
Sensor Database: Querying
Sensor Networks

Yinghua Wu, Haiyong Xie

The Black Box

Sensor
Networks

Queries

Results

Desirable Properties:
Good query interface
Power efficiency, long lifetime
Scalability
Adaptivity
Low response time (high throughput)

Outline

Background and motivation
Acquisitional query optimization
Continuously adaptive continuous query
optimization
Summary
Future work

Sensor Networks
Small computers with:

Radios
Sensing hardware
Batteries

Remote deployments
Long lived
10s, 100s, or 1000s

Battery Pack

Smart Sensor, aka “Mote”

Mica Motes

4Mhz, 8 bit Atmel RISC uProc

40 kbit Radio

4 K RAM, 128 K Program
Flash, 512 K Data Flash

AA battery pack

Based on TinyOS

Sensor Net Sample Apps

Traditional monitoring
apparatus.

Earthquake monitoring in shake-
test sites.

Vehicle detection: sensors along a
road, collect data about passing
vehicles.

Habitat Monitoring: Storm
petrels on Great Duck Island,
microclimates on James
Reserve.

Sensor Database

Sensors table is an unbounded, continuous
data stream

Sensors viewed as a single table
Columns are sensor data
Rows are individual sensors

Query processor-like interface
SQL-like queries in the form of SELECT-FROM-
WHERE

Operations such as sort and symmetric join
are not allowed on streams, however, they
are allowed on bounded subsets of the
stream (windows)

Query Examples

Example:
SELECT nodeid, nestNo, light
FROM sensors
WHERE light > 400
EPOCH DURATION 1s

2

1

2

1

NodeidNodeid

405251

422171

389250

455170

LightLightnestNonestNoEpochEpoch
Sensors

“Find the sensors in bright
nests.”

……

Query Examples – cont’d

3

3

3

3

CNT(…)

520

370

520

360

AVG(…)

South0

North1

South1

North

region

0

Epoch

“Count the number occupied
nests in each loud region of
the island.”

SELECT region, CNT(occupied)
AVG(sound)

FROM sensors
GROUP BY region
HAVING AVG(sound) > 200
EPOCH DURATION 10s

Regions w/ AVG(sound) > 200

SELECT AVG(sound)

FROM sensors

EPOCH DURATION 10s

Continuous Query
“Monitoring” queries look for recent events in
data streams; We confine our view to queries
over ‘recent-history’

Only tuples currently entering the system
Stored in in-memory data tables for time-windowed joins
between streams

Long running, “standing queries”, similar to
trigger systems
Installed; continuously produce results until
removed

Continuous Query - cont’d
Closed world assumption does not hold

Could generate an infinite number of samples

Traditional system: data is provided a priori

Lots of queries, over the same data sources
In-network processing
Opportunity for work sharing!
Global query optimization problem (hard)
finding an optimal plan (adaptively)

Where are the problems?

Radio consumes as much power as the
CPU
Transmitting one bit of data consumes
as much energy as 1000 CPU
instructions!
Message overhead
Sensing takes significant energy

Goals

Provide a query processor-like interface
to sensor networks
Use some techniques to reduce power
consumption compared to traditional
passive systems

Outline

Background and motivation
Acquisitional query optimization
Continuously adaptive continuous query
optimization
Summary
Future work

Acquisitional Query Processing

Provide a query processor-like interface to
sensor networks
Use Acquisitional techniques to reduce power
consumption compared to traditional passive
systems

Acquisitional Query Processing
Traditional DBMS: processes data already in the
system
Acquisitional DBMS: generates the data in the system

An Acquisitional query processor controls
When should samples for a particular query be taken?
What sensor nodes have data relevant to a particular query?
And with what frequency data is collected

Versus traditional systems where data is provided
ahead

What’s the big deal? (revisit)
Radio consumes as much power as the CPU
Transmitting one bit of data consumes as
much energy as 1000 CPU instructions!
Message sizes in TinyDB are by default 48
bytes
Sensing takes significant energy

Acquisitional Query Processing
Basic Acquisitional Processing

Basic Language Features
Event-based Query and Lifetime-Based Query

Power-aware Optimization
Ordering Sampling and Predicates

Power-sensitive Dissemination
Semantic Routing Trees

Processing Queries
Prioritizing Data Delivery
Adapting Rates and Power Consumption

Basic Language Features
SQL-like queries in the form of SELECT-
FROM-WHERE
Support for selection, join, projection, and
aggregation
Also support for sampling, windowing, and
sub-queries
Not mentioned is the ability to log data and
actuate physical hardware

Basic Language Features
Example:”Find the sensors in bright rooms”

SELECT nodeid, light, temp
FROM sensors
WHERE light > 400
SAMPLE INTERVAL 1s FOR 10s

Queries posed from PC, distributed and executed in-
network
Sensors viewed as a single table
Columns are sensor data
Rows are individual sensors

Queries as a Stream

Sensors table is an unbounded, continuous
data stream
Operations such as sort and symmetric join
are not allowed on streams
They are allowed on bounded subsets of the
stream (windows)

Windows
Windows in TinyDB are fixed-size materialization points
Materialization points can be used in queries

Example: “output a stream of counts indicating the number of
recent light readings that were brighter than the current
readings”
CREATE

STORAGE POINT recentlight SIZE 8
AS (SELECT nodeid, light FROM sensors
SAMPLE INTERVAL 10s)

SELECT COUNT(*)
FROM sensors AS s, recentlight AS r1
WHERE r.nodeid = s.nodeid
AND s.light < r1.light
SAMPLE INTERVAL 10s

Temporal Aggregation
Temporal Aggregation aggregates sensors values
across multiple consecutive epochs from the same or
different nodes
Temporal Aggregation take two extra arguments:
window_size, sliding_dist. For example, winavg(
window_size, sliding_dist, arg)

Example: “computes the 30-sample running average
of light sensor readings”

SELECT WINAVG(30s, 5s, light)
FROM sensors
SAMPLE INTERVAL 1s

*Receive only 6 results from each sensor instead of 30

Event-Based Queries
Events act as a mechanism for initiating data
collection
Events allow the system to be dormant until some
external conditions occur

Example: “report the average light and temperature level at
sensors near a bird nest where a bird has just been detected”
ON EVENT bird-detect(loc):

SELECT AVG(light), AVG(temp), event.loc
FROM sensors AS s
WHERE dist(s.loc, event.loc) < 10m
SAMPLE INTERVAL 2s FOR 30s

Lifetime-Based Queries
Lifetime is a much more intuitive way for
users to reason about power consumption
To satisfy a lifetime clause, TinyDB performs
lifetime estimation

T = ph / es
T: maximum transmission rate; ph: available power per hour; es:

the energy to collect and transmit one sample

Example: “the network should run for at least 30 days”
SELECT nodeid, accel
FROM sensors
LIFETIME 30 days

Acquisitional Query Processing
Basic Acquisitional Processing

Basic Language Features
Event-based Query and Lifetime-Based Query

Power-aware Optimization
Ordering Sampling and Predicates

Power-sensitive Dissemination
Semantic Routing Trees

Processing Queries
Prioritizing Data Delivery
Adapting Rates and Power Consumption

Optimization

Three phases to queries
Creation of query
Dissemination of query
Execution of query

TinyDB makes optimizations at each
step

Ordering of Sampling And
Predicates
SELECT light, mag
FROM sensors
WHERE pred1(mag)
AND pred2(light)
EPOCH DURATION 1s

Power condition:
sampling magnetometer
is much more costly than
sampling light

1500uJ vs. 90uJ

The correct order is pred2(light) pred1(mag)
At 1 sample/sec, total power savings could be
≥3.5 mW, which is comparable with processor
power

For Aggregate Queries

The correct order is:
Sample light, light>MAX?
If so, sample mag, mag>X?
Report light

SELECT WINMAX(light, 8s, 8s)
FROM sensors
WHERE mag>X
EPOCH DURATION 1s

Acquisitional Query Processing
Basic Acquisitional Processing

Basic Language Features
Event-based Query and Lifetime-Based Query

Power-aware Optimization
Ordering Sampling and Predicates

Power-sensitive Dissemination
Semantic Routing Trees

Processing Queries
Prioritizing Data Delivery
Adapting Rates and Power Consumption

Semantic Routing Trees
Co-acquisition: exploit correlations of sensors
to reduce data dissemination

Queries are often constrained in a region
Avoid sending queries to non-involved sensors

Rule: sensors that sample together route
together
Build semantic routing trees (SRT) to reduce
data dissemination

SRT nodes choose parents based on semantic
properties as well as link quality

Semantic Routing Trees

For node join, node picks parent whose
ancestor’s interval most overlap its
descendants’ interval

Semantic Routing Trees

Parent nodes keep track of children’s
value range

Performance Evaluation of
SRT

In the random distribution,
each constant attribute value
was randomly and uniformly
selected from the interval [0,
1000]
In the geographic distribution,
sensor values were computed
based on a function of
sensor’s x and y position in
the grid.

Acquisitional Query Processing
Basic Acquisitional Processing

Basic Language Features
Event-based Query and Lifetime-Based Query

Power-aware Optimization
Ordering Sampling and Predicates

Power-sensitive Dissemination
Semantic Routing Trees

Processing Queries
Prioritizing Data Delivery
Adapting Rates and Power Consumption

Processing Queries
Queries have been optimized both locally and
collaboratively in distribution. What more can
we do?
Enhance the channel utilization!
Prioritize data that needs to be sent

Naive - FIFO
Winavg – Average top queue entries
Delta – Send result with most change

Adapt data rates and power consumption

Prioritizing Data Delivery

When aggregate sample rate > channel
bandwidth, we can only transmit the
most valuable data
Data prioritization is domain dependent

E.g. largest, sharp, most frequently
changing, …

use the delivery buffer
Out-of-order delivery

Discussion of ACQP
TinyDB: a new way to the user interface for data
collection in sensor network

Easier, faster, more general
Make people seek helps from the DB realm

Acquisitonal query processing: addressing new issues
that arise in sensor networks by adding new features
to DB querying semantics

Lifetime and event based query
Power-aware optimization
Data dissemination in sensor networks
Runtime prioritization

Discussion of ACQP
Is TinyDB the right way to look at the application of
sensor networks
Improve the semantic routing tree with more
sophisticated methods

How about general routing issues when SRT is used? (e.g.
load-balance, channel bandwidth). Can we benefit more
from routing layer and geographic information in SRT?

Data Prioritization is very important and need to be
pursued

When query load is heavy, a sensor/channel will overload
Co-query prioritization is needed
A decentralized algorithm to make both emergent & less-
emergent queries be satisfied, under resource constraints

Outline

Background and motivation
Acquisitional query (ACQP) optimization
Continuously adaptive continuous query
(CACQ) optimization
Summary
Future work

CACQ Introduction
Proposed continuous query (CQ) systems are based on
static plans

But, CQs are long running
Initially valid assumptions less so over time
Static optimizers at their worst!

CACQ insight: apply continuous adaptivity to
continuous queries

Dynamic operator ordering avoids static optimizer
danger
Process multiple queries simultaneously
Interestingly, enables sharing of work & storage

Mission Accomplished:
Efficient mechanism for processing multiple
simultaneous monitoring queries over streaming data
sources

Share work by processing all queries within a single eddy

Continuous adaptivity to changing world
Queries come & go, but performance adapts without costly
multiquery reoptimization

Maximize ability to work share by explicitly encoding
lineage

Share selections via grouped filter

Approaches
Adaptivity

Policies for continuous queries
Single eddy for multiple queries

Tuple Lineage
Lineage capture a tuple’s path through a single query, and
concisely expresses a tuple’s path through all queries in the
system
In addition to ready and done, encode output history in
tuple in queriesCompleted bits

Enables flexible sharing of operators between queries

Grouped Filter
Efficiently compute selections over multiple queries

Tuple Lineage
Ready bit vector

Where it must go next
set if the operator can be applied to this tuple

Done bit vector
Where it has been
Set if the operator to which a tuple has already
been routed

QueriesCompleted bit vector
where it may still be output
set if this tuple has already been output or
rejected by the query

Single Query, Single Source

• Use ready bits to track
what to do next
• All 1’s in single

source

• Use done bits to track
what has been done
• Tuple can be output

when all bits set
R

σ
(R.a > 10)

Eddy

σ
(R.b < 15)

R1

R1

R1

5a
25b

R1
15a
0b

R2

1 1 0 01 1 0 11 1 0 01 1 1 01 1 11
Rea
dy

Don
e

σaσb σaσb
R

σ
(R.a > 10)

Eddy

σ
(R.b < 15)

R2

R2R2
R2 R2

R2

SELECT *

FROM R

WHERE R.a > 10 AND R.b < 15

σa

σb

R

σa

σb

R

σa

σb

R

Q1 Q2 Q3

Multiple Queries

R.a > 10

R.a > 20

R.a = 0

R.b < 15
R.b = 25
R.b <> 50

σb

σa

R

R1

R1

R1

R1

R1

Grouped
Filters

5a
25b

R1

SELECT *
FROM R
WHERE R.a > 10
AND R.b < 15

Q1

SELECT *
FROM R
WHERE R.a > 20
AND R.b = 25

Q2

SELECT *
FROM R
WHERE R.a = 0
AND R.b <> 50

Q3

R1 R1

R1 R1R1

R1R1

R1

0 0 0 0 00 0 1 0 00 1 1 0 00 1 1 1 11 1 1 1 1
σa σb Q1 Q2 Q3

Done QueriesComple

σa

σb

R

σa

σb

R

σa

σb

R

Q1 Q2 Q3

Multiple Queries

R.a > 10

R.a > 20

R.a = 0

R.b < 15
R.b = 25
R.b <> 50

σb

σa

R

R2

R2

R2

R2

R2

R2

Grouped
Filters

15a
0b

R2

SELECT *
FROM R
WHERE R.a > 10
AND R.b < 15

Q1

SELECT *
FROM R
WHERE R.a > 20
AND R.b = 25

Q2

SELECT *
FROM R
WHERE R.a = 0
AND R.b <> 50

Q3

0 0 0 0 0

σb

σa

R

σb

σa

R

σb

σa

R

Q1 Q2 Q3

R2 R2 R2

0 0 0 1 11 0 0 1 11 1 0 1 11 1 1 1 1
σa σb Q1 Q2 Q3

Done QueriesComple

R1 R1

R2

Reorder
Operators!

Outputting Tuples

Store a completionMask bitmap for
each query

One bit per operator
Set if the operator in the query

To determine if a tuple t can be
output to query q:

Eddy ANDs q’s completionMask
with t’s done bits
Output only if q’s bit not set in
t’s queriesCompleted bits

Every time a tuple returns from an
operator

Q2: 0111

Q1: 1100 & Done == 1100

& Done == 0111

completionMasks
&& QueriesCompleted[0] == 0

SELECT * FROM R
WHERE R.a > 10
AND R.b < 15

Query
1

SELECT * FROM R
WHERE R.b < 15
AND R.c <> 5 AND R.d = 10

Query 2

dcbaσ

1

0

1

1

1

0

Q2

Q1

0

1

completionMasks

Done QC

σa Q1 Q2σb σc σd

Tupl
e

1 1 0 0 0 01 1 0 0 1 01 1 0 0 1 0

Grouped Filter
Use binary trees to efficiently index range predicates

Two trees (LT & GT) per attribute
Insert constant

When tuple arrives
Scan everything to right (for GT) or left (for LT) of the tuple-attribute in the
tree
Those are the queries that the tuple does not pass

Hash tables to index equality, inequality predicates

Greater-than
tree over S.a

8
S.a

>11

7

1 11

>7>1 Q1 Q2 Q3

Grouped Filter – cont’d

Work Sharing via Tuple Lineage

A

B

C D

B

A

Data Stream S

s

sc

sB
C

sD

sBD

Query
1

Query
2

Conventional Queries

s
s

sC

sCD

sCDB

CACQ -
Adaptivity

A

C
D

B

Data Stream S

A

C D

B

Data Stream S

Query
1

Query
2

Shared
Subexpressions

sB

sAB sABReject
?

sCDBA

s

Q1: SELECT * FROM s WHERE A, B, C Q2: SELECT * FROM s
WHERE A, B, D

Intersection
of CD goes
through AB

an extra time! AB must
be

applied
first!

Lineage
(Queries

Completed)
Enables

Any
Ordering!

0 | 0
QC

0 or 1 | 0
QC

1 | 1
QC0 or 1 | 0 or 1

QC

0 or 1 | 0 or 1
QC

C D 0 or 1 | 0 or 1
QC

Tradeoff: Overhead vs. Shared Work

Overhead in additional bits per tuple
Experiments studying performance, size in paper
Bit / query / tuple is most significant

Trading accounting overhead for work sharing
100 bits / tuple allows a tuple to be processed
once, not 100 times

Reduce overhead by not keeping state about
operators tuple will never pass through

Evaluation
Real Java implementation on top of Telegraph QP

4,000 new lines of code in 75,000 line codebase

Server Platform
Linux 2.4.10
Pentium III 733, 756 MB RAM

Queries posed from separate workstation
Output suppressed

Lots of experiments in paper, just a few here

Performance: Increased Scalability

Tuple Throughput vs. Number of Queries

0

500

1000

1500

2000

2500

1 5 10 15 20 25 30 35 40 45 50
Number of Queries

T
up

le
s/

S

CACQ
Eddy

Workload, Per Query: 1-5 randomly selected range predicates of form
‘attr > x’ over 5 attributes. Predicates from the uniform distribution

[0,100]. 50% chance of predicate over each attribute.

Performance – cont’d
Continuous query has about
double throughput compared
to conventional query

Additional sources decrease
throughput

Many more scan operators
that must be scheduled
Many more filter-operators
are created and a larger
number of predicates
evaluated (filters of indep.
Streams cannot be
combined)

Outline

Background and motivation
Acquisitional query (ACQP) optimization
Continuously adaptive continuous query
(CACQ) optimization
Summary
Future work

Summary: ACQP
ACQP: controls when, where, and with what
frequency data is collected

Question: Is this the best way (right way?) to look
at a sensor network?

Four related questions
When should samples be taken?
What sensors have relevant data?
In what order should samples be taken?
Is it worth it?

Summary: ACQP – cont’d
How should the query be processed?

Sampling as a first class operation
Event – join duality

How does the user control acquisition?
Rates or lifetimes
Event-based triggers

Which nodes have relevant data?
Index-like data structures

Which samples should be transmitted?
Prioritization, summary, and rate control

Summary: CACQ
CACQ: sharing and adaptivity for high
performance monitoring queries over data
streams
Features

Adaptivity
Adapt to changing query workload without costly multi-
query reoptimization

Work sharing via tuple lineage
Without constraining the available plans

Computation sharing via grouped filter

Future Work
Expressing lossiness
Batching & query grouping
Additional Operations

Joins
Signal Processing

Integration with Streaming DBMS
In-network vs. external operations

Heterogeneous Nodes and Operators
Real Deployments

