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Good query interface 
Power efficiency, long lifetime
Scalability
Adaptivity
Low response time (high throughput)
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Sensor Networks
Small computers with:

Radios
Sensing hardware
Batteries

Remote deployments
Long lived
10s, 100s, or 1000s

Battery Pack

Smart Sensor, aka “Mote”



Mica Motes

4Mhz, 8 bit Atmel RISC uProc

40 kbit Radio

4 K RAM, 128 K Program 
Flash, 512 K Data Flash

AA battery pack

Based on TinyOS



Sensor Net Sample Apps

Traditional monitoring 
apparatus.

Earthquake monitoring in shake-
test sites.

Vehicle detection: sensors along a 
road, collect data about passing 
vehicles.

Habitat Monitoring: Storm 
petrels on Great Duck Island, 
microclimates on James 
Reserve.



Sensor Database

Sensors table is an unbounded, continuous 
data stream

Sensors viewed as a single table
Columns are sensor data
Rows are individual sensors

Query processor-like interface
SQL-like queries in the form of SELECT-FROM-
WHERE

Operations such as sort and symmetric join 
are not allowed on streams, however, they 
are allowed on bounded subsets of the 
stream (windows)



Query Examples

Example:
SELECT nodeid, nestNo, light
FROM sensors
WHERE light > 400
EPOCH DURATION 1s
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“Find the sensors in bright 
nests.”

……



Query Examples – cont’d
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“Count the number occupied 
nests in each loud region of 
the island.”

SELECT region,  CNT(occupied) 
AVG(sound)

FROM sensors
GROUP BY region
HAVING AVG(sound) > 200
EPOCH DURATION 10s

Regions w/ AVG(sound) > 200

SELECT AVG(sound)

FROM sensors

EPOCH DURATION 10s



Continuous Query
“Monitoring” queries look for recent events in 
data streams; We confine our view to queries 
over ‘recent-history’

Only tuples currently entering the system
Stored in in-memory data tables for time-windowed joins 
between streams

Long running, “standing queries”, similar to 
trigger systems
Installed;  continuously produce results until 
removed



Continuous Query - cont’d
Closed world assumption does not hold

Could generate an infinite number of samples

Traditional system: data is provided a priori

Lots of queries, over the same data sources
In-network processing
Opportunity for work sharing!
Global query optimization problem (hard)
finding an optimal plan (adaptively)



Where are the problems?

Radio consumes as much power as the 
CPU
Transmitting one bit of data consumes 
as much energy as 1000 CPU 
instructions!
Message overhead
Sensing takes significant energy



Goals

Provide a query processor-like interface 
to sensor networks
Use some techniques to reduce power 
consumption compared to traditional 
passive systems
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Acquisitional Query Processing

Provide a query processor-like interface to 
sensor networks
Use Acquisitional techniques to reduce power 
consumption compared to traditional passive 
systems



Acquisitional Query Processing
Traditional DBMS: processes data already in the 
system
Acquisitional DBMS: generates the data in the system

An Acquisitional query processor controls
When should samples for a particular query be taken?
What sensor nodes have data relevant to a particular query?
And with what frequency data is collected

Versus traditional systems where data is provided 
ahead



What’s the big deal? (revisit)
Radio consumes as much power as the CPU
Transmitting one bit of data consumes as 
much energy as 1000 CPU instructions!
Message sizes in TinyDB are by default 48 
bytes
Sensing takes significant energy



Acquisitional Query Processing
Basic Acquisitional Processing

Basic Language Features
Event-based Query and Lifetime-Based Query

Power-aware Optimization
Ordering Sampling and Predicates

Power-sensitive Dissemination
Semantic Routing Trees

Processing Queries
Prioritizing Data Delivery
Adapting Rates and Power Consumption



Basic Language Features
SQL-like queries in the form of SELECT-
FROM-WHERE
Support for selection, join, projection, and 
aggregation
Also support for sampling, windowing, and 
sub-queries
Not mentioned is the ability to log data and 
actuate physical hardware



Basic Language Features
Example:”Find the sensors in bright rooms”

SELECT nodeid, light, temp
FROM sensors
WHERE light > 400
SAMPLE INTERVAL 1s FOR 10s

Queries posed from PC, distributed and executed in-
network
Sensors viewed as a single table
Columns are sensor data
Rows are individual sensors



Queries as a Stream

Sensors table is an unbounded, continuous 
data stream
Operations such as sort and symmetric join 
are not allowed on streams
They are allowed on bounded subsets of the 
stream (windows)



Windows
Windows in TinyDB are fixed-size materialization points
Materialization points can be used in queries

Example: “output a stream of counts indicating the number of 
recent light readings that were brighter than the current 
readings”
CREATE

STORAGE POINT recentlight SIZE 8
AS (SELECT nodeid, light FROM sensors
SAMPLE INTERVAL 10s)

SELECT COUNT(*)
FROM sensors AS s, recentlight AS r1
WHERE r.nodeid = s.nodeid
AND s.light < r1.light
SAMPLE INTERVAL 10s



Temporal Aggregation
Temporal Aggregation aggregates sensors values 
across multiple consecutive epochs from the same or 
different nodes
Temporal Aggregation take two extra arguments: 
window_size, sliding_dist. For example, winavg( 
window_size, sliding_dist, arg)

Example: “computes the 30-sample running average 
of light sensor readings”

SELECT WINAVG(30s, 5s, light)
FROM sensors
SAMPLE INTERVAL 1s

*Receive only 6 results from each sensor instead of 30



Event-Based Queries
Events act as a mechanism for initiating data 
collection
Events allow the system to be dormant until some 
external conditions occur

Example: “report the average light and temperature level at 
sensors near a bird nest where a bird has just been detected”
ON EVENT bird-detect(loc):

SELECT AVG(light), AVG(temp), event.loc
FROM sensors AS s
WHERE dist(s.loc, event.loc) < 10m
SAMPLE INTERVAL 2s FOR 30s



Lifetime-Based Queries
Lifetime is a much more intuitive way for 
users to reason about power consumption
To satisfy a lifetime clause, TinyDB performs 
lifetime estimation

T = ph / es
T: maximum transmission rate; ph: available power per hour; es: 

the energy to collect and transmit one sample

Example: “the network should run for at least 30 days”
SELECT nodeid, accel
FROM sensors
LIFETIME 30 days
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Optimization

Three phases to queries
Creation of query
Dissemination of query
Execution of query

TinyDB makes optimizations at each 
step



Ordering of Sampling And 
Predicates
SELECT light, mag
FROM sensors
WHERE pred1(mag)
AND pred2(light)
EPOCH DURATION 1s

Power condition:
sampling magnetometer 
is much more costly than 
sampling light

1500uJ vs. 90uJ

The correct order is pred2(light) pred1(mag)
At 1 sample/sec, total power savings could be 
≥3.5 mW, which is comparable with processor 
power



For Aggregate Queries

The correct order is:
Sample light, light>MAX?
If so, sample mag, mag>X?
Report light

SELECT WINMAX(light, 8s, 8s)
FROM sensors
WHERE mag>X
EPOCH DURATION 1s
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Semantic Routing Trees
Co-acquisition: exploit correlations of sensors 
to reduce data dissemination

Queries are often constrained in a region
Avoid sending queries to non-involved sensors

Rule: sensors that sample together route 
together
Build semantic routing trees (SRT) to reduce 
data dissemination

SRT nodes choose parents based on semantic 
properties as well as link quality



Semantic Routing Trees

For node join, node picks parent whose 
ancestor’s interval most overlap its 
descendants’ interval



Semantic Routing Trees

Parent nodes keep track of children’s 
value range



Performance Evaluation of 
SRT

In the random distribution, 
each constant attribute value 
was randomly and uniformly 
selected from the interval [0, 
1000]
In the geographic distribution, 
sensor values were computed 
based on a function of 
sensor’s x and y position in 
the grid.
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Processing Queries 
Queries have been optimized both locally and 
collaboratively in distribution. What more can 
we do?
Enhance the channel utilization!
Prioritize data that needs to be sent

Naive - FIFO
Winavg – Average top queue entries
Delta – Send result with most change

Adapt data rates and power consumption



Prioritizing Data Delivery

When aggregate sample rate > channel 
bandwidth, we can only transmit the 
most valuable data
Data prioritization is domain dependent

E.g. largest, sharp, most frequently 
changing, …

use the delivery buffer
Out-of-order delivery



Discussion of ACQP
TinyDB: a new way to the user interface for data 
collection in sensor network

Easier, faster, more general
Make people seek helps from the DB realm

Acquisitonal query processing: addressing new issues 
that arise in sensor networks by adding new features 
to DB querying semantics

Lifetime and event based query
Power-aware optimization
Data dissemination in sensor networks
Runtime prioritization



Discussion of ACQP
Is TinyDB the right way to look at the application of 
sensor networks
Improve the semantic routing tree with more 
sophisticated methods

How about general routing issues when SRT is used? (e.g. 
load-balance, channel bandwidth). Can we benefit more 
from routing layer and geographic information in SRT?

Data Prioritization is very important and need to be 
pursued

When query load is heavy, a sensor/channel will overload
Co-query prioritization is needed
A decentralized algorithm to make both emergent & less-
emergent queries be satisfied, under resource constraints
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CACQ Introduction
Proposed continuous query (CQ) systems are based on 
static plans

But, CQs are long running
Initially valid assumptions less so over time
Static optimizers at their worst!

CACQ insight:  apply continuous adaptivity to 
continuous queries

Dynamic operator ordering avoids static optimizer 
danger
Process multiple queries simultaneously
Interestingly, enables sharing of work & storage



Mission Accomplished:
Efficient mechanism for processing multiple 
simultaneous monitoring queries over streaming data 
sources

Share work by processing all queries within a single eddy

Continuous adaptivity to changing world
Queries come & go, but performance adapts without costly 
multiquery reoptimization

Maximize ability to work share by explicitly encoding 
lineage

Share selections via grouped filter



Approaches
Adaptivity

Policies for continuous queries
Single eddy for multiple queries

Tuple Lineage
Lineage capture a tuple’s path through a single query, and 
concisely expresses a tuple’s path through all queries in the 
system 
In addition to ready and done, encode output history  in 
tuple in queriesCompleted bits

Enables flexible sharing of operators between queries

Grouped Filter
Efficiently compute selections over multiple queries



Tuple Lineage
Ready bit vector

Where it must go next
set if the operator can be applied to this tuple

Done bit vector
Where it has been
Set if the operator to which a tuple has already 
been routed

QueriesCompleted bit vector
where it may still be output 
set if this tuple has already been output or 
rejected by the query



Single Query, Single Source

• Use ready bits to track 
what to do next
• All 1’s in single 

source

• Use done bits to track 
what has been done
• Tuple can be output 

when all bits set
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Outputting Tuples

Store a completionMask bitmap for 
each query

One bit per operator
Set if the operator in the query

To determine if a tuple t can be 
output to query q:

Eddy ANDs q’s completionMask
with t’s done bits
Output only if q’s bit not set in 
t’s queriesCompleted bits

Every time a tuple returns from an 
operator

Q2: 0111

Q1: 1100 & Done == 1100 

& Done == 0111

completionMasks
&& QueriesCompleted[0] == 0

SELECT * FROM R 
WHERE R.a > 10 
AND R.b < 15

Query 
1

SELECT * FROM R 
WHERE R.b < 15 
AND R.c <> 5 AND R.d = 10

Query 2
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Grouped Filter
Use binary trees to efficiently index range predicates

Two trees (LT & GT) per attribute
Insert constant

When tuple arrives
Scan everything to right (for GT) or left (for LT) of the tuple-attribute in the 
tree
Those are the queries that the tuple does not pass

Hash tables to index equality, inequality predicates

Greater-than 
tree over S.a

8
S.a

>11

7

1 11

>7>1 Q1 Q2 Q3



Grouped Filter – cont’d



Work Sharing via Tuple Lineage
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Tradeoff:  Overhead vs. Shared Work

Overhead in additional bits per tuple
Experiments studying performance, size in paper
Bit / query / tuple is most significant

Trading accounting overhead for work sharing
100 bits / tuple allows a tuple to be processed 
once, not 100 times

Reduce overhead by not keeping state about 
operators tuple will never pass through



Evaluation
Real Java implementation on top of Telegraph QP

4,000 new lines of code in 75,000 line codebase

Server Platform
Linux 2.4.10
Pentium III 733, 756 MB RAM

Queries posed from separate workstation
Output suppressed

Lots of experiments in paper, just a few here



Performance: Increased Scalability

Tuple Throughput vs. Number of Queries
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Workload, Per Query: 1-5 randomly selected range predicates of form 
‘attr > x’ over 5 attributes.  Predicates from the uniform distribution 

[0,100].  50% chance of predicate over each attribute.



Performance – cont’d
Continuous query has about 
double throughput compared 
to conventional query

Additional sources decrease 
throughput

Many more scan operators 
that must be scheduled
Many more filter-operators 
are created and a larger 
number of predicates 
evaluated (filters of indep. 
Streams cannot be 
combined)
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Summary: ACQP
ACQP: controls when, where, and with what 
frequency data  is collected

Question: Is this the best way (right way?) to look 
at a sensor network?

Four related questions
When should samples be taken?
What sensors have relevant data?
In what order should samples be taken?
Is it worth it?



Summary: ACQP – cont’d
How should the query be processed?

Sampling as a first class operation
Event – join duality

How does the user control acquisition?
Rates or lifetimes
Event-based triggers

Which nodes have relevant data?
Index-like data structures

Which samples should be transmitted?
Prioritization, summary, and rate control



Summary: CACQ
CACQ: sharing and adaptivity for high 
performance monitoring queries over data 
streams
Features

Adaptivity
Adapt to changing query workload without costly multi-
query reoptimization

Work sharing via tuple lineage
Without constraining the available plans

Computation sharing via grouped filter



Future Work
Expressing lossiness
Batching & query grouping
Additional Operations

Joins
Signal Processing

Integration with Streaming DBMS
In-network vs. external operations

Heterogeneous Nodes and Operators
Real Deployments


