
1

Distributed Interactive Applications

Diego Montenegro Andrew Park Bobby Vellanki

2

What is a Distributed Interactive
Application (DIA)?

“A DIA allows a group of users connected via a network
to interact synchronously with a shared application state.”

“DIS is the name of a family of protocols used to exchange
information about a virtual environment among hosts in a
distributed system that are simulating the behavior of objects
in that environment. It was developed by the US department
of defense to implement systems for military training,
rehearsal, and other purposes.”

3

Secure

Scalable

Consistent

Robust

Real-Time

Available

Properties of the Black Box

?

4

Consistency
Every entity must have the same view of the global state as
every other entity in the entire network

Scalability
An increase in users does not affect the efficiency of the
network

Security
No node can have advantage over another node

5

Robustness
A failure of any participant has no effect on any other
participant

Availability
The network is perpetually accessible

Real-Time
Processes are delivered no later than the time needed for
effective control

6

Secure

Scalable

Consistent

Robust

Real-Time

Available

Properties of the Black Box

?

7

Consistency

Bucket Synchronization

• Dead Reckoning

• Algorithms

8

Bucket Synchronization Mechanism

•All calculations are delayed until the end of each
cycle
• The bucket cycles are typically 100ms (bucket
frequency)
• Bucket frequency is set as a constant value which is
equal to the rate that a human vision perceives smooth
motion.

9

Consistency

• Bucket Synchronization

Dead Reckoning

• Algorithms

10

Dead Reckoning
What is Dead Reckoning?

• If a packet is lost or received too late, dead
reckoning is used to estimate the “most probable”
state or position of the object.

• The success of Dead Reckoning is based on the
intelligence of the algorithm design

• There is inconsistency between the actual and
expected states.

11

Dead Reckoning
Why is Dead reckoning needed?

Example for Delay-Induced Inconsistency

12

Dead Reckoning
Immediate Convergence vs Time-Phased Convergence

Convergence with Updated Location

13

Dead Reckoning
Linear Convergence vs Curve-Fitting Convergence

Convergence with Predicted Location

14

Consistency

• Bucket Synchronization

• Dead Reckoning

Algorithms

15

Dead Reckoning Algorithms

1. Simple scheme - Use previous packet

2. Function of the previous packet’s position,
velocity of the object, and the elapsed time.

3. Extrapolation

4. Pre-Reckoning

• Compatibility with Bucket Synchronization

16

Secure

Scalable

Consistent

Robust

Real-Time

Available

Properties of the Black Box

?

17

Scalability
Centralized vs. Distributed

18

Centralized
Pros:
• Simplified administration
• Ease of maintenance
• Ease of locating resources

Cons:
• Difficult to scale
• High cost of ownership
• Little or no redundancy
• Single point of failure

19

Distributed
Pros:
• Highly extensible and scalable
• Highly fault tolerant
• Dynamic addition of new resources

Cons:
• Difficulty in synchronizing data and state
• Scalability overhead can be large
• Extremely difficult to manage all resources

20

Secure

Scalable

Consistent

Robust

Real-Time

Available

Properties of the Black Box

?

21

Security

• Distributed applications are more prone to cheating
than centralized due to the fact that there is no
authority supervising the actions of the users

• Security bears a trade-off of efficiency vs. fairness

22

Cheating

• Suppress-correct cheat :
Host gains advantage by purposefully
dropping update messages.

• Look ahead cheat :
Players makes decision after receiving all
updates from participating players.

23

Cheating Solutions
A) Lockstep Protocol : No host receives the state of

another host before the game rules permit

1. Player decides but does not announce its turn
t + 1

2. Each player announces a Cryptographically
secure one-way hash of its decision as a
commitment.

3. After all players have announced their
commitments, players reveal their decisions.

4. Each host can verify revealed decisions by
comparing hashes.

24

Cheating Solutions
B) Asynchronous Synchronization : Relaxes the

requirements of lockstep synchronization by
decentralizing the game clock

1. Player determines its decision for the turn and
announces the commitment of the decision to
all players.

2. Commitments that are one frame past the last
revealed frame of a remote player are
accepted.

3. Before revealing its commitment, the local
player must determine which remote players it
is waiting for.

25

Cheating Solutions
B) Asynchronous Synchronization Continued :

4. A remote player is not in the wait state only if
there is no intersection with the SOI dilated
from the last revealed frame of the remote
player.

5. The SOI is calculated using the base radius of
the last known position plus a delta radius.

26

B) Asynchronous Synchronization Continued :
6. Finally, if no remote hosts are in the wait

state, the local host reveals its state turn for
turn t, updates its local entity model of each
other player with their last known state,
including the remote hosts last known time
frame and advances to the next turn.

Cheating Solutions

27

C) AS with Packet Loss: players can skip missing
packets and accept new, out-of-order packets from
other players when the missing packets represent state
outside a SOI intersection. Missing packets that
represent intersection of SOI cannot be dropped or
skipped.

AS represents a performance advantage over lockstep,
rather than contact every player every turn, players need
only contact players that have SOI intersection.

Downside of all previous protocols:
• Performance Penalty: All nodes must slow down to

the speed of the slowest user.

Cheating Solutions

28

Secure

Scalable

Consistent

Robust

Real-Time

Available

Properties of the Black Box

?

29

Robustness
- Users can join or leave the network at any time, without
having any negative effects on other nodes.

- A failure of any participant has no affect on any other
participant.

- Participants joining an ongoing session have missed the
data that has previously been exchanged by the other
session member.

What to do? Late Join Algorithms

30

Late Join Algorithms
• Necessary algorithms to distribute the current state of the
session to new users.

• Two Approaches: Transport protocol. Application based

Transport Protocol: Request ALL previous session
information (rollback)

Pros:
•Robust
•Application Independent

Cons:
• Inefficient
• The state of some applications can’t be
reconstructed. (Networked action games)

31

Late Join (cont.)
Application based: The late join algorithm varies by the

type of application. (e.g.- networked games vs.
whiteboard)

• Efficient – Only need the current state of the
session

• Lack of reusability

Setup for Late Join:
1. New node must determine the priority of the

subcomponents of the state (e.g. – You want to
transfer the most recent page for a whiteboard)

2. New node (client) needs to select one or more of the
existing nodes as a server.

3. Information must be transmitted to the new node.

32

Late Join (cont.)

• Late join policy differs based on the application

• Different proposed policies:
1. No late join
2. Immediate late join
3. Event-triggered late join
4. Network-capacity-oriented

33

Late Join (cont.)
Distribution of Data:

1. One network group (base group) – Broadcast the
state to the whole group. Unnecessary packets get
sent to existing nodes. (Beneficial if the ratio of late
joins to the existing users is very high)

2. Two network groups – All late join clients join the
client group.

3. Three network groups – In addition to the two
network groups, the late join servers form an
additional multicast group.

Problems:
Who should be selected to act as a server??

34

Secure

Scalable

Consistent

Robust

Real-Time

Available

Properties of the Black Box

?

35

Availability
- Like robustness, no single point of failure will affect the
entire network.

- This is one of the major advantages over centralized
networks, where the failure of the server causes the entire
network to fail.

- If a node fails, it gets disconnected from the network,
but game/session continues with remaining nodes.

- After N packets of a failed node are not received, other
nodes determine that this node got disconnected, and
stops using dead reckoning on its messages.

36

Secure

Scalable

Consistent

Robust

Real-Time

Available

Properties of the Black Box

?

37

Real-Time
Age of Empire study:

• 250 milliseconds of command latency was not noticeable

• Between 250 to 500 msec was playable

• People develop a 'game pace' or mental expectation. Users
would rather have a constant 500msec command delay rather
than one that alternates between fast and slow.

• In excited moments users would repeat commands which
would cause huge spikes in the network demand so a simple
filter was placed to prevent reissuing of commands

38

Multicast
• Multicast is a flooding algorithm

• Distributed applications use multicast to propagate a
message to all nodes in the network

• Multicast was only used in a low percentage of the
routers

• Manufactures were reluctant to change to multicast
enabled equipment because it is rarely used but it
maximizes utilization of bandwidth.

• Applications: Video/audio transmission, whiteboard

39

Multicast can happen in many ways

1-many
♦multicast file transport
♦delivery of lecture

Many-many
♦teleconference
♦distributed game

40

Interactive gaming
common requirements:
♦ low latency (200 ms end-

end)
♦ loss tolerant
♦ potentially large scale
♦ many-many, most

“players both send and
receive

♦ group structure (e.g.,
locality in
communication) among

l

applications:
♦distributed interactive
simulation
♦virtual reality
♦distributed multi-player
games

41

MBONE

♦Immediate solution to Multicasting

♦Loose confederation of sites that currently implement IP
multicast.

♦Allows multiple packets to travel through routers that are
setup to handle only unicast traffic.

♦Will be obsolete when all routers implement multicasting

42

MiMaze
• MiMaze is a distributed
3-D Pacman game that uses
an unreliable communication
system which is based on
RTP over UDP/IP multicast.

• Not fully distributed, since
a server is used to get the
state of the game when new
players join ongoing
sessions and to do session
management in general.

43

MiMaze

DIS Characteristics that apply to MiMaze:
- Interaction delay: any action issued by any participant
must reach, be processed and be displayed to any other
participant within the shortest possible delay.

- Participants can join and leave a MiMaze session
dynamically.

- The system architecture is distributed.

44

MiMaze
General Characteristics of MiMaze:
-To minimize network traffic, MiMaze uses only one type
of packet, which is called ADU (Application Data Unit).

- ADU’s are similar to DIS’s ESPDU (Entity State PDU).
They are 52 bytes long, 8 bytes for RTP header, 8 bytes
for UDP header, 20 bytes for the IP header and 16 bytes
for MiMaze application payload.

- ADU’s contain a description of the local state of an
Avatar (game objects), consisting of the local position in
the game and the displacement vector of the avatar and of
the projectile emitted by the avatar.

45

MiMaze
- ADU transmission frequency is 25 times per second,
enough to obtain real-time visualization.
- Consistency is assured using Bucket Synchronization :

• Time is divided into fixed length periods and a
bucket is associated with each of period.
• All ADU’s received by a player that were issued by
senders during a given period are stored by the
receiver in the bucket corresponding to that interval.
• At the end of every interval, all ADUs in that
bucket are used by the entity to compute its local
view of the global state.
• Buckets are computed 100 ms after the end of the
sampling period during which ADUs have been
issued.

46

MiMaze
-When an ADU is received with a transmission delay
which is more than 100 ms, its destination bucket has
already been computed. But the late ADU is still stored
in this bucket. It will be used by the Dead Reckoning
algorithm to eventually replace a missing ADU.

- Dead Reckoning Algorithm used is the simplest one:
Use the previous ADU received from the missing
source.

- Not very efficient, but studies show that this does
not affect the view of the game dramatically.
- Better algorithms can be implemented, but the
authors were not concerned about this issue.

47

MiMaze
- Global clock mechanism: Bucket synchronization uses
a global clock system to evaluate the delay between
participating entities.
- NTP (Network Time Protocol) was chosen, but it has 3
difficulties:

- There are 3 levels of NTP servers and it is very
difficult to maintain good synchronization among
participants when level 3 servers are involved.
- NTP encodes clock information in 64 bits, while
RTP uses a 32-bit clock. MiMaze has to manipulate
both representations.
- NTP does not provide a reference clock signal and
each participant has to compute an offset for every
other participant in a game session.

48

MiMaze
-Future Work:

- Better dead reckoning algorithm should be
implemented to improve calculation of missing
packets.
- Some work has to be done to prevent cheating, since
this system can be easily fooled.

- Purpose of this design is not to fulfill every question in
the field, but to show that with a multicast communication
architecture and with a simple synchronization
mechanism, a “fully” distributed interactive application
can provide an acceptable level of consistency to DIAs on
the internet.

- Play MiMaze: http://www.inria.fr/rodeo/MiMaze

49

Age of Empires
Early Goal (1996) :

• 8 players in multi-player mode with 16Mb Pentium 90
at approximately 15fps

• Story consisted of devastating a Greek city with
catapults, archers, and warriors on one side while it was
being besieged from the sea on the other

Early Attempt:

• Pass small sets of data about the units

• This attempt limited actions to only 250 moving units
at a time

50

Age of Empires
• Simultaneous Simulations: Rather than passing the status
of each unit in the game, run the exact same simulation on
each machine, passing each an identical set of commands
that were issued by the users at the same time.

• Problems still exist with network delay:

1. Sending out the player commands

2. Acknowledging all messages

3. Processing them before going on to the next turn

51

Age of Empires
• Turn Processing: A scheme designed to continue
processing the game while waiting for communications to
happen in the background

• Commands issued during turn 1000 would be scheduled
for execution during turn 1002. So on turn 1003,
commands that were issued on turn 1001 would be
executed.

52

Age of Empires
• Speed Control: Since the simulation must always have the
exact same input, the game can only run as fast as the
slowest machine can process the communications, render the
turn and send out new commands which would cause “lag”
to all the other computers.

Two reasons for “lag”:

1. Low machine performance

2. High internet latency

53

Age of Empires
• Each client calculated:

1. Frame rate that could be maintained consistently

2. Round-trip ping time from itself to the other clients
and an on-going average ping time

• At the end of each turn, the host would send out a new
frame rate and communications turn length to be used

54

Age of Empires
High internet latency with normal machine performance

Poor machine performance with normal internet latency

55

Age of Empires
• Complete turn process

• Security benefit: All users run
exact same simulation so
cheating is difficult. If any
simulation ran differently then
it was tagged as “out of sync”
and the users game stopped

• Hidden problem: It was
difficult to detect when things
were “out-of-sync”

56

Ages of Empire
Age of Empires 2 extra goals:

• Fully 3D with animation

• More than 8 players

Used RTS3 Communication Architecture with their own
layered architecture

Level 1 – Socks layer provide
the fundamental socket level
routines

57

Ages of Empire
Layer 2 – Link level offers
transport layer services such
as the Link, Listener, and
Network Address

Layer 3 – Multiplayer level
holds client information,
session information, time
sync, and shared data

Layer 4 – Game Communication level basically boils
down the game’s needs into a small easy-to-use
interface

58

Open Problems / Future
Work

• Cheating algorithms without sacrificing speed

• Accurate and optimal Dead Reckoning algorithms

• Minimizing scalability overhead

• Administration and maintenance such as costs and
resources

59

Distributed Instant Messaging
• IM systems deliver messages, as the name implies, instantly,
i.e., messages are sent directly to the recipient without any
intermediate storage and thus allow for real-time
communication.

• Current IM Systems rely on architectures that include
central, or only partly distributed servers. Although some
systems can exchange messages peer-to-peer, the user
registration and lookup are still based on a centralized solution.

60

Distributed Instant Messaging
• Although some of the mentioned applications, like Jabber and
IRC (DCC) have some of the desired characteristics, they all
suffer from a single point of failure where a malfunction will
close the service, either by making it impossible to find clients
or deliver messages.

• Peer-to-peer systems provide powerful platforms for a variety
of decentralized services, such as network storage and content
distribution.

• Today, we show 1 design:

• DIMA based on PASTRY and SCAN

61

DIMA based on PASTRY
• Pastry is a generic peer-to-peer object location and routing
substrate. It is a scalable, decentralized and self-organizing
overlay network that automatically adapts to arrival, departure
and failure of nodes.

• Pastry Node: Each node joining the pastry overlay network is
assigned a random 128-bit node identifier.

• Each node maintains a routing table which is organized into
log16N rows with 15 columns, where N is the number of nodes.
Associated with each entry is the IP address of the closest node
that have the appropriate prefix.

• Additional to the routing table, each node maintains a leaf set
It contains IP-addresses of the L/2 numerically closest larger
nodeIds and the L/2 closest smaller nodeIds.

62

DIMA based on PASTRY
• A new node joining the overlay network has to initialize its
state tables and then inform the others of its presence.

• As nodes may fail or depart without warning, neighboring
nodes in the key space periodically exchange keep-alive
messages.

• The proposed DIMA uses Pastry for node insertion and
message routing. It uses SCAN (Searching in Content
Addressable Networks) to identify the nodes holding the most
relevant information.

• In SCAN, a Pastry key does not correspond to one physical
host, but to a piece of content on a host.

63

DIMA based on PASTRY
• Keywords are encoded using the ASCII table, into a set of
Pastry keys for nodeIds. A salt is added at the end of the pastry
key to make sure that similar/equal keywords do not generate
the same Pastry key. This method of key generation, builds a
pastry network structured according to meta-data keywords.

• To implement “Buddy Searching”, user info is used as the
meta-data to put into the pastry network (like e-mail, nick, age,
etc).

• Using SCAN, we can search for this information and retrieve
a UID in form of a Pastry key (or IP Address) to use for the
communication channel.

64

DIMA based on PASTRY

- Buddy lists are stored on the user machine

