result_t StdControl.init() {
call Leds.init();
return SUCCESS;

}
command result_t StdControl.start() {
return call Timer.start(TIMER_REPEAT, 1000)

}
command result_t StdControl.stop() {
return call Timer.stop();

}
event result_t Timer.fired() {

call Leds.redToggle();
return SUCCESS;

}
}

Timer.nc

interface Timer {

command result_t start(

char type,

uint32_t interval);

command result_t stop();

event result_t fired();

}

Advanced Topics on Information Systems Spring 2004 Dimitrios Lymberopoulos

Demo: Surge

Goal 1: create a tree routed at the base station

Goal 2: Each node uses the most reliable path to the base station

Reliability

Quality: Link yield to parent

Yield: % of data packets received

Prediction: Product of quality metrics on all links to base station

Advanced Topics on Information Systems Spring 2004 Dimitrios Lymberopoulos

Demo: Surge

Each node broadcasts its cost: Parent Cost + Link’s cost to parent

Nodes try to minimize total cost

Each node reports its receive link quality from each neighbor

Data packets are acknowledged by parents

Data packets are retransmitted up to 5 times

Advanced Topics on Information Systems Spring 2004 Dimitrios Lymberopoulos

Demo: Surge

Does it work?

Advanced Topics on Information Systems Spring 2004 Dimitrios Lymberopoulos

Outline
Basic Concepts of Embedded Software – Black Box

The case of Sensor Networks
Hardware Overview

Software for Sensor Networks
TinyOS

NesC

Demo using Berkeley’s Mica2 motes!

PalOS

TinyGALS

Re-programmability Issues
Maté

SensorWare

Advanced Topics on Information Systems Spring 2004 Dimitrios Lymberopoulos

Conclusions – Open research problems

Advanced Topics on Information Systems Spring 2004 Dimitrios Lymberopoulos

PalOS

PALOS
Core

Drivers (Hardware Abstraction Layer)

Manager
TA

SK
 1

TA
SK

 2

TA
SK

 5

TA
SK

 N

TA
SK

 3

TASK 4

Advanced Topics on Information Systems Spring 2004 Dimitrios Lymberopoulos

PalOS Core

Processor independent algorithms

Provides means of managing event queues and
exchanging events among tasks

Provides means of task execution control(slowing,
stopping, and resuming)

Supports a scheduler: periodic, and aperiodic functions
can be scheduled

Advanced Topics on Information Systems Spring 2004 Dimitrios Lymberopoulos

PalOS Tasks

PALOS
Task
Table

TASK 1

TASK 2

TASK 3

TASK N

Task Routine

Event Q

Task Routine

Event Q

Task Routine

Event Q

Task Routine

Event Q

Main
Control
Loop

A task belongs to
the PalOS main
control loop

Each task has an
entry in PalOS task
table (along with
eventQs)

Advanced Topics on Information Systems Spring 2004 Dimitrios Lymberopoulos

PalOS Inter-task Communication

Task 2

Task 3 Event Q

Task 1

Task 3

PALOS
Core

Events are exchanged using the service provided by PALOS
core

Advanced Topics on Information Systems Spring 2004 Dimitrios Lymberopoulos

PalOS Core

Task 2

Delta Q

Task 1

Timer
Interrupt

Expired Event Q

Timer
Task

Handler 1

Handler 2

Handler 3

PALOS
Core

Periodic or aperiodic
events can be scheduled
using Delta Q and Timer
Interrupt

When event expires
appropriate event handler
is called

Advanced Topics on Information Systems Spring 2004 Dimitrios Lymberopoulos

PalOS v0.1 Implementation – Main Control Loop
// main loop
while (1){ // run each task in order
for (i=0; i< globalTaskID; i++){
isExact = qArray[i].isExactTiming;
tmpCntr=qArray[i].execCounter;
if (tmpCntr != TASK_DISABLED) { /* task is not disabled */

if (tmpCntr) { /* counter hasn't expired */
if (!isExact)
qArray[i].execCounter--;

}
else { /* exec counter expired */
if (isExact)
PALOSSCHED_TIMER_INTR_DISABLE;

qArray[i].execCounter = qArray[i].reloadCounter;
if (isExact)
PALOSSCHED_TIMER_INTR_ENABLE;

/* run the task routine */
(*qArray[i].taskHandler)();

}
}

}
}

Code size: 956 bytes Memory size: 548 bytes

Advanced Topics on Information Systems Spring 2004 Dimitrios Lymberopoulos

PalOS vs. TinyOS

Notion of well defined tasks

Inter-task communication through the use of separate event queues

Multiple tasks can be periodically or not scheduled

Easier to debug (minimum use of macros)

Advanced Topics on Information Systems Spring 2004 Dimitrios Lymberopoulos

Outline
Basic Concepts of Embedded Software – Black Box

The case of Sensor Networks
Hardware Overview

Software for Sensor Networks
TinyOS

NesC

Demo using Berkeley’s Mica2 motes!

PalOS

TinyGALS

Re-programmability Issues
Maté

SensorWare

Advanced Topics on Information Systems Spring 2004 Dimitrios Lymberopoulos

Conclusions – Open research problems

Advanced Topics on Information Systems Spring 2004 Dimitrios Lymberopoulos

Operating Systems & Programming Models

A TinyGALS program contains a single system composed of modules,
which are in turn composed of components (two levels of hierarchy)

Components are composed locally through synchronous method calls to
form modules (Locally synchronous)

Asynchronous message passing is used between modules to separate the
flow of the control (Globally asynchronous)

TinyGALS

Globally Asynchronous and Locally Synchronous programming model for
event driven embedded systems

All asynchronous message passing code and module triggering
mechanisms can be automatically generated from a high-level specification

Advanced Topics on Information Systems Spring 2004 Dimitrios Lymberopoulos

Operating Systems & Programming Models

All global variables are guarded and modules can read them synchronously

Writes are asynchronous in the sense that all writes are buffered

TinyGUYS (GUarded Yet Synchronous variables)

Mechanism for sharing global state

The buffer is of size one, so the last module that writes to a variable wins

TinyGUYS variables are updated by the scheduler only when it is safe

TINYGUYS have global names which are mapped to the parameters of each
module which in turn are mapped to the external variables of the
components.

Components can access global variables by using the special keywords:
PARAM_GET() and PARAM_PUT()

Advanced Topics on Information Systems Spring 2004 Dimitrios Lymberopoulos

Operating Systems & Programming Models
TinyGALS code generation example

•Easier to write programs

•Masks the asynchrony of the system

•Generated code is not optimized
•Use of FIFOS increases memory

requirements

•Application specific code is
automatically generated

DisadvantagesAdvantages

Advanced Topics on Information Systems Spring 2004 Dimitrios Lymberopoulos

Outline
Basic Concepts of Embedded Software – Black Box

The case of Sensor Networks
Hardware Overview

Software for Sensor Networks
TinyOS

NesC

Demo using Berkeley’s Mica2 motes!

PalOS

TinyGALS

Re-programmability Issues
Maté

SensorWare

Advanced Topics on Information Systems Spring 2004 Dimitrios Lymberopoulos

Conclusions – Open research problems

Advanced Topics on Information Systems Spring 2004 Dimitrios Lymberopoulos

Why Re-programmability?

What if there is a bug in the software running on the sensor nodes?

Once deployed, sensor nodes cannot be easily collected. In some cases
they cannot even be reached.

What if we want to change the algorithm that the sensor network is
running?

Advanced Topics on Information Systems Spring 2004 Dimitrios Lymberopoulos

Therefore, re-programmability should not require physical contact (recall
that communication is expensive…)

Advanced Topics on Information Systems Spring 2004 Dimitrios Lymberopoulos

Maté

A tiny communication-centric virtual machine for sensor networks

Instruction set was designed to produce more complex actions with fewer
instructions (assembly like)

Code is divided into 24 single-byte instructions (capsules) to fit into one
tinyOS packet

Maté architecture

• 3 execution contexts (run concurrently)

• Shared state between contexts

Advanced Topics on Information Systems Spring 2004 Dimitrios Lymberopoulos

Maté: Code Infection

A capsule contains:

1. 24 single-byte instructions

2. Numeric ID: 0,1,2,3 (subroutines), 4,5,6 (clock, send, receive)

3. Version Information

If Maté receives a more recent version of a capsule, installs it and forwards it
,using the forw instruction, to its neighbors.

A capsule can forward other capsules using the forwo instruction.

Advanced Topics on Information Systems Spring 2004 Dimitrios Lymberopoulos

Maté: Execution Model

Execution begins in response to an event (timer going off, send or received
message)

Control jumps to the first instruction of the corresponding capsule and
executes until it reaches the halt instruction

Each instruction is executed as a tinyOS task

• Masks the asynchrony of the system
• Easier to write programs

• Processing Overhead
•Complex applications cannot be built

• No multi-user support

DisadvantagesAdvantages

Power Consumption is not always reduced!

Advanced Topics on Information Systems Spring 2004 Dimitrios Lymberopoulos

Outline
Basic Concepts of Embedded Software – Black Box

The case of Sensor Networks
Hardware Overview

Software for Sensor Networks
TinyOS

NesC

Demo using Berkeley’s Mica2 motes!

PalOS

TinyGALS

Re-programmability Issues
Maté

SensorWare

Advanced Topics on Information Systems Spring 2004 Dimitrios Lymberopoulos

Conclusions

Advanced Topics on Information Systems Spring 2004 Dimitrios Lymberopoulos

SensorWare

SensorWare is a framework that defines, creates, dynamically deploys, and
supports mobile scripts that are autonomously populated

Goals:

1. How can you express a distributed algorithm?

2. How can you dynamically deploy a distributed algorithm?

Dynamically program a sensor network as a whole, not just as a collection of
individual nodes

Advanced Topics on Information Systems Spring 2004 Dimitrios Lymberopoulos

Idea: Make the node environment scriptable

Define constructs that tie these building blocks in control scripts

Define basic building commands (i.e., send packets, get data from sensors)

Send packet

• Access radio
• Find route
• Check energy
• Queue packet

A script implementation of an algorithm Corresponding low level tasks

Advanced Topics on Information Systems Spring 2004 Dimitrios Lymberopoulos

SensorWare: Make Scripts Mobile

Scripts can populate/migrate

Scripts move due to node’s state and algorithmic instructions and NOT due
to explicit user instructions

Advanced Topics on Information Systems Spring 2004 Dimitrios Lymberopoulos

SensorWare: An example

User reacts by
injecting a

tracking script

User is notified
for presence of

target

Advanced Topics on Information Systems Spring 2004 Dimitrios Lymberopoulos

SensorWare: An example

User gets periodic
updates of target

location

Script migrates and
populates into the

area of interest

Scripts exchange information to
compute target location

Advanced Topics on Information Systems Spring 2004 Dimitrios Lymberopoulos

SensorWare: An example

User still is
notified

regularly

As target moves,
scripts are
migrating

Advanced Topics on Information Systems Spring 2004 Dimitrios Lymberopoulos

The Framework

Sensor node 2

SensorWare

RTOS

Hardware

HW abstraction
layer

Scripts Services

Code
migrationSensorWare

RTOS

Hardware

HW abstraction
layer

ScriptsServices

Message
exchanging

Sensor node 1

User can
inject script

Advanced Topics on Information Systems Spring 2004 Dimitrios Lymberopoulos

SensorWare Language
SensorWare = Language + Runtime Environment

The glue core
The basic script

interpreter
(stripped-down Tcl)

Mobility
API

Networking
API

Sensing API

wait command

id command

Timer API

Extensions to the core

Unkown
device API

Optional
GPS API...

...
Will the command set be expandable?

Advanced Topics on Information Systems Spring 2004 Dimitrios Lymberopoulos

Execution Model

Event handler a

Event handler b

Initialization

code Zzz

Exit code

a?
b?

c? wait for event a or b or c

Zzz a?
b?

Zzz a?
c?

Event handler a

Event handler c

Example

Advanced Topics on Information Systems Spring 2004 Dimitrios Lymberopoulos

SensorWare Run Time Environment

Radio
thread

Sensing

Timer
Service

Script ManagerAdmission
control

Script 1

Script n

Radio

Sensor

Timers
cpu ctrl

Resource metering info

...
Queue

OS thread

HW
access
code

event
interest in
event

system msg.

Device related permanent Script related

Advanced Topics on Information Systems Spring 2004 Dimitrios Lymberopoulos

SensorWare Trade-offs

Capabilities-related

1. Portability

Energy-related

1. SensorWare needs memory (180KB)

2. Slower Execution

8% slowdown for a typical application

3. Compactness of code

209 bytes for a typical application

764 bytes the equivalent native code

Security-Related

1. Security problems

Advanced Topics on Information Systems Spring 2004 Dimitrios Lymberopoulos

SensorWare - Overview

1. Distributed computational model for sensor networks

2. Simple multi-user taskable interface for sensor networks

Hide details from the programmer

Implemented around the HP iPAQ 3670

Script-based framework

Main Features

Advanced Topics on Information Systems Spring 2004 Dimitrios Lymberopoulos

Outline
Basic Concepts of Embedded Software – Black Box

The case of Sensor Networks
Hardware Overview

Software for Sensor Networks
TinyOS

NesC

Demo using Berkeley’s Mica2 motes!

PalOS

TinyGALS

Re-programmability Issues
Maté

SensorWare

Advanced Topics on Information Systems Spring 2004 Dimitrios Lymberopoulos

Conclusions

Advanced Topics on Information Systems Spring 2004 Dimitrios Lymberopoulos

Sensor Networks
What can be done?

Hardware?

Only software optimization techniques have been proposed so far

Hardware/Software boundary?

Develop domain specific hardware that can support a distributed
computational model similar to SensorWare

Adjust the hardware/software boundary to increase the performance of this
distributed computational model

Advanced Topics on Information Systems Spring 2004 Dimitrios Lymberopoulos

Sensor Networks
What can be done?

TinyOS

improve the inter-task communication

Support on-the-fly component addition/removal

SensorWare

Development of a secure
distributed programming model

Maintenance and tasking model
to support experiments

