
Protecting the Infrastructure

Diego Montenegro           Andrew Park             Bobby Vellanki



Protecting the Infrastructure

• Problems

- Denial of Service (DoS)

• Black Box Properties

• Solutions : 

- Reactive : IP traceback

- Proactive : SoS

• Open Problems



Protecting the Infrastructure

• 1991 – 1994 had 298% increase in the number of computer 
intrusions and a 702% increase in the number of sites affected.

• US Laws against new types of computer crime can either be 
analogized to traditional crimes or new specific laws can be 
created

• The “Computer Fraud and Abuse Act” was enacted in 1984 and 
revised in 1994

• Onel de Guzman, suspected author of the “Love Bug” virus 
(May 2000), was never prosecuted because virus dissemination 
was not then a crime in the Philippines



Protecting the Infrastructure

0

5000

10000

15000

20000

25000

'88 '89 '90 '91 '92 '93 '94 '95 '96 '97 '98 '99 '00

Year

In
ci

de
nt

s

0

100

200

300

400

500

600

700

800

900

Vu
ln

er
ab

ili
tie

s

Computer Emergency 
Response Team (CERT) 
Notices www.cert.org

Computer Emergency 
Response Team (CERT) 
Notices www.cert.org

INCIDENTS

VULNERABILITIES



Protecting the Infrastructure

Moonlight Maze (March 1998) – Suspected Russian intelligence 
stole secret information from NASA, the Pentagon, and other 
government agencies
(USA Today Electronic News, 10 Oct 2001)                        
“For 3 ½ years, a shadowy group of computer hackers has broken into 
hundreds of computer networks and stolen thousands of top-secret files 
on Pentagon war-planning systems and NASA technical research. 
Dubbed the "Moonlight Maze" group, the hackers continue to elude the 
FBI, the CIA and the National Security Agency, despite the biggest 
cyber probe ever. And while no one knows what is being done with the 
classified information, some fear the thefts may be the work of terrorists 
or that the information could be sold to terrorists.”



Denial of Service Attacks

“An explicit attempt by attackers to prevent legitimate users of a 
service from using that service” (CERT)

There are three basic types of DoS attacks:

1. Consumption of scarce, limited, or non-renewable resources

2. Destruction or alteration of configuration information

3. Physical destruction or alteration of network components



Consumption of Scarce Resources

Basic ways to consume resources:

• Network Connectivity

• Using ones own resources against them

• Bandwidth Consumption

• Consumption of Other Resources



Consumption of Scarce Resources

Network Connectivity: Prevent hosts or networks from 
communicating on the network.

“SYN flood” – The attacker establishes “half-opened”
connections causing a denial of legitimate connections

Client Server 

SYN--------------------> 

<--------------------SYN-ACK 

ACK--------------------> 

Victim will wait for ACK

Attacker would use IP spoofing

No general solution but likelihood 
of an attack can be decreased by 
using filters

Blaster Worm – windowsupdate.com



Consumption of Scarce Resources

Using own resources against them: When a connection is 
established between two UDP services, each of which 
produces output, then these two services can produce a 
very high number of packets

UDP Packet Storm – By connecting a host's chargen
service to the echo service on the same or another 
machine, all affected machines may be effectively taken 
out of service because of the excessively high number of 
packets produced

Solution – Remove chargen and echo services



Consumption of Scarce Resources

Bandwidth Consumption: An attacker can consume all the 
available bandwidth on ones network by generating a large 
number of packets directed to their network

Typically, these packets are ICMP ECHO packets but in 
principle they may be anything

The attacker does not need to be operating from a single 
machine; he may be able to coordinate several machines 
on different networks to achieve the same effect



Consumption of Scarce Resources

Consumption of other resources:

• Many systems have a limited number of data structures 
available to hold process information. An attacker can 
implant a simple program that just makes copies of itself

• Consuming disk space by generating excessive numbers 
of mail messages, intentionally generating errors that must 
be logged, placing files in network shares

• Using “lockout”



Other DoS Attacks

Destruction of configuration information - An intruder may be 
able to alter or destroy configuration information that 
prevents you from using your computer or network.  
Some examples include Windows registry alteration or 
changing routing information in routers

Physical Destruction or Alteration of Network Components 
– Physically damaging hardware components



Automation

DoS attacks are becoming automated:

• Central source propagation

• Back-chaining propagation

• Autonomous propagation

Worms create copies of themselves by spreading out onto other 
machines on the network and implanting viruses that harm each 
machine that the occupy



Automation

Central source propagation – Scripts copy code from a centralized 
location to the victims system first then sends the worm onto the 
next victim

1i0n worm



Automation

Back-chaining propagation – The worm is copied from the 
previous host and repeated.  This method is more survivable 
because there is no single point of failure

Ramen worm



Automation

Autonomous propagation – Similar to the previous method but the 
steps of exploiting the victim and copying of the code is done in 
one step as to avoid file retrieval

Code Red and Morris worm of 1988



Buffer Overflow Problem

void function(char *str)  int main() {                                             
char buffer[16];                    char *str = “I am greater than 16 bytes”; 
strcpy(buffer,str); }               function(str); }

The extra bytes run past the buffer and overwrites the space  
allocated for the FP, return address and so on.  Thus, the flow of    
the program can be modified to move to an undesirable location



Code Red (CRv1 and CRv2)

• Code Red Version1 (July 12 2001)

-Exploited a buffer overflow problem with Microsoft’s IIS 
webservers

- Generates a random list of IP addresses for future victims but 
the seed was static so all infected computers used the same list

- Launch a DoS attack against www.whitehouse.gov

- Resides in memory so simply restarting the computer was 
enough to disinfect it but was likely to be re-infected because 
of the same IP address list being created

- Spread slowly and did minor damage



Code Red (CRv1 and CRv2)

• Code Red Version2 (July 19 2001)

- All computers that did not use Code Red v1 patch where 
potential victims 

-Very similar to CRv1 with the slight modification of creating 
a random list of IP addresses

- Infected more than 359,000 computers in approximately 
fourteen hours and 43% of the infected hosts were in the US

- Routers, switches, DSL modems, printers, and other devices 
would crash or reboot when an infected machine attempted to 
send them a copy of the worm



Spread of Code Red v2

Lost productivity (~$1.5billion)

Picture was removed



Black Box Properties

?Inputs Output

•Vulnerable networks

•Unfiltered data packets

•Secure network

•Filtered data packets



Black Box Properties

?

• Reliable

• Time-Efficient

• Cost-Efficient

• Robust

• Scalable

• Secure



IP Traceback

• DOS attacks consume resources of remote hosts or networks

• No way to tell if a packet is forged

• Tough to trace packet back to source (no state)

• No entity is responsible to ensure correct source address in IP protocol

• Tradeoff: routing vs. tracking



IP Traceback

Assumptions/Properties:

• Packets may be addressed to more than one physical host

• Duplicate packets may exist in the network

• Routers may be subverted

• Attackers are aware they are being traced

• Packet size should not grow as a result of tracing

• End hosts may be resource constrained

• Traceback is an infrequent operation



IP Traceback

Approaches:

1. Ingress Filtering

2. Link Testing

• Input Debugging

• Controlled Flooding

3. Logging

4. ICMP traceback

5. Packet Marking

• Some store the state and perform computations at the end hosts while 
others use resources only within the network.



IP Traceback

1. Ingress Filtering

• Configure routers to block packets that arrive from illegitimate source 
addresses

• Requires routers to examine the source address of every packet

• All routers must participate (dependent upon peers)

• Potential overhead

• No protection on transit networks

• Attackers may forge source addresses

• Summary: Improves Internet’s robustness to DOS attacks but not 
foolproof

• Most routers employ this technique



IP Traceback

2. Link Testing

• Start with closest routers and interactively test upstream routers

• Assumes attackers are still active

a. Input Debugging

• Allows an operator to determine which incoming port the packet 
arrived on by filtering packets

• Victim develops attack signature and the operator installs the 
debugging filter on the upstream egress port. (repeated 
recursively)

• Reveals which upstream router originated traffic 

• Cons: Lots of overhead and ISP’s don’t have any economic 
incentive. Requires support from network operators.



IP Traceback

b. Controlled Flooding

• Doesn’t require network operators

• Tests links by flooding routers and observing how this effects the 
attacks.

• Flood upstream routers and loaded links will drop packets.

• Cons:

• It is a DOS itself

• Requires knowledge of the network topology

• Doesn’t work for distributed DOS



IP Traceback

3. Logging

• Log packets at routers and use datamining techniques to find path

• An attack graph is constructed from a set of attack paths

• Able to trace path even after the attacks have stopped

• Cons:

• Requires a lot of resources

• Database integration between providers (no incentive)

• May have false graphs if routers are subverted

• No commercial organizations use this approach



IP Traceback

4. ICMP Traceback 

• Similar to Packet Marking

• Every router copies a sample packet (1/20,000) and adjacent router 
info. into a special ICMP Traceback messages.

• Victim can use these messages to reconstruct the path

• Assumes “many” packets are sent

• Cons:

• Requires input debugging (not available in all routers)

• Requires key distribution to prevent false messages

• Relies on input debugging capability (not available on all routers)



IP Traceback

5.  Packet Marking:

• Can be used after the attacker “leaves”

• Consists of two parts: Marking Procedure and Path 
Reconstruction Procedure

• Assumes there are thousands or millions of packets

• Assume it is rare for packets to follow different paths in a short period

Packet Marking Algorithms:
A. Node Append
B. Node Sampling
C. Edge Sampling



IP Traceback

A.   Node Append

• Append each node’s address at the end of the packet

Pros:

• Simple, robust and easy to converge

Cons:

• High overhead of appending data

• May not have sufficient space in the packet

• Leads to fragmentation

• Easily forgeable



IP Traceback

B.  Node Sampling

• Sample one node at a time instead of the whole path (“node” field)

• Each router writes its address with probablity p

• The victim will have received at least one sample from each router 
(assume large number of packets)

• Construct the router order

• If p > 0.5, it will be robust against single attacker. (No way for the 
attacker to insert “false” router by contributing more samples than the 
downstream router)



IP Traceback

B.   Node Sampling (cont.)

Cons:

• Getting total router order is a slow process (e.g. if d=15 and 
p=.51, receiver needs 42,000 packets on avg.)

• Routers far away from the victim contribute small samples 
(especially if p is high)

• Not robust against multiple attackers. (If both attackers are at the 
same distance away, they will both be sampled with the same 
probability)



IP Traceback

C.  Edge Sampling 

• Encode edges instead of individual nodes

• Two address fields (start, end) and a distance field

• Each router writes it’s address with a probability of p

• If a router decides to mark a packet, it writes down its own address in 
the start field with dist = 0. If the dist = 0 already, write its address in 
the end field. 

• If a router decides not to mark the packet, it will increment distance 
by 1.

• Optimal P: p<=1/d



IP Traceback



IP Traceback

Single Packet Traceback

• Most attacks (DOS) assume there are large number of packets

• Routers and Operating Systems can be disabled by a single packet
attack. (e.g. the Teardrop attack crashes MS windows with 1 packet)

• Not possible to determine the attacker of a single packet given the 
previous algorithms.

• Possible Solution: SPIE (Source Path Isolation Engine)



IP Traceback

SPIE

• Uses auditing techniques to support traceback of individual packets

• Stores the packet digests

• Reduced storage requirements

• Preserves traffic confidentiality

• Packet content used as input must uniquely represent an IP 
packet

• Must be collision-free

• 24 invariant bytes of the packet (16-IP header, 8-payload)



IP Traceback



IP Traceback

SPIE

• Packet auditing, query processing and attack graph generation are 
dispersed among separate components

• SPIE-enhanced routers maintain a cache of packet digests. If a 
packet is determined to be offensive, SPIE queries routers for packet 
digests. The query results are used to simulate reverse-path flooding 
algorithm to build an attack graph.

• Each router has a DGA (Data Generation Agent)



IP Traceback



IP Traceback

Conclusions

• Most of these algorithms are useless unless all the routers participate

• Attack path must be found in a timely fashion

• Storing state vs. Testing upstream



SOS: Secure Overlay Services

Protecting Against DoS attacks:

- Reactive: Wait for an attack to be launched before 
taking appropriate measures to protect the network.

- ProActive: Eliminate all possibility of becoming a 
target by aggressively filtering and blocking all 
incoming packets whose source addresses are not 
“approved”.



SOS: Secure Overlay Services

Why not Reactive?
- Methods that filter traffic by looking for known attack patterns or 
statistical anomalies in traffic patterns can be defeated by changing 
the attack pattern and masking the anomalies that are sought by the 
filter.

- Since the Internet spans multiple administrative domains and legal 
jurisdictions, it is very difficult to shut down an attack by contacting 
the administrator or the authorities closest to the source.

- Even if possible, it is often the case that the source of the attack is 
not the real culprit but simply a node that has been remotely 
subverted by a cracker.



SOS: General Info

- Geared toward supporting Emergency Services or similar Types 
of communication.

- Architecture is constructed using a combination of secure 
overlay tunneling, routing via consistent hashing and filtering.

- Addresses the problem of secure communication between a pre-
determined location and users located anywhere in the wide-area 
network, who have authorization to communicate with that 
location.

- Main focus is on sites that store information that is difficult to 
replicate due to security concerns or due to its dynamic nature.



SOS: Main Principles

The two Main Principles behind the design are:

1- Elimination of communication “pinch” points, via 
combination of filtering and overlay routing to obscure 
the identities of the site whose traffic is permitted to 
pass through the filter.

2- The ability to recover from random or induced 
failures within the forwarding infrastructure or within 
the secure overlay nodes.



SOS: Architecture

SOS is a network overlay, composed of nodes that 
communicate with one another atop the underlying 
network substrate. These are known to the public and 
in consequence, to the attackers.

The Basic SOS 
Architecture



SOS: Filtering

Knowledge of the target IP allows an attacker to bomb the 
target location with packets.

To prevent this, a filter can be constructed that drops 
illegitimate packets at some point in the network.

For this protocol, it is assumed that the filter can be 
constructed so that attackers do not have access to routers 
inside the filtered region.



SOS: Filtering

Legitimate users can reach the target by setting the filter 
around the target to permit only those IP addresses that 
contain legitimate users. There are 2 problems with this:

Legitimate user moves, changes IP or ceases to be 
legitimate

Illegitimate user spoofs the source address of its 
transmissions to be that of a known legitimate user.

Solution:

• Target selects a Subset of nodes Ns to act as Forwarding 
Proxies.



SOS: Filtering

Filter is set to allow packets only from overlay nodes n Є Ns.

An attacker with knowledge of the Proxies IP's can still launch 
2 forms of attacks:

Attack the target by spoofing the Proxy's IP address.

Attack the Proxy itself, to cut off communication.

Solution: Hide the identities of the Proxies. These hidden 
proxies are known as Secret Servlets.



SOS: Reaching the Servlets

To activate a Secret Servlet, the target sends a message to an 
overlay node that it chooses, informing it of its task.

The dynamic nature and the high level connectivity that exists 
when routing atop a network overlay, allows to construct a 
routing mechanism that will route to a destination, while 
utilizing minimal amount of information about the identity of the 
destination.



SOS: Reaching the Servlets

This is used to complicate the job of an attacker by making it 
more difficult to determine the path taken within the overlay to a 
secret servlet.

In addition, it is easy to recover from a breach in 
communication due to attacks that shut down a subset of overlay 
nodes.



SOS: Connecting to the Overlay

Not all legitimate users reside at nodes that participate in 
SOS.

A SOAP (Secure Overlay Access Point) is a node that will 
receive packets that have not yet been verified as legitimate 
and perform the verification.

IPsec is used for this task, because it supports secure 
exchange of packets by encrypting both the header and the 
payload of the packet.



SOS: Connecting to the Overlay

Having a large number of overlay nodes to act as SOAPs
increases the bandwidth resources that an attacker must 
obtain to prevent legitimate traffic from accessing the 
overlay.

SOS becomes a large distributed firewall that discriminates 
between authorized and unauthorized traffic.



SOS: Routing through the 
Overlay

Having each overlay participant select the next node at random 
is sufficient to eventually reach a Secret Servlet. However, this 
is very inefficient; the expected number of intermediate nodes 
being contacted is O(N/Ns).

The paper proposes a routing algorithm based on the Chord 
Service, in which, with only one additional node knowing the 
identity of the Secret Servlet, the route from a SOAP to the
Servlet has an expected path length of O(log N).



SOS: Routing through the 
Overlay

Chord is a Peer-to-Peer lookup service that uses hashing to 
map an arbitrary identifier to a unique destination. Each 
overlay node maintains a list that contains O(log N) identities 
of other nodes. 

Given the destination identifier, each node knows how to 
choose a member in its list such that, from an arbitrarily 
chosen starting node, the destination node to which the 
identifier hashes is reached in O(log N) overlay hops.



SOS: Routing through the 
Overlay

In SOS, the identifier used is the IP address of the target. 
Thus, Chord can be used to direct a packet from any node in 
the overlay to the node that the identifier is mapped to. This 
node to which Chord delivers the packet is not the target, nor is 
it necessarily the Servlet. This node is called the beacon.

When a packet is approved by a SOAP for forwarding over 
the overlay, the hash on the IP address of the target is used as
the key.

The last step is to reveal the Secret Servlet's identity to the 
beacon. This is achieved also using Chord.



SOS: Routing through the 
Overlay

By providing only the beacon with the identity of the secret
servlet, the packet can be delivered  from any SOAP to the 
target, by travelling across the overlay to the beacon, to the 
secret servlet and finally to the target.



SOS: Redundancy

Having a single SOAP, beacon or Secret Servlet weakens the 
SOS architecture, in that a successful attack on any one of 
these nodes can prevent legitimate traffic from reaching the 
target. Fortunately each component is easily replicated and 
furthermore, an attack to any of these components, after 
found, can be easily repaired. 



SOS: Robustness

Why is this robust against DoS Attacks?

1. If any access point is attacked, the confirmed source point can
simply choose an alternate access point to enter the overlay.

2. If a node within the overlay is attacked, the node simply exits
the overlay and the Chord service self-heals, providing new paths 
over the re-formed overlay to beacons.

3. If a Secret Servlet's identity is discovered and the servlet is 
targeted as an attack point, or attacks arrive at the target with the 
source IP address of some secret servlet, the target can choose an 
alternate set of secret servlets.



SOS: Performance



SOS: Implementation

The SOS architecture can be implemented using existing 
software and standardized protocols, making its adoption and 
eventual use, easier.
• Filtering: all high and medium range routers (price and 
performance), as well as most OS, offer some high-speed 
packet classification scheme that can be used to implement 
the the target perimeter filtering.
• Authentication and Authorization: practically all 
commercial and free OS include an implementation of IPsec.



SOS: Implementation

Tunneling: once traffic is inside the overlay, it must be routed 
towards the beacons. This can be accomplished using standard 
traffic tunneling techniques, like IP-in-IP encapsulation, GRE 
encapsulation or IPsec in tunneling mode. The routing decisions 
inside the overlay are based on a Chord-like mechanism.



SOS: Discussion

There are still some open problems to be discussed in SOS, 
like:
• Attacks from inside the overlay: the paper assumes that no 
malicious user can successfully bypass the protection 
perimeter. What happens if it is possible, due to security 
management oversights or development bugs?
• Scalability: The architecture presented allows communication 
from a single confirmed source point to a single target. What 
are the problems that arise when trying to scale the protocol to
handle numerous confirmed source points transmitting to 
multiple targets?



SOS: Discussion

Timely Delivery: To achieve security, SOS forces traffic 
through a series of overlay points that perform different tasks.
The latency that occurs is far from minimal (10 times larger 
than direct communication). Can we create “shortcuts” that do 
not compromise security and allow timely delivery?


